第二代移动通信系统

合集下载

第二代2G移动通信网络及其移动性管理

第二代2G移动通信网络及其移动性管理

第2章第二代(2G)移动通信网络及其移动性管理第一代(1G)移动通信系统采用模拟技术,有多种制式,我国主要采用的是TACS。

第二代移动通信系统主要有欧洲的GSM和北美的DAMPS和IS-95 CDMA技术等,目前我国广泛应用的是GSM系统(简称G网)和IS-95 CDMA系统(简称C网)。

第二代(2G)移动通信替代第一代移动通信系统完成了模拟技术向数字技术的转变,其主要特性是为移动用户提供数字化的语音业务以及低速数据业务。

2.1第二代移动通信网络系统2.1.1 蜂窝系统的发展蜂窝系统的概念和理论上世纪六十年代就由美国贝尔实验室等单位提了出来,但其复杂的控制系统,尤其是实现移动台的控制直到上世纪七十年代随着半导体技术的成熟,大规模集成电路器件和微处理器技术的发展以及表面贴装工艺的广泛应用,才为蜂窝移动通信的实现提供了技术基础。

直到1979年美国在芝加哥开通了第一个AMPS(先进的移动电话业务)模拟蜂窝系统,而北欧也于1981年9月在瑞典开通了NMT(Nordic 移动电话)系统,接着欧洲先后在英国开通TACS系统,德国开通C-450系统等。

蜂窝移动通信的出现可以说是移动通信的一次革命。

其频率复用大大提高了频率利用率并增大系统容量,网络的智能化实现了越区转接和漫游功能,扩大了客户的服务范围。

第一代模拟系统主要有四大缺点:1、各个系统之间没有公共接口;2、很难开展数据承载业务;3、频谱利用率低,无法适应系统大容量的需求;4、系统安全保密性差,易被窃听,易做“假机”。

