哈尔滨工业大学 概率论答案 习题八

合集下载

概率论习题及答案习题详解

概率论习题及答案习题详解

222习题七( A )1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自X 的一个样本,试求参数p 的矩估计量与极大似然估计量.解:由题意,X 的分布律为: ()(1),0k N kN P X k p p k N k -⎛⎫==-≤≤⎪⎝⎭. 总体X 的数学期望为(1)(1)011(1)(1)1NNk N k k N k k k N N EX k p p N p p p k k ----==-⎛⎫⎛⎫=-=- ⎪ ⎪-⎝⎭⎝⎭∑∑ 1((1))N N p p p N p -=+-=则E X p N=.用X 替换E X 即得未知参数p 的矩估计量为ˆX pN=.设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为111211(,,;)()(1)nniii i n nx nN x n i i i i NL x x x p P Xx pp x ==-==∑∑⎛⎫===⋅- ⎪⎝⎭∏∏取对数111ln ln ln ()ln(1)nn ni i i i i iN L x p nN x p x ===⎛⎫=+⋅+-⋅- ⎪⎝⎭∑∑∑,11ln (1)nnii i i xnN x d L dpp p ==-=--∑∑.223令ln 0d L dp=,解得p 的极大似然估计值为11ˆnii x npN==∑.从而得p 的极大似然估计量为11ˆnii X X npNN===∑.2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为22,0(;)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其它.其中参数0θ>,求θ的矩估计.解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则222()3xE X xf x dx x dx θθθ+∞-∞==⋅=⎰⎰32E X θ⇒=用X 替换E X 即得未知参数θ的矩估计量为3ˆ2X θ=.3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为⎪⎩⎪⎨⎧≤>=--0,0,0,);(1x x ex x f xαλαλαλ其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计.解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为2241()1121(),0(,,,;)0,ni i n x n n i i n i x e x L x x x αλαλαλ=--=⎧∑⎪⋅≥=⎨⎪⎩∏ 其他 取对数 11ln ln ln (1)(ln )()n ni i i i L n n x x αλααλ===++--∑∑解极大似然方程1ln 0ni i d L nx d αλλ==-=∑得λ的极大似然估计值为1ˆnii nxαλ==∑从而得λ的极大似然估计量为1ˆnii nXαλ==∑.4、设总体X 服从几何分布,10,,2,1,)1()(1<<=-==-p k p p k X P k 试利用样本值n x x x ,,,21 ,求参数p 的矩估计和最大似然估计.解:因11111(1)(1)k k k k EX k p p p k p p∞∞--===⋅-=⋅-=∑∑,用X 替换E X 即得未知参数p 的矩估计量为1ˆpX=.在一次取样下,样本值12(,,,)n x x x 即事件1122{},{},,{}n n X x X x X x === 同时发生,由于12,,,n X X X 相互独立,得联合分布律为121122(,,,;)()(),,()n n n L x x x p P X x P X x P X x ====22512111(1)(1)(1)n x x x p p p p p p ---=-⋅-- ,即得极大似然函数为1()(1)ni i x nnL p p p =-∑=-取对数 1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑解极大似然方程1ln ()01nii xnd L p n dppp=-=-=-∑得p 的极大似然估计值为11ˆ1nii pxn==∑从而得p 的极大似然估计量为111ˆ1nii pXXn===∑.5、设总体X 的概率密度为()1;exp ,2x f x σσσ⎧⎫=-⎨⎬⎩⎭0σ>为未知参数, n X X X ,,,21 为总体X 的一样本,求参数σ的最大似然估计.解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为121111(,,,;)(;)(;)exp{||}(2)nn n ini L x x x f x f x xσσσσσ====-∑取对数1211ln (,,,;)ln(2)||nn ii L x x x n xσσσ==--∑226解极大似然方程21ln 1||0nii d L nxd σσσ==-+=∑得σ的极大似然估计值11ˆ||nii x nσ==∑从而得σ的极大似然估计量为11ˆ||nii Xnσ==∑.6、证明第5题中σ的最大似然估计量为σ的无偏估计量.证明:由第5题知σ的最大似然估计量为11ˆ||nii X nσ==∑故 1111ˆ(||)||nniii i E E XE X nnσ====∑∑又1||||||exp{}2i x E X x dx σσ+∞-∞=⋅-⎰12exp{}exp{}()2x x x x dx x d σσσσ+∞+∞=⋅-=⋅-⎰⎰[exp{}|exp{}]xxx dx σσσ+∞+∞=-⋅---=⎰从而 ˆE σσ=,即ˆσ是σ的无偏估计. 7,、设总体X 的概率密度为()222220;0x x e x f x σσσ-⎧⎪>=⎨⎪⎩,,,其它.,20σ>为未知参数, n X X X ,,,21 为总体X 的一个样本,求参数2σ的的矩估计量和最大似然估计量.解:因22222(;)2xxE X x f x dx x e dx σσσ-+∞+∞-∞=⋅=⋅⎰⎰222222222002()[2|2]xxxxd exeedx σσσ---+∞+∞+∞=-=--⎰⎰22722222202xxedx edx σσ--+∞+∞===⎰⎰用X 替换E X 即得未知参数σ的矩估计量为ˆX σ=从而得未知参数2σ的估计量为22ˆ)X σ=设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为21211()222211212(,,,;)(;)(;)ni nix i n n nx L x x x f x f x eσσσσσ=-=∑==∏取对数222111ln ln ln 2nniii i L xn xσσ===--∑∑解极大似然方程22241ln 102nii d L nxd σσσ==-+=∑得2σ的极大似然估计值2211ˆ2nii x nσ==∑从而得未知参数2σ的估计量为2211ˆ2nii xnσ==∑.8、设总体),(~2σμN X ,μ已知,σ为未知参数, n X X X ,,,21 为X 的一个样本,∑=∧-=ni i X c 1||μσ, 求参数c ,使∧σ为σ的无偏估计.