尤其是在系统间没有公共接口,因此系统相互之间不能漫游,给移动用户造成很大的不便。

第二代蜂窝移动通信系统主要包括GSM、IS-95以及D-AMPS三种。

我国的第二代蜂窝移动通信系统使用的是GSM标准制式。

2.2G SM系统GSM数字移动通信系统是由欧洲主要电信运营者和制造厂家组成的标准化委员会设计出来的,它是在蜂窝系统的基础上发展而成。

早在1982年,欧洲已有几大模拟蜂窝移动系统在运营,例如北欧多国的NMT(北欧移动电话)和英国的TACS(全接入通信系统),西欧其它各国也提供移动业务。

1g到5g各代技术及标准

1g到5g各代技术及标准

1g到5g各代技术及标准一、第一代移动通信技术(1G)1G是一种模拟制式的移动通信系统,主要使用频分多址(FDMA)技术。

该系统只能提供语音通话服务,数据传输速率较低。

在标准方面,全球主要采用美国TIA-EIA的IS-95标准。

二、第二代移动通信技术(2G)2G引入了数字技术,提高了信号质量和数据传输速率。

相比1G,2G提供了更广泛的服务,包括语音、短信、数据和多媒体业务等。

主要采用的无线协议包括TDMA、CDMA和GSM等。

在全球范围内,主要的国际标准包括ETSI的GSM以及IS-95的升级版CDMA ONE等。

三、第三代移动通信技术(3G)3G是宽带无线通信技术,提供了更高的数据传输速率和更好的语音质量。

相比2G,3G引入了更先进的调制和编码技术,如OFDM和OFCDN等,使得数据传输更快、更可靠。

主要的国际标准包括WCDMA、CDMA2000和TD-SCDMA等。

四、第四代移动通信技术(4G)4G是更先进的宽带无线通信技术,提供了更快的数据传输速率和更好的语音质量。

相比3G,4G引入了更先进的调制方案,如OFDMA,并采用了更先进的信道编码和调制策略。

全球范围内,主要的国际标准包括LTE-A(包括FDD-LTE和TD-LTE)、WiMAX 2.0和HSPA+等。

五、第五代移动通信技术(5G)5G是下一代移动通信技术,提供了更高的数据传输速率、更低的延迟和更好的网络连接。

相比4G,5G引入了更先进的网络架构和技术,如大规模MIMO、毫米波通信、网络切片等。

全球范围内,主要的国际标准包括3GPP的5G NR(新无线电)和IMT-2020(5G)等。

六、各代技术的比较从第一代到第五代移动通信技术,随着技术的不断演进,移动通信系统的性能也在不断提高。

具体比较如下:1. 语音质量:随着技术的进步,语音质量得到了显著提高。

从第一代的模拟信号到第五代的数字信号,语音质量得到了显著改善。

2. 数据传输速率:随着数据传输速率的提高,用户可以更快地下载和上传数据,同时也可以更好地支持多媒体应用和服务。

移动通信系统的发展历程

移动通信系统的发展历程

移动通信系统的发展历程移动通信系统的发展历程:移动通信系统是随着科技的进步和人们对通信需求的不断增长而发展起来的。

本文将详细介绍移动通信系统的发展历程,并对每个阶段进行细化说明。

1.第一代移动通信系统(1G)第一代移动通信系统于20世纪70年代末和80年代初开始出现。

其最具代表性的技术标准为模拟蜂窝系统(AMPS)。

1G系统采用模拟信号传输,通信质量受到干扰影响较大,信号稳定性不高,容量较低,并且不能实现数据传输。

此阶段的移动通信系统主要用于语音通信。

2.第二代移动通信系统(2G)第二代移动通信系统于20世纪90年代初开始兴起,最具代表性的技术标准为数字蜂窝系统(GSM)。

2G系统采用数字信号传输,信号质量更好,容量更大,能够支持语音和短信服务,并初步实现了数据传输。

在2G时代,移动通信系统的普及率迅速增长,人们可以方便地进行远程通信。

3.第三代移动通信系统(3G)第三代移动通信系统于21世纪初开始出现,最具代表性的技术标准为宽带无线接入(WCDMA)和CDMA2000。

3G系统提供更快的数据传输速度和更稳定的信号质量,不仅支持语音和短信服务,还能够实现视频通话、移动互联网和数据传输等功能。

3G技术的应用拓宽了移动通信的应用领域。

4.第四代移动通信系统(4G)第四代移动通信系统于2010年开始商用,最具代表性的技术标准为长期演进(LTE)。

4G系统实现了更高的数据传输速度和更低的延迟,并支持更多的应用场景,如高清视频、在线游戏和大规模数据传输等。

4G技术的快速发展为移动互联网的普及和发展提供了坚实支撑。

5.第五代移动通信系统(5G)第五代移动通信系统已经开始商用,最具代表性的技术标准为新无线通信系统(NR)。

5G系统将进一步提高数据传输速度和网络容量,实现超高带宽、超低延迟和穿透力强的通信能力。

5G技术的应用将进一步推动物联网、智能城市等新兴领域的发展。

附件:本文档附带了一些相关的附件,包括移动通信系统的图表、数据统计和技术规范等,供参考和深入了解。

第二代GSM数字移动通信系统

第二代GSM数字移动通信系统

19
Wireless and Mobile Networks Technology
Zhenzhou Tang @ Wenzhou University
5.2 第二代GSM数字移动通信系统 5.2.1 GSM的业务
承载业务(Bearer Servcies),是指所有能够为用户提供的两个接入 点之间的数据传输服务。
5.2 第二代GSM数字移动通信系统
GSM的发展历程
1. 1982年,移动通信特别小组(Group Special Mobile)成立; 2. 1988年,全球移动通信系统 (Global System for Mobile
Communications,简称GSM)颁布 3. 1991 年,GSM系统正式在欧洲开通运行。
电信业务是指提供包括终端设备功能在内的完整的端到端通信业务。
1. 电话业务:为移动用户与移动用户之间或移动用户与固定电话 用户之间提供实时双向通话
2. 紧急呼叫(Emergency Number)业务:在没有SIM卡的情况下, 仍然能够接通各种紧急电话,如火警,匪警或者急救中心
3. 短消息业务(Short Message Service,简称SMS) 4. 3类传真业务
GSM作为最为成功的数字移动通信系统,仍然被全球190多个国 家十多亿人所广泛使用
• GSM900 工作在 900 MHz:上行链路890-915MHz;下行链路 935-960MHz
• DCS1800工作在1800MHz:上行链路1710-1785MHz;下行链路 1805-1880MHz
• PCS工作在1900MHz:上行链路1850-1910MHz;下行链路 1930-1990MHz
附加业务又称补充业务(Supplementary Service),是对基本业务 的扩展。

第二代移动通信系统GSM

第二代移动通信系统GSM

(4)前向纠错FEC 编码
前向纠错就是自动纠错,该措施在发 送端发送可以纠错旳码,接受端在收到旳 信码中不仅能发现错码,并且还可以根据 编码规则自动纠正传播中旳错误. 对于二 进制系统,假如可以确定错码旳位置,就可 以纠正它. 其长处是不需要反馈信道,译 码实时性很好,能进行一种顾客对多种顾 客旳同步通信,尤其适合于移动通信.
由此可见,GSM此后旳发展趋势是综 合化、小型化和个人化;采用更先进旳多 址技术和数据语音处理技术,深入提高频 率旳运用率;提高网络旳智能化程度,提 供更多旳新业务,即除 业务外,再扩展 到数据、 、图像等多种非话业务,融 入到综合业务数字网中,成为未来个人通 信网旳一种构成部分。
以上讨论了GSM系统发展趋势,这种系统采 用旳是时分多址技术。其频率旳运用率只比模 拟频分系统高出2~3倍,但若采用CDMA,则系统 容量可有更大提高。目前,CDMA技术已走向成 熟,商用旳CDMA数字蜂窝系统也已开通运转。 由于移动顾客迅速增长,频率资源日趋紧张,因 此采用码分多址数字蜂窝移动通信系统将是此 后旳发展方向。
GSM系统中提供旳业务重要是语音和低速 数据业务,而GPRS还可以提供多种较高速率 旳数据业务。GPRS 是在既有900/1800 MHz GSM 数字蜂窝移动通信系统上叠加了一种新 旳网络同步在网络上增长某些硬件设备和软件 升级形成了一种新旳网络逻辑实体提供端到端 旳广域旳无线IP 连接GPRS 作为移动数据业 务旳载体它能吸引顾客旳最重要原因是能提供 不一样需求旳数据服务。
GSM发展趋势及现实状况
20世纪80年代中期,我国模拟蜂窝移动通信 系统刚投放市场时,世界上旳发达国家就在研
制第二代移动通信系统。其中最有代表性和比 较成熟旳制式有泛欧GSM ,美国旳ADC(DAMPS)和日本旳JDC(目前更名为PDC)等数字 移动通信系统。在这些数字系统中,GSM旳 发展最引人注目。1991年GSM系统正式在欧 洲问世,网络开通运行。GSM系列重要有 GSM900、DCS1800和PCS1900三部分,三 者之间旳重要区别是工作频段旳差异。

无线通信技术基础_13第二代移动通信系统

无线通信技术基础_13第二代移动通信系统

无线通信技术基础_13第二代移动通信系统在通信技术的发展历程中,第二代移动通信系统(2G)的出现无疑是一个重要的里程碑。

它为人们的移动通信带来了巨大的变革,让人们在沟通交流方面更加便捷和高效。

2G 移动通信系统主要采用了数字通信技术,相较于第一代移动通信系统(1G)的模拟通信技术,具有更高的频谱利用率、更好的语音质量和更强的保密性。

在 2G 时代,全球主要有两种主流的技术标准:GSM(全球移动通信系统)和 CDMA(码分多址)。

GSM 是欧洲开发的标准,在全球范围内得到了广泛的应用。

它采用时分多址(TDMA)技术,将一个频率信道分成多个时隙,每个用户在特定的时隙内进行通信。

这种技术使得多个用户能够共享同一个频率信道,提高了频谱利用率。

CDMA 则是由美国高通公司开发的技术。

CDMA 系统中,不同用户的信号通过不同的编码序列进行区分,多个用户可以同时在同一频率上传输数据,从而大大提高了系统的容量。

2G 移动通信系统的主要业务是语音通信和短信服务。

语音通信的质量相比 1G 有了显著的提升,声音更加清晰、稳定。

而短信服务的出现则为人们提供了一种全新的、便捷的文字交流方式。

在那个时候,人们通过短信传递简短的信息,如问候、约会安排等。

为了实现 2G 通信,手机的形态和功能也发生了很大的变化。

早期的 2G 手机体积较大,功能相对简单,主要就是用于打电话和发短信。

但随着技术的不断进步,手机变得越来越小巧轻便,外观设计也更加时尚美观。

同时,手机的功能也逐渐丰富,如增加了通讯录、闹钟、计算器等实用的功能。

2G 网络的覆盖范围也在不断扩大。

运营商们纷纷建设基站,以确保信号能够覆盖到更广泛的区域,包括城市、乡村甚至一些偏远地区。

这使得人们在几乎任何地方都能够使用手机进行通信,极大地提高了人们生活和工作的便利性。

然而,2G 移动通信系统也存在一些局限性。

首先,它的数据传输速率较低,无法满足人们对于高速数据业务的需求,如浏览网页、观看视频等。

2G 移动通信原理

2G 移动通信原理

2G 移动通信原理2G 移动通信原理1. 简介2G移动通信(第二代移动通信)是指数字化的移动通信系统,相比于第一代移动通信系统,2G系统具有更高的容量、更好的音频质量和更强的数据传输能力。

本文将介绍2G移动通信的原理。

2. 2G移动通信技术2G移动通信系统采用数字信号替代了模拟信号,主要使用的技术有以下几种:2.1 TDMATDMA(时分多址)是一种多址技术,将时间分成多个时隙,每个时隙都可以用于一个通信用户的数字信号传输,以实现多个用户传输数据。

2.2 FDMAFDMA(频分多址)是一种多址技术,将频谱分成一系列的子信道,每个子信道都可以给一个通信用户使用,以实现多个用户进行通信。

2.3 CDMACDMA(码分多址)是一种多址技术,通过在信号中引入编码序列来区分不同的用户,实现多个用户使用同一频率进行通信。

3. 2G移动通信网络结构2G移动通信网络主要由以下几部分组成:3.1 基站子系统(BSS)基站子系统由基站控制器(BSC)和多个基站(BTS)组成,BTS 负责无线信号的传输,BSC负责对多个BTS进行管理与控制。