解:由无偏估计的定义,要使∧σ为σ的无偏估计,则ˆE σσ=228又11ˆ(||)||n ni i i i E E c X u c E X u σ===-=-∑∑由题意知总体),(~2σμN X ,从而22()2||||x u i E X u x u dx σ--+∞-∞-=-⎰2222()()2211[()]()x u x u u ux u dx x u dx σσ----+∞-∞=--+-⎰⎰且2222()220()x u yx u yux u dxydy σσ--=--+∞+∞-=⎰⎰22222()2yyed σσ-+∞=--=⎰由对称性有||i E X u -=从而有cnσ=,即2c n=.9、设θˆ是参数θ的无偏估计量,且有0)ˆ(>θD ,试证22)ˆ(ˆθθ=不是2θ的无偏估计量.证明:因为θˆ是参数θ的无偏估计量,故ˆE θθ=,且0)ˆ(>θD有22222ˆˆˆˆˆ()()()()E E D E D θθθθθθθ==+=+>即22)ˆ(ˆθθ=不是2θ的无偏估计量.10、设总体),(~2σμN X ,321,,X X X 是来自X 的样本,试证:估计量32112110351ˆX X X ++=μ;32121254131ˆX XX ++=μ;3213216131ˆX XX ++=μ229都是μ的无偏估计,并指出它们中哪一个最有效.证明:总体),(~2σμN X ,321,,X X X 是来自X 的样本,则1123123131131ˆ()51025102E E X X X E X E X E X u μ=++=++= 2123123115115ˆ()34123412E E X X X EX EX EX u μ=++=++=3123123111111ˆ()362362E E X X X EX EX EX u μ=++=++=即估计量123ˆˆˆ,,μμμ都是μ的无偏估计. 又211231231311911ˆ()510225100450D D X X X D X D X D X μσ=++=++=22123123115112525ˆ()341291614472D D X X X D X D X D X μσ=++=++=231231231111117ˆ()362936418D D X X X D X D X D X μσ=++=++=有 213ˆˆˆD D D μμμ<<,从而估计量2ˆμ最有效. 11,、设12,,,n X X X 是总体()20,X N σ 的一个样本,20σ>,证明:211ni i X n=∑是2σ的相合估计量.证明:由题意,总体()20,X N σ ,则220,EXEXσ==由样本的独立同分布性知2221111()nniii i E X EX nnσ====∑∑,即211ni i X n=∑是2σ的无偏估计.2221111()()nniii i D X D Xnn===∑∑又2422()()i i i D X E X E X =-,且23022222224432222|3]xxxi EX xdx x ex edx σσσ---+∞+∞+∞-∞-∞-∞==-⎰⎰2222423xx edx σσσ-+∞-∞==故2422444()()32i i i D X EX EX σσσ=-=-=,有42112()0()nii D X n nnσ==→→∞∑故211ni i X n=∑是2σ的相合估计量12、设总体X 的数学期望为μ,方差为2σ,分别抽取容量为1n 和2n 的两个独立样本,1X ,2X 分别为两样本均值,试证明:如果,a b 满足1a b +=,则12Y aX bX =+是μ的无偏估计量,并确定,a b ,使得()D Y最小.解:由题意,2,EX u D X σ==,且1X ,2X 分别为容量为1n 和2n 的两个独立样本得样本均值,故2111,E X u D X n σ==,2222,E X u D X n σ==.当1a b +=时,有12()EY aEX bEX a b u u=+=+=,即12Y aX bX =+是μ的无偏估计量.222221212()abD Y a D X b D X n n σ=+=+令2212(1)()aa g a n n -=+,由()0g a '=知函数()g a 的稳定点为231112n a n n =+,且1121211()2()0n g n n n n ''=+>+,故112n a n n =+为函数唯一极小值点,即当121212,n n a b n n n n ==++时,()D Y 最小.13、设12,,,n X X X 是总体X 的一个样本, X 的概率密度为();f x θ,0θ>,未知,已知()222nXn χθ,试求θ的置信水平为1α-的置信区间.解:由题意,统计量()222nXn χθ,则给定置信度为1α-时,有()()22122(22)1nXP n n ααχχαθ-≤≤=- ()()221222()122nXnXP n n ααθαχχ-⇔≤≤=-由置信区间的定义知,θ的置信水平为1α-的置信区间为()()221222,22nX nX n n ααχχ-⎛⎫⎪⎪ ⎪⎝⎭. 14、从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,可以认为显像管的寿命X 服从正态分布.已知均方差40=σ小时,在置信水平0.95下求出这批显像管平均寿命的置信区间.解:设12,,,n X X X 是母体X 的样本容量为n 的子样,则显像管平均寿命(10000,16)X N构造统计量(0,1)X uU N -=,有232111222(||)1(1P U UP X UU X Uααααα---<=-⇔-<<+=-由题意10.950.05αα-=⇒=,查表可得0.975 1.96U =,故显像管平均寿命X 的置信度为95%的置信区间为:4040(10000 1.96 1.96(100007.84)-+=±.15、设随机地调查26年投资的年利润率(%),得样本标准差(%)15=S ,设投资的年利润率X 服从正态分布,求它的方差的区间估计(置信水平为0.95).解:由题意,构造统计量2222(1)(1)n Sn χχσ-=- ,则给定置信水平为1α-,有2222122(1)((1)(1))1n SP n n ααχχασ---<<-=-22222122(1)(1)()1(1)(1)n Sn SP n n αασαχχ---⇔<<=---取26,0.15,10.95n S α==-=,查表可得20.025(25)13.120χ=,20.975(25)40.616χ=,故方差的置信度为95%的置信区间为2222122(1)(1)(,)(0.014,0.043)(1)(1)n Sn Sn n ααχχ---=--.16,、从一批钉子中抽取16枚,测得其长度为(单位:厘米)2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13, 2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11.设钉子的长度X 服从正态分布,试求总体均值μ的置信水平为0.90的置信区间.233解:设1216,,,X X X 是母体X 的样本容量为16的子样,由题意知2.215X =,242.933310S -=⨯.构造统计量(1)X u t t n -=- ,有111222(||)1(1P t tP X tu X tααααα---<=-⇔-<<+=-由题意10.900.10αα-=⇒=,查表可得0.95(15) 1.7459t =,故显像管平均寿命X的置信度为90%的置信区间为:(2.1175,2.1325)=±. 17、生产一个零件所需时间(单位:秒)),(~2σμN X ,观察25个零件的生产时间得5.5=x ,73.1=s .试求μ和2σ的置信水平为0.95的置信区间.解:设1225,,,X X X 是母体X 的样本容量为25的子样,由题意知5.5X =, 1.73S =.构造统计量(1)X u t t n -=- ,有111222(||)1(1P t tP X tu X tααααα---<=-⇔-<<+=-由题意10.950.05αα-=⇒=,查表可得0.975(24) 2.0639t =,故参数μ的置信度为95%的置信区间为:(4.786,6.214)(5.50.714)=±.234构造统计量2222(1)(1)n Sn χχσ-=- ,则给定置信水平为1α-,有2222122(1)((1)(1))1n SP n n ααχχασ---<<-=-22222122(1)(1)()1(1)(1)n Sn SP n n αασαχχ---⇔<<=---取16, 1.73,0.05n S α===,查表可得20.025(15) 6.2621χ=,20.95(15)27.4884χ=,故方差的置信度为95%的置信区间为(1.825,5.. 18、产品的某一指标),(~2σμN X ,已知04.0=σ,μ未知.现从这批产品中抽取n 只对该指标进行测定,问n 需要多大,才能以95%的可靠性保证μ的置信区间长度不大于0.01?19、设A 和B 两批导线是用不同工艺生产的,今随机地从每批导线中抽取5根测量其电阻,算得721007.1-⨯=A s ,62103.5-⨯=B s ,若A 批导线的电阻服从),(211σμN ,B 批导线的电阻服从),(222σμN ,求2221σσ的置信水平为0.90的置信区间.20,、从甲乙两个蓄电池厂的产品中分别抽取6个产品,测得蓄电池的容量(A.h)如下:甲厂 140 , 138 , 143 , 141 , 144 , 137;乙厂135 , 140 , 142 , 136 , 138 , 140设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的95%置信区间.( B )1、设总体X 的概率分别为235其中102θθ⎛⎫<<⎪⎝⎭是未知参数,利用总体X 的如下样本值: 3, 1, 3, 0, 3, 1, 2, 3求θ的矩估计值和最大似然估计值.解:由题意可知总体X 为离散型随机变量,则总体X 的数学期望为()32()2123(12)34k EX kP Xk θθθθθ====-++-=-∑有34E X θ-=,由样本值可知2X =,用X 替换E X 即得未知参数θ的矩估计量为3ˆ4X θ-=,矩估计值1ˆ4θ=.设12340,1,2,3x x x x ====是相应于样本1234,,,X X X X 的样本值,则似然函数为12341234(,,,;)(0)(1)(2)(3)L x x x x P X P X P X P X θ=====462(12)4(1)θθθ=--取对数 ln 4ln(12)6ln 42ln(1)L θθθ=-++- 解极大似然方程ln 8620121d L d θθθθ-=+-=--有2121430θθ-+=,从而7ˆ12θ±=又当ˆ12θ=712106θ+-=-<矛盾,故舍去.所以θ的最大似然估计值ˆ12θ=2、设()111ˆˆ ,,n X X θθ= 和()221ˆˆ,,n X X θθ= 是参数θ的两个相236互独立的无偏估计量,且方差()()12ˆˆ2D D θθ=,试确定常数,a b ,使得12ˆˆa b θθ+是θ的无偏估计量,且在一切这样的线性估计类中方差最小.解:由题意,1ˆ θ和2ˆθ是参数θ的两个相互独立的无偏估计量,则 12ˆˆ,E E θθθθ==.要使得12ˆˆa b θθ+是θ的无偏估计量,有 1212ˆˆˆˆ()()E a b aE bE a b θθθθθθ+=+=+=恒成立,即1a b +=.又1ˆ θ,2ˆθ相互独立,且()()12ˆˆ2D D θθ=,则222212122ˆˆˆˆˆ()()()(2)()D a b a D b D a b D θθθθθ+=+=+令2222()22(1)g a a b a a =+=+-,由()0g a '=知函数()g a 的稳定 点为13a =,且1()03g ''>,故线性估计类中方差最小时13a =,23b =.3、在测量反应时间中,一心理学家估计的标准差为0.05秒,为了以0.95的置信水平使他对平均反应时间的估计误差不超过0.01秒,应取多大的样本容量.习题八1.在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)X N σ .一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 解:设铁水含碳量作为总体X ,则2(4.55,)X N σ ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u =237构造检验统计量||(4)X u t t -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2.根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得知15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)解:设有毒化学物质含量作为总体X ,则2(,)X N u σ ,从中选取容量为15的样本,测得1511 3.215ii X x===∑,22221111()()0.1911nnii i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量||(14)X u t t -=,则|3.23| 1.777t -==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3.