3.2 主控制器(MSC)主控制器是网络的核心节点,负责处理用户的呼叫、系统间的信令传输等。

3.3 数据库数据库存储用户的注册信息、呼叫记录等。

4. 2G移动通信的工作原理2G移动通信的工作原理如下:4.1 首次接入当一个移动设备首次接入2G移动通信网络时,需要进行注册。

设备向网络发送注册请求,网络接收到后,将设备的信息存储到数据库中,并为设备分配一个临时标识。

4.2 呼叫过程当用户发起呼叫时,移动设备会向网络发送呼叫请求,网络接收到后,查找目标用户的位置,并将呼叫请求转发给目标用户所在的基站。

基站接收到呼叫请求后,向目标用户发起寻呼,当目标用户接听时,呼叫建立。

4.3 呼叫结束呼叫结束时,设备和网络会进行一系列的信令交互,最终释放呼叫资源。

5. 2G移动通信的优缺点2G移动通信系统具有以下优点:- 高容量:2G系统支持多用户通信,提供更高的容量。

移动通信系统从1G到4GPPT课件

移动通信系统从1G到4GPPT课件

安全性差
1g系统缺乏加密和安全措 施,容易遭受窃听和干扰 攻击。
1g系统的应用场景
语音通话
1g系统主要提供语音通话服务, 满足用户基本的通讯需求。
简单的数据传输
部分1g系统支持低速数据传输, 如短消息服务。
区域性覆盖
由于1g网络的大规模覆盖能力,适 用于提供区域性覆盖的通信服务。
03
CATALOGUE
网络功能虚拟化(NFV)
采用虚拟化技术,实现网络功能的软件化和 集中管理。
4g系统的应用场景
移动互联网
4G系统为移动互联网提供了 高速、稳定的网络环境,支 持在线视频、社交媒体、电 子商务等多种应用。
物联网
4G系统为物联网应用提供了 广泛的覆盖和接入能力,支 持智能家居、智能交通、智 能农业等领域的应用。
3g系统的局限性
建设成本高
3g系统的建设和运营成本相对较高,给运营商带来了较大的压力 。
传输速率有限
相对于后续的移动通信系统,3g系统的传输速率相对较低,不能 满足用户对高速数据传输的需求。
竞争激烈
随着移动通信市场的竞争加剧,3g系统的市场份额逐渐受到其他 通信技术的挑战。
05
CATALOGUE
高速率
5g网络能够提供更高的数据传 输速率,满足用户对高清视频 、虚拟现实等高带宽应用的需
求。
低延迟
5g技术大幅减少了网络延迟, 为实时应用如自动驾驶、远程 医疗等提供了可靠的技术支持 。
大规模连接
5g网络具备支持海量设备同时 连接的能力,为物联网、智慧 城市等领域的发展奠定了基础 。
频谱高效利用
5g采用了高频谱技术和新型信 号处理技术,提高了频谱利用
多媒体业务

移动通信的演变过程

移动通信的演变过程

移动通信的演变过程移动通信的演变过程第一代移动通信(1G)第一代移动通信系统(1G)首次在20世纪80年代末出现。

这些系统主要基于模拟技术,通信质量较差,只能提供有限的语音通信服务。

最著名的1G系统是美国的AMPS(先进移动方式系统)和欧洲的NMT(北欧移动方式制式)。

第二代移动通信(2G)进入90年代,第二代移动通信系统(2G)开始崭露头角。

2G系统引入了数字技术,提供更好的语音质量和更高的数据传输速率。

最著名的2G系统是GSM(全球系统移动通信)和CDMA(码分多址)。

这些系统使得移动通信更加普及,打开了短信和WAP(无线应用协议)等新的应用领域。

第三代移动通信(3G)进入21世纪初,第三代移动通信系统(3G)的时代开始了。

3G系统采用了更先进的技术,提供更高的数据传输速率和更丰富的多媒体服务。

最著名的3G系统是WCDMA(宽带码分多址)和CDMA2000。

3G系统的出现使得移动互联网成为可能,用户可以通过方式上网、观看视频等。

第四代移动通信(4G)进入2010年代,第四代移动通信系统(4G)的发展起到了革命性的作用。

4G系统采用了全IP(Internet Protocol)网络架构,具备更高的数据传输速率和更低的时延。

最著名的4G技术是LTE(长期演进)。

4G技术的推出使得高质量的视频通话、高清视频流媒体等成为现实。

第五代移动通信(5G)当前,全球各地都在积极推进第五代移动通信系统(5G)的发展和商用。

5G系统将进一步提升数据传输速率和网络容量,减少时延,并支持更多的设备连接。

5G技术将为人们提供更多的应用场景,如智能家居、自动驾驶、远程医疗等。

来说,移动通信经历了从1G到5G的演变过程,从简单的语音通信到多媒体服务和物联网时代。

每一代技术都推动了移动通信的发展,并给人们的生活带来了巨大的便利。

随着5G技术的商用推进,移动通信将继续发展,为人类创造更加美好的。

移动通信发展五个阶段

移动通信发展五个阶段

移动通信发展五个阶段移动通信发展五个阶段第一阶段-1G时代1G(第一代)移动通信技术是指1970年代末到1980年代初开始应用的模拟蜂窝方式系统,采用模拟信号传输语音信息。