某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率238不应低于65.已知该指标服从正态分布2(,)N μσ,5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸?解:设玻璃纸的横向延伸率为总体X ,则2(,5.5)X N u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N -=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4.某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)? 解:设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠.构造检验统计量||(0,1)X u U N -=,则|9.899.73|1.4142U -==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.2395. 某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05)解:设每箱重量为总体X ,则2(100,)X N σ ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t -=,则|99.9100|0.5423t -==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6.某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124i i x ==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=)解:设这批套筒直径为总体X ,则2(,)X N u σ ,从中选取容量为5的样本,测得151124.815ii X x===∑,22221111()()15.9511nnii i i S xx x nx n n ===-=-=--∑∑.由题意,设原假设为24020:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n Sχχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<,即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7.甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑91370.8i i y ==∑92115280.2i i y ==∑问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异?解:设两台机床加工的轴的直径分别为总体,X Y ,则211(,)X N μσ 、222(,)Y N μσ ,从总体X 中选取容量为6的样本,测得61134.16ii X x ===∑222211111()()0.40811nnii i i S x x x nx n n ===-=-=--∑∑241从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511nnii i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S = ,则0.408 1.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<,即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8.某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)?解:设维尼龙纤度为总体X ,则2(,0.048)X N u ,从中选取容量为5的样本,测得5111.4145ii X x ===∑,2211()0.00781nii S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n Sχχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9.某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符242合要求(显著性水平α=0.05)?解:设考试成绩为总体X ,则2(,12)X N u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠.构造检验统计量2222(1)(14)n Sχχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<,即接受原假设0H ,认为此次考试的标准差符合要求.10.某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22;乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?解:设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ 、222(,)Y N μσ ,从中均选取容量为6的样本,测得61125.56ii X x ===∑,22111()7.51nii S x x n ==-=-∑,61125.66676i i Y y ===∑,22211()11.06671nii S y y n ==-=-∑,由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.243构造检验统计量12(2)t t n n =+- ,其中222112212(1)(1)9.2834(2)wn S n S Sn n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>,即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S=,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,从而122(5,5)(5,5)F F Fαα-<<,即接受原假设0H ,认为它们的方差无显著差异.。

概率论与数理统计课后习题答案 第八章

概率论与数理统计课后习题答案 第八章

有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (

该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

概率论与数理统计课后习题答案第八章习题详解

概率论与数理统计课后习题答案第八章习题详解

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。

设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。

3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。

解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。

概率论与数理统计8习题八参考答案

概率论与数理统计8习题八参考答案

概率统计——习题八参考答案8.1 设t (单位:公斤)表示进货数,],[21t t t ∈,进货t 所获利润记为Y ,则有:⎩⎨⎧<<≤<--=21,,)(t X t at t X t b X t aX Y 又X 的密度函数为 ⎪⎩⎪⎨⎧<<-=其它,0,1)(2112t x t t t x f所以 ⎰⎰-+---=21121211])([)(t t t t dx t t at dx t t b x t ax Y E 1221212]2)(2[t t t b a t at bt t b a -+-+++-= 令 dt Y dE )(0])([1221=-+++-=t t at bt t b a ,得驻点b a bt at t ++=12。

所以该店应该进ba bt at ++12公斤商品,才可使利润的数学期望最大。

8.2 设⎩⎨⎧=,,,0,1否则只球与盒配对第i X i n i ,,2,1 = 则.1∑==n i i X X ∑===∴===n i i i i X E X E n X P X E 1.1)()(,1}1{)( 8.3 ∑∑∞=∞=--=--⋅-=--=-=0121,1)]1(1[1)1()1()1()1()(k k k k p p p p p p k p p p kp X E )()]1([])1([)(2X E X X E X X X E X E +-=+-=∑∑∞=∞=--+---=-+--=02221)1)(1()1(1)1()1(k k k k p p p k k p p p p p p k k ,)2)(1(])1(2[11)]1(1[2)1(2232p p p p p p p p p p p p --=+--=-+---= .11)2)(1()]([)()(22222p p p p p p p X E X E X D -=⎪⎪⎭⎫ ⎝⎛----=-=∴ 8.4 μ+μ-===⎰⎰⎰+∞∞-μ--+∞∞-μ--+∞∞-dx e x dx e x dx x xf X E x x 21)(21)()(μ=μ+=⎰+∞∞--dt e t t 21 ⎰⎰⎰+∞∞--+∞∞-μ--+∞∞-=μ-=-=dy e y dx e x dx x f X E x X D y x 2222121)()()]([)(202==⎰+∞-dy e y y 8.5 用切比雪夫不等式即得,2)(1}2|)({|}2|{|212X D X E X P X P -≥<-=<= 故 .2)211(4)(=-≥X D 8.6 (1)1=ρXY ; (2)73.0)(=+Y X D ;(3))()(),(y F x F y x F Y X Y X =⇔相互独立与;0=ρ⇔XY Y X 不相关与;=⋂⇔B A B A 互不相容与事件∅; =⋂Ω=⋃⇔B A B A B A 且互为对立事件与事件∅或A B =;)()()(B P A P AB P B A =⇔相互独立与事件。