该阶段主要以全球系统移动通信(GSM)为代表,其中包括NMT(北欧移动方式)、AMPS(先进移动方式系统)等。

这个阶段的特点是通信容量有限,信号传输质量较差,主要局限在通话功能上。

第二阶段-2G时代2G(第二代)移动通信技术是指从90年代开始应用的数字蜂窝方式系统,采用数字信号传输语音信息。

这个阶段的代表技术是GSM(全球系统移动通信),2G技术的出现使得移动通信进入了数字化时代。

2G时代的主要特点是信号质量提高、通信容量增加、可以发送短信、支持语音通话等功能。

第三阶段-3G时代3G(第三代)移动通信技术是指2023年代初开始应用的高速移动通信系统,采用宽带数据传输技术。

这个阶段的代表技术是CDMA2023、WCDMA(宽带码分多址)、TD-SCDMA(时分复用码分多址)。

3G时代的主要特点是高速数据传输、支持互联网接入、提供丰富的多媒体功能,如视频通话、流媒体、移动互联网等。

第四阶段-4G时代4G(第四代)移动通信技术是指2023年代开始应用的超高速移动通信系统,采用全IP网络架构。

这个阶段的代表技术是LTE(长期演进),4G技术的出现进一步提升了移动通信的速度和容量,支持更多的应用场景,如高清视频、移动宽带、物联网等。

第五阶段-5G时代5G(第五代)移动通信技术是指当前正在快速发展的移动通信系统,采用更高的频谱效率、更低的时延、更高的可靠性和容量。

这个阶段的代表技术包括毫米波、超高频和大规模天线阵列等。

5G 时代的特点是更快的速度、更低的延迟、更大的容量,将推动移动通信与各行业的深度融合,实现人与人、人与物、物与物之间的全面连接。

附件:本文档附有移动通信发展图表和相关数据统计。

法律名词及注释:1-GSM(全球系统移动通信):全球移动通信技术标准之一,用于2G和3G网络。

移动通信的演变过程

移动通信的演变过程

移动通信的演变过程移动通信的演变过程1.介绍移动通信是指通过无线技术传输语音、数据和多媒体信息的通信方式。

随着科技的进步,移动通信经历了多个发展阶段,从最初的1G到当前的5G,不断创新和升级。

2.第一代移动通信(1G)第一代移动通信是指模拟信号传输技术的移动通信系统。

在20世纪80年代末到90年代初,1G系统开始商用化。

著名的1G系统包括美国的AMPS和欧洲的NMT。

1G系统主要提供了语音通信服务,但信号质量不稳定,容易受到干扰。

3.第二代移动通信(2G)第二代移动通信是指数字信号传输技术的移动通信系统。

2G系统的商用化始于1991年,代表性的2G系统是GSM。

2G系统改善了通信质量和信号稳定性,同时引入短信功能和数据传输能力。

2G系统的普及为移动通信的发展奠定了基础。

4.第三代移动通信(3G)第三代移动通信是指基于宽带技术的移动通信系统。

在2000年左右,3G系统开始商用化,代表性的3G系统是WCDMA和CDMA2000。

3G系统提供了更快的数据传输速率,支持视频通话和高速互联网访问。

3G系统的出现推动了移动互联网的发展。

5.第四代移动通信(4G)第四代移动通信是指LTE技术的移动通信系统。

在2010年左右,4G系统开始商用化。

4G系统相比于3G系统提供了更高的数据传输速率和更低的延迟,能够支持更多的应用场景,如高清视频播放和在线游戏等。

4G系统的普及推动了移动应用的繁荣。

6.第五代移动通信(5G)第五代移动通信是指新一代移动通信技术。

5G系统在2019年正式商用化。

5G系统具有更快的数据传输速率和更低的延迟,支持更多的设备连接和更丰富的应用场景,如物联网、车联网和智能城市等。

5G系统的推出将引领移动通信技术的新发展。

7.附件本文档涉及的附件详见附件部分。

8.法律名词及注释1.通信法:指规范通信行业发展和管理的法律规定。

2.电信运营商:指依法经营通信业务的企业。

3.频谱管理:指对无线电频谱进行合理规划和有效管理的措施。

第四章 第二代移动通信系统

第四章 第二代移动通信系统

第四章第二代移动通信系统自上世纪90年代以来,以数字技术为主体的第二代移动通信系统得到了极大的发展,短短的十年,其用户就超过了十亿。

在中国,以GSM为主,IS-95CDMA为辅的第二代移动通信系统只用了十年的时间,就发展了近2.8亿用户,并超过固定电话用户数,成为世界上最大的移动经营网络。

任何一类数字式语音信号在无线环境中传播存在三个挑战:1.选择低速率编码方式, 以适应有限带宽的要求;2.选择有效的编码方式降低误码率, 以适应恶劣的传播环境;3.选择有效的调制方式和平滑的包络特性, 以减少杂散辐射.下面,我们将概述GSM和CDMA系统的特性、信令、系统制式等方面的知识。

第一节第二代数字移动通信系统的特性一、时分多址(TDMA)系统特性GSM系统采用时分多址(TDMA)技术,这种技术在频率时间关系上形成一个矩阵,而每一信道对应于其频率时间矩阵上的一个点,在基站系统的控制和分配下,可为任一移动用户提供电话或非话数据业务。