哈工大概率论与数理统计期末考题及答案(2008)

哈工大概率论与数理统计期末考题及答案(2008)

2
2
1 X Y ,设 Z , (1)求 EZ 和 DZ (2)求 XZ 2 3 2



(草纸内不得答题)
第 3 页 (共 5 页)
试 题:
1 , x 六、 (14 分) .设总体 X 的分布函数为: F ( x; , ) x 0, x
其中未知参数 0, 1 ,设 X 1 , , X n 为来自总体 X 的简单随机样本. (1)当 1 时,求未知参数 的矩估计和极大似然估计; (2)当 2 时,求未知参数 的极大似然估计。 、


(草纸内不得答题)
第 4 页 (共 5 页)
试 题:
七(6 分)设 X , Y 服从 G x, y | 1 x 3,1 y 3 上均匀分布,
1 3.设随机变量 X 的密度函数为 f ( x) e | x| ,则对随机变量 | X | 与 X ,下列结论成立的是 2 (A)相互独立; (B)分布相同; (C)不相关; (D)同期望. 【 】 1 1 4.设随机变量 X 服从参数为 的指数分布, Y ~ U (0,6) ,且 XY ,根据 3 3 切比晓夫不等式有: P (4 X Y 4) 1 5 1 2 (A) . (B) . (C) . (D) . 【 】 8 8 4 9 2 2 2 5.设 X1 , X2 ,, Xn 是总体 X ~ N ( , ) 的样本, EX , DX , X 是样本均值, S 是样本方差,
哈工大
2008
年 秋 季学期
概率论与数理统计
题号 分数 一 二 三 四 五 六 七


Байду номын сангаас

15华工概率论与数理统计第八章作业答案

15华工概率论与数理统计第八章作业答案

又因 u0.95 = 0.8289
所以U > u0.95
因此拒绝 H0 .
(2)由表 8.3 的 III 知选取统计量为T = X − Y ~ t(148)
Sw
1 +1 100 50
因 S1*2
=
4

S
*2 2
=
2.56 ⇒
Sw
= 1.9226
所以T = 1.2012
又因 t0.95 (148) = 1.6552 故T < t0.95 (148) 因此接受 H0 .
=
X − 225 S16
~
t(15)
15
因 X = 241.5000, S1*6 = 98.7259
故T
=
X − 225 S16
=
X − 225 S1*6
=
0.6685
15
4
又因t0.05 (15) = −1.7531
所以T > t0.05 (15)
因此拒绝 H0 即元件的平均寿命不大于 225 小时.
由表 8.3 的 III 知选取统计量为U =
X −Y
~ N (0,1)
σ
2 1
+
σ
2 2
100 50
因X
= 5.6 ,Y
=
5.2

σ
2 1
=
2.2
2
,σ
2 2
= 1.82
故U =
X −Y =
σ
2 1
+
σ
2 2
100 50
5.6 − 5.2 = 0.4 = 1.1887 2.22 + 1.82 0.3365 100 50

第八章试题答案概率论与数理统计

第八章试题答案概率论与数理统计

第八章试题答案概率论与数理统计第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是()A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0?H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为() A .nμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是() A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-ni iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是() A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与随机过程习题集(北邮研一专硕)

概率论与随机过程习题集(北邮研一专硕)

+
2ωτ
+

)
1 2π

=
0
则:
RY
(t,t

)
=
A4 E
⎡⎣⎢1 −
cos
( 2ωt
+
2Θ)

cos
( 2ωt
+
2ωτ
+
2Θ)
+
1 2
cos
( 4ωt
+
2ωτ
+
4Θ )
+
1 2
cos
( 2ωτ
)⎤⎥⎦
=
1 4
A4 E
⎡⎢⎣1 +
1 2
cos
( 2ωτ
)⎤⎥⎦
=
1 4
A4
⎡⎢⎣1 +
1 2
cos
则: mX (t ) = E ⎡⎣ X (t )⎤⎦ = E ⎡⎣ Acos (ωt ) + B sin (ωt )⎤⎦ = cos (ωt ) E ( A) + sin (ωt ) E ( B) = 0 X (t ) 的相关函数为:
RX (t1,t2 ) = E ⎡⎣ X (t1 ) X (t2 )⎤⎦ = E ⎡⎣ A cos (ωt1 ) + B sin (ωt1 )⎤⎦ ⎡⎣ A cos (ωt2 ) + B sin (ωt2 )⎤⎦
i1 2
⎞ ⎟⎠
+
2i1⎤⎥⎦
=
1 2
方差σ
2 X
(t
)
=
E
⎣⎡ X
2
(t
)⎦⎤

⎡⎣mX

概率论课后习题答案

概率论课后习题答案

概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。

哈尔滨工业大学《概率论与数理统计》历年期末考试

哈尔滨工业大学《概率论与数理统计》历年期末考试

n
i 1, n , 则 b ai X i i 1
~
N b
n i 1
ai i ,
n i 1
ai2 i 2
亦为正态变量(
a1,, an不全为0
3分
)且
五、解: X ~ B(2, 1) Y ~ U[0,1] 3
0, x 0
FY
(
y
)
x,
0 x 1
1, x 1
FZ (z) P(Z z) P(X Y z)
于是有:
A Ai A i 1
P(A)
i 1
P( Ai )P( A Ai )
i 1
i i!
e (1)i 2
e
( )i 2
e (e 2
1) e 2
e
i1 i!
2分 2分
2011年《概率论与数理统计》期末考试试题及答案解析
一、填空题(每小题 3 分,共 5 小题,满分 15 分)
(z)
n
2
1 1
(
2z 2 1
) n1 ,1
z
2
0,
其它
EZ
2 1
zf Z
( z )dz
2 n 1
n
n
11
1, 但EZ
1(n
)
x(1)为1的渐进无偏估计。
4分
七、解:令 A. 表示器皿产生了甲类细菌而没有产生乙类细菌事件,而 Ai 表示产 生了 i 个细菌的事件( i 1,2,3,)。
于是 1 , 2
矩估计为
ˆˆ12
x x
3s 3s
s s2
4分 4分
(2)似然函数
Lx1,,
xn ;1 , 2

哈工大电路习题答案第08章

哈工大电路习题答案第08章

答案8.1解:)/1()(T t A t f -= Tt <<0⎰⎰-==T Tdt T t A T dt t f T A 000)/1(1)(1A T t t T A T5.0]2[02=-=⎰-=Tk dtt k T t A T a 0)cos()/1(2ω0)sin(2)]sin()/1(2[020=+⨯-=⎰T T dt t k T k A t k Tk T t A ωωωω ⎰-=Tk dtt k T t A T b 0)sin()/1(2ωπωωωωωk A kT A dt t k T k A t k Tk T t A T T ==-⨯--=⎰2)cos(2)]cos()/1(2[020所以∑∞=+=1sin 5.0)(k t k k AA t f ωπ频谱图如图(b)所示。

.0答案8.2解:电流i 的有效值57.1)2/13.0()2/67.0()2/57.1(12222≈+++=I A只有基波电流与正弦电压形成平均功率,故二端电路输入的平均功率为:95.73)]90(90cos[257.122.94=︒--︒-⨯=P W 注释:非正弦周期量分解成傅里叶级数后,其有效值等于直流分量和不同频率交流分量有效值平方和的平方根。

答案8.3解:对基波︒∠=0100m(1)U V , A 010m(1)︒∠=I 由Ω==-+=10)1(j )1(m )1(m )1(I U C L R Z ωω求得Ω=10R , 01=-CL ωω (1)对三次谐波︒-∠=3050m(3)U V , A 755.1im(3)ψ-∠=I又由Ω+︒-∠==-+=)30(5.28)313(j m(3)m(3))3(i I U C L R Z ψωω (2)所以2225.28)313(=-+CL R ωω (3)将式(1)代入式(3), 解得mH 9.31=L将mH 9.31=L 代入式( 1 ),求得F 3.318μ=C再将C L R 、、值代入式(2),有 Ω︒-∠=Ω+=3028.5j26.7)10(i )3(ψZ解得︒=45.99i ψ答案8.4解: (1) 电压有效值:V 01.80)225()250()2100(222=++=U电流有效值58.74mA)210()220()280(222=++=I (2) 平均功率 kW 42.345cos 210250cos 22050)45cos(280100=︒⨯+︒⨯+︒-⨯=PΩ︒∠=︒∠︒∠=Ω=︒∠︒∠=Ω︒-∠=︒∠︒-∠=k 455.2mA010V 4525k 5.2mA 020V050k 4525.1mA 080V45100)3()3()2()1(Z Z Z 注释:非正弦周期量分解成傅里叶级数后,某端口的平均功率等于直流分量和不同频率交流分量单独作用产生的平均功率之和。