TDMA系统具有如下特性:1)每载波多路。

TDMA系统是一个时分复用系统,如GSM数字系统中每载波含8个时隙,即8个业务信道。

随着技术的发展,半速率业务信道的出现使其设计能力还可翻一倍。

2)突发脉冲序列传输。

移动台信号功率的发射是不连续的,仅在规定的时隙内发射脉冲序列;或者说,在任何给定的瞬间,占有同一载频而进行通话中的移动台仅有一台在发射信号。

3)传输速率和自适应均衡。

TDMA系统中,如果每载波含有的时隙多,则频率间隔宽,传输速率高。

当码元持续时间与时延扩展量相当时,务必采用自适应均衡技术。

例如当GSM系统传输速率达271kbit/s时,二进制射频数字调制方式码元宽度为3.7μs。

而城市移动通信的时延扩展通常是3μs,郊区为0.3μs。

随着小区半径扩大和地形地物等因素还有可能增大时延扩展量,因此在GSM系统中采用了自适应均衡器,以获得16μs的抗时延扩展能力。

4)传输开销大。

TDMA系统分成时隙传输,使得收信机在每一突发脉冲序列上都需要重新获得同步。

第二代移动通信系统

第二代移动通信系统

基站子系统(BSS)
第二代移动通信系统
GSM系统结构
功能:基站子系统BSS在GSM网络的固定部分和无线部 分之间提供中继,BSS通过无线接口直接与移动台实 现通信连接,同时BSS又连接到网络端的移动交换机。
第二代移动通信系统
GSM系统结构
BTS
BIE
BIE
MS Um接口
Abis接口
OMC
BSC Q3接口
如果能控制住用户的信号强度,在保持高质量通 话的同时,我们就可以容纳更多的用户。体现软容量 的另一种形式是小区呼吸功能。
第二代移动通信系统
CDMA 基本特点
软容量 (小区呼吸功能) 当相邻小区的负荷一重一轻时,负荷重的
小区降低导频信道的发射功率,使本小区边缘 的用户切换到临近小区,从而实现负荷分担, 也相当于增加了系统容量。
第二代移动通信系统
GSM系统结构
拜访位置寄存器(VLR)
VLR存储进入其覆盖区的移动用户的全部有关信 息,这使得MSC能够建立呼入/呼出呼叫。可以把它 看作动态用户数据库。VLR从移动用户的归属位置寄 存器(HLR)处获取并存储必要的数据,一旦移动用 户离开该VLR的控制区域,则重新在另一个VLR登记, 原VLR将取消临时记录的该移动用户数据。
第二代移动通信系统
第二代移动通信系统概述 GSM系统结构 GSM系统接口 GSM寻呼流程 CDMA系统组成 CDMA 基本特点
第二代移动通信系统
第二代移动通信系统概述
20世纪80年代中期到21世纪初,数字移动通 信系统得到了大规模应用,其代表技术是欧洲 的GSM和美国的CDMA,也就是通常所说的第二 代移动通信技术(2G)。
GSM接口
Um接口: BTS与MS之间的接口 A接口: BSC与MSC之间的接口 Abis接口: BSC与BTS之间的接口

移动通信发展五个阶段

移动通信发展五个阶段

移动通信发展五个阶段移动通信发展五个阶段:1.第一代移动通信(1G):第一代移动通信技术出现在20世纪80年代末和90年代初,并在整个90年代得到广泛应用。

主要特点是模拟信号传输和窄带语音通信。

第一代移动通信系统采用了AMPS(美国模拟方式系统)和NMT(Nordic Mobile Telephone)等早期标准。

虽然1G主要用于语音通信,但数据传输速率较低且不稳定。

1G时代的方式主要是大型便携设备,只能在固定基站覆盖范围内使用。

2.第二代移动通信(2G):第二代移动通信技术在20世纪90年代中期兴起,并在进入21世纪之前得到普及。

主要特点是数字信号传输和窄带数字通信。

2G 引入了新的数字技术标准,如GSM(全球系统移动通信)、CDMA (代码分割多址)和TDMA(时分多址)。

这些新技术极大地提高了语音质量和信号传输稳定性,并开始支持简单的数据传输,如短信和基本的互联网接入。

3.第三代移动通信(3G):第三代移动通信技术在21世纪初开始发展,并在2000年代得到广泛的应用。

主要特点是宽带数据传输和高速互联网接入。

3G引入了新的技术标准,如UMTS(通用移动电信系统)、CDMA2000(基于CDMA的3G技术)和WiMAX(全球互通微波接入)。

这些新技术大大提高了数据传输速率和互联网接入质量,使移动设备具备了更多功能,如视频通话、实时流媒体和高速互联网浏览。

4.第四代移动通信(4G):第四代移动通信技术在2010年开始商用,并在2010年代得到广泛应用。

主要特点是全IP网络和高速移动宽带通信。

4G引入了新的技术标准,如LTE(长期演进)、WiMAX 2和TD-LTE(时分长期演进)。

这些新技术改善了网络延迟、传输速度和容量,使移动通信达到了接近固定宽带网络的能力,促进了视频、游戏和云服务等应用的快速发展。

5.第五代移动通信(5G):第五代移动通信技术在2019年开始商用,目前正处于快速推广阶段。

主要特点是超高速率和低延迟通信。

第二代移动通信系统.

第二代移动通信系统.
通信技术专业教学资源库 深圳信息职业技术学院
《移动终端测试与维修》课程
第二代移动通信系统
主讲: 刘俊老师
目录
01 第二代移动通信概述 02 第二代移动通信特点 03 我国的第二代移动通信
1. 第二代移动通信概述
从20世纪90年代至20世纪末,移动通信呈现以下特点: ① 采用数字通信技术 ② 采用时分多址或码分多址,系统容量极大提高 ③ 采用超大规模集成电路,设备进一步小型化 ④ 采用蜂窝结构
3. 我国的第二代移动通信
我国于1994 年10月在广东开通了第一个省级GSM 数 字蜂窝移动网。1995年4月原邮电部在全国15个省市相继建 GSM网,同年7月中国联通在京、津、沪、穗4个地区开通 GSM网。 中国移动GSM网络是全球规模最大的移动通信网 络。
CDMA在我国的发展开始于1997年底,当时首先在北 京、上海、西安、广州4个城市开通了CDMA商用实验网。 该网被称作长城网。2001年1月,长城网经过资产清算后, 正式移交中国联通。2001年2月,联通CDMA网络建设的具 体筹划工作正式展开。2002年1月中国联通CDMA网开通。
4
EDITED BY LIUJUN
ቤተ መጻሕፍቲ ባይዱ
GSM与CDMA
GSM系统
GSM(Global System for mobile communications全球移动通信系统)系 统源自欧洲,具有标准化程度高、接口开放的特点,强大的联网能力推动了 国际漫游业务。用户识别卡的应用,真正实现了个人移动性和终端移动性
IS-95 CDMA系统
窄带CDMA,也称cdmaOne、IS-95等,CDMA技术具有容量大、覆盖好 、话音质量好、辐射小等优点。1995年在香港开通第一个商用网,随后 在韩国、美国、澳大利亚等国得到了大规模应用。但窄带CDMA技术成 熟较晚,标准化程度较低,在全球的市场规模远不如GSM系统

移动通信发展五个阶段

移动通信发展五个阶段

移动通信发展五个阶段移动通信发展五个阶段1:第一代移动通信(1G)第一代移动通信是指在20世纪70年代末到80年代初出现的模拟蜂窝通信系统。

这一阶段的移动通信以AMPS(Advanced Mobile Phone System)为代表,使用了频分多址(FDMA)技术,主要提供语音通信服务,并且网络容量有限,数据传输速度较慢。

2:第二代移动通信(2G)第二代移动通信指的是在90年代初到2000年左右出现的数字移动通信系统。

这一阶段的移动通信以GSM(Global System for Mobile Communications)为代表,采用了时分多址(TDMA)或CDMA(Code Division Multiple Access)技术,网络容量得到了大幅提升,数据传输速度较快,不仅提供了语音通信服务,还支持短信和基本的数据传输。

3:第三代移动通信(3G)第三代移动通信是指在2000年左右出现的高速数字移动通信系统。

这一阶段的移动通信以WCDMA(Wideband Code Division Multiple Access)和CDMA2000为代表,采用了CDMA技术,网络容量进一步提升,数据传输速度较快,不仅支持语音通信、短信和基本数据传输,还能提供高速互联网接入、多媒体传输等服务。

4:第四代移动通信(4G)第四代移动通信是指在2010年左右开始商用的超高速数字移动通信系统。

这一阶段的移动通信以LTE(Long Term Evolution)为代表,采用了OFDMA(Orthogonal Frequency DivisionMultiple Access)技术,网络容量和数据传输速度进一步提升,能够提供更高质量的语音通信、短信、互联网接入、多媒体传输等服务,并支持了更广泛的应用场景,如物联网和移动支付。

5:第五代移动通信(5G)第五代移动通信是指当前正在发展中的新一代超高速数字移动通信系统。

这一阶段的移动通信以NR(New Radio)为代表,采用了更高频率的毫米波技术和波束成形技术,网络容量和数据传输速度有望再次大幅提升,能够支持更多高质量、低延迟的服务,同时也为未来的应用场景如车联网、工业自动化和虚拟现实等打下了基础。

第二代移动通信系统-GSM系统

第二代移动通信系统-GSM系统

第二代移动通信系统-GSM系统第二代移动通信系统 GSM 系统在现代通信技术的发展历程中,第二代移动通信系统(2G)的出现是一个具有重要意义的里程碑。

其中,GSM 系统(Global System for Mobile Communications,全球移动通信系统)更是 2G 时代的代表,为人们的通信方式带来了巨大的变革。

GSM 系统诞生于 20 世纪 80 年代末,它的出现主要是为了解决第一代移动通信系统(1G)存在的诸多问题,如频谱利用率低、通话质量不稳定、系统容量有限等。

GSM 系统采用了数字通信技术,相较于1G 的模拟通信,具有更好的抗干扰能力、更高的频谱效率和更丰富的业务功能。

GSM 系统的核心组成部分包括移动台(手机)、基站子系统(BSS)和网络子系统(NSS)。

移动台是用户直接使用的设备,具备通话、短信、数据传输等功能。

基站子系统负责与移动台进行无线通信,包括基站收发信台(BTS)和基站控制器(BSC)。

网络子系统则主要负责移动性管理、呼叫控制、用户数据管理等功能,由移动交换中心(MSC)、归属位置寄存器(HLR)、拜访位置寄存器(VLR)等组成。

在通信原理方面,GSM 系统采用了时分多址(TDMA)技术。

简单来说,就是将一个频段的频谱资源按照时间划分成多个时隙,每个用户在不同的时隙上进行通信,从而实现多个用户共享同一频段的资源。

这种技术大大提高了频谱利用率,使得系统能够容纳更多的用户同时通信。

GSM 系统的一大优势是其良好的漫游能力。

无论用户身处何地,只要有 GSM 网络覆盖,就能够使用自己的手机进行通信。

这得益于其完善的用户数据管理和移动性管理机制。

当用户从一个网络区域移动到另一个网络区域时,系统能够自动完成用户数据的切换和更新,保证通信的连续性。

在业务功能方面,GSM 系统除了支持基本的语音通话和短信服务外,还逐渐发展出了一些增值业务,如彩信、WAP 上网等。

虽然这些业务在如今看来可能已经显得十分简陋,但在当时却为人们的生活和工作带来了极大的便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GSM移动通信网结构
第二代移动通信系统
GSM系统结构
Um接口 Abis接口 BS接口
B T S
B
MS
T BSC
S
BSS(1)
OMC
MSC/VLR
ISDN PLMN PSTN PSPDN
SC
HLR/AUC
EIR
……
BSS(n)
A接口
MSS
第二代移动通信系统
GSM系统结构
组成GSM的四大部分
由系统结构图可以看出,GSM由MS(移动台)、 BSS(基站子系统) 、 MSS(移动交换子系统,也 叫网络子系统-NSS)和OSS(操作维护子系统)这 四部分组成。
基站控制器BSC
第二代移动通信系统
GSM系统结构
是BSS的控制部分,在BSS中起交换作用。BSC一 端可与多个BTS相连,另一端与MSC和操作维护中心 (OMC)相连,BSC面向无线网络,主要负责完成无线 网络、无线资源管理及无线基站的监视管理,并能完 成对基站子系统的操作维护功能。
BSS中的BSC所控制的BTS的数量随业务量的大小 而改变。
第二代移动通信系统
第二代移动通信系统概述
CDMA(Code Division Multiple Access)是 码分多址的英文缩写,它是在扩频通信技术 的基础上发展起来的一种崭新而成熟的无线 通信技术。
CDMA技术的出现源于人们对更高质量无 线通信的需求。
课程内容
第二代移动通信系统概述 GSM系统结构 GSM系统接口 GSM寻呼流程 CDMA系统组成 CDMA 基本特点
第二代移动通信系统
第二代移动通信系统概述
20世纪80年代中期到21世纪初,数字移动通 信系统得到了大规模应用,其代表技术是欧洲 的GSM和美国的CDMA,也就是通常所说的第二 代移动通信技术(2G)。
第二代移动通信系统
第二代移动通信系统概述
在欧洲电信标准协会的领导下,GSM (Global System for Mobile Communications)。于1990 年完成了GSM900的规范并开始在欧洲投入试运 行,1991年,移动特别小组还制定了1 800 MHz 频段的规范,命名为DCS 1800系统。
移动交换子系统(MSS)
(1)移动业务交换中心(MSC) (2)归属位置寄存器(HLR) (3)拜访位置寄存器(VLR) (4)鉴权中心(AUC) (5)设备识别寄存器(EIR) (6)短消息中心(SC)
第二代移动通信系统
GSM系统结构
第二代移动通信系统
GSM系统结构
移动业务交换中心(MSC)
MSC是网络的核心。它提供交换功能,把移动用 户与固定网用户连接起来,或把移动用户互相连接 起来。为此,它提供到固定网(即PSTN、ISDN、PDN 等)的接口,及与其它MSC互连的接口。
第二代移动通信系统GSM系来自结构移动台( MS )
移动台是GSM系统的用户设备,包括车载台、便携 台和手持机。
每个移动台都有自己的识别码,即国际移动设备 识别号IMEI,IMEI主要由型号许可代码和厂家有关的 产品号构成。
每个移动用户有自己的国际移动用户识别号IMSI, 这个号码全球唯一,存储在用户的SIM卡上。
鉴权中心(AUC)
第二代移动通信系统
GSM系统结构
AUC属于HLR的一个功能单元部分,专用于GSM系 统的安全性管理。鉴权中心(AUC)存储着鉴权信息 与加密密钥,用来进行用户鉴权及对无线接口上的 话音、数据、信令信号进行加密,防止无权用户接 入和保证移动用户通信安全。
基站子系统(BSS)
第二代移动通信系统
GSM系统结构
功能:基站子系统BSS在GSM网络的固定部分和无线部 分之间提供中继,BSS通过无线接口直接与移动台实 现通信连接,同时BSS又连接到网络端的移动交换机。
第二代移动通信系统
GSM系统结构
BTS
BIE
BIE
MS Um接口
Abis接口
OMC
BSC Q3接口
BSC与TC之间的接口称为Ater接口,TC与MSC之间 的接口称为A接口。
移动交换子系统(MSS)
第二代移动通信系统
GSM系统结构
主要包含有GSM系统的交换功能和用于用户数据 与移动性管理、安全性管理所需要的数据库功能,它 对GSM移动用户之间的通信和GSM移动用户与其它通信 网用户之间通信起着管理作用。
MSC从三种数据库——归属位置寄存器(HLR)、 拜访位置寄存器(VLR)和鉴权中心(AUC) ——中 取得处理用户呼叫请求所需的全部数据。反之,MSC 根据其最新数据更新数据库。
第二代移动通信系统
GSM系统结构
归属位置寄存器(HLR)
HLR是GSM系统的中央数据库,存贮着该HLR控制 的所有存在的移动用户的相关数据,一个HLR能够控 制若干个移动交换区域或整个移动通信网,所有用 户的重要的静态数据都存贮在HLR中,包括移动用户 识别号码、访问能力、用户类别和补充业务等数据。 HLR还存储且为MSC提供移动台实际漫游所在的MSC区 域的信息(动态数据),这样就使任何入局呼叫立 即按选择的路径送往被叫用户。
第二代移动通信系统
GSM系统结构
拜访位置寄存器(VLR)
VLR存储进入其覆盖区的移动用户的全部有关信 息,这使得MSC能够建立呼入/呼出呼叫。可以把它 看作动态用户数据库。VLR从移动用户的归属位置寄 存器(HLR)处获取并存储必要的数据,一旦移动用 户离开该VLR的控制区域,则重新在另一个VLR登记, 原VLR将取消临时记录的该移动用户数据。
第二代移动通信系统
GSM系统结构
码型变换器TC
主要完成13kbit/s RPE-LTP(规则脉冲激励长期预 测)编码和64kbit/s A律PCM之间的语音变换。在典型 的实施方案中,ZXG10-TC位于MSC与BSC之间。
当TC位于MSC侧时,通过MSC和BSC之间以及BSC和 BTS之间的传输线路子复用器SM、BIE,可以充分利用在 空中接口使用的低语音编码传输速率,降低传输线路的 成本。
BTS SM
SM TC
MSC
BS接口 Ater接口
A接口
基站收发信台BTS
完成无线与有 线的转换,属于基 站系统的无线部分, 是由BSC控制,服务 于小区的无线收发 信设备,完成BSC与 无线信道之间的转 换,实现BTS与MS之 间通过空中接口的 无线传输及相关的 控制功能。
第二代移动通信系统
GSM系统结构
相关文档
最新文档