概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,试问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05.0)96.1(==>αU P ,得拒绝域为}96.1{>u ,因为96.1755.1<=u ,故接受0H ,即两个选区之间对候选人的支持无显著性差异.。

《概率论与数理统计》习题及答案 第八章

《概率论与数理统计》习题及答案 第八章

《概率论与数理统计》习题及答案第 八 章1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域. 解 00:H λλ≥选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因 22χχ>,所以2222((2))((2))n n ααχχχχ≥⊃≥,从而 2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥ 可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。

设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.0251.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是32.5毫米。

3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。

解 问题是在2σ已知的条件下检验假设0:1600H μ≥0H 的否定域为/2u u α<-,其中 158016005.1 1.02100X u -==⨯=-.0.051.64u -=-.因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格?(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u = 因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=?解 问题是在2σ未知的条件下检验假设0: 3.25H μ=0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下 22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。

概率论与数理统计智慧树知到答案章节测试2023年北方工业大学

概率论与数理统计智慧树知到答案章节测试2023年北方工业大学

第一章测试1.在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于1/2的概率为()A:1/2B:3/4C:1/4D:0答案:B2.袋中有a个白球, b个黑球,从中任取一个,则取得白球的概率是()A:a/bB:b/aC:a/(a+b)D:b/(a+b)答案:C3.设A,B为随机事件,且,则必有()A:B:C:D:答案:D4.掷三枚均匀硬币,出现“两正一反”事件的概率为:()A:3/8B:1/8C:1/2D:1/4答案:A5.一批产品有 100 件,其中 95 件合格品、 5 件不合格品,先后从中随意(非还原地)抽出两件。

设 A = {第一件抽到的是不合格品}, B = {第二件抽到的是不合格品},则B发生的概率为:()A:0.05B:0.95C:1D:0答案:A6.已知事件 A 和 B 互不相容,且P ( A ) =0.4 , P ( A ∪ B ) =0.7 则P ( B)等于()A:0.5B:0.3C:0.7D:0.4答案:B7.两个互斥事件一定是对立事件。

()A:对B:错答案:B8.对于随机事件A与B至少有一个发生的事件的对立事件是两个事件都没有发生。

()A:对B:错答案:A9.从人群中任选一人,其生日在元月份的概率是31/365. ()A:错B:对答案:B10.若生产某产品经过 5 道工序,每道工序的不合格率分别为 0.01 , 0.02 ,0.03 ,0.04,0.05,假定工序之间是相互独立的,则该产品的不合格率为0.01 × 0.02×0.03×0.04 × 0.05。

()A:错B:对答案:A第二章测试1.下面给出的数列为某一随机变量的概率分布:0.1,0.2,0.3,0.4。

()A:错B:对答案:B2.设随机变量X的概率分布为,求:(1)a的值为_, (2)_。

答案:3.设的分布函数为,的概率分布为___答案:4.设随机变量的分布函数则()A:1/2B:C:D:0答案:C5.某射手在相同条件下独立地进行5次射击,每次击中目标的概率是0.6,则击中目标次数X的概率分布为___。

概率论习题答案第8章答案

概率论习题答案第8章答案

=
(n −1)s 2
σ
2 0
(其中σ 0
= 0.04% ),拒绝域为
{χ 2

χ2 1−α
2
(n
−1)} ∪{χ 2

χα2 (n 2
− 1)}
查表得
χ
2 0.025
(9)
= 19.023,
χ
2 0.975
(9)
=
2.7 ,算得 χ 2
=
7.701 ,它没有落在拒绝域中,故接受
原假设 H 0 .
5.本题是在显著性水平α = 0.05 下检验假设:
计算结果列表如下
i
vi
pi
np i
vi − npˆ i
(vi − npˆ i )2 / npˆ i
1
9
1/6
10.5
-1.5
0.2143
2
10
1/6
10.5
-0.5
0.02381
3
11
1/6
10.5
0.5
0.02381
4
8
1/6
10.5
-2.5
0.5952
5
13
1/6
10.5
2.5
0.5952
6
12

由于 n1, n2 很大,故有 t0.025 (218) ≈ z0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式
计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异,即
两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
2
2
X = 62.4 , S 2 = 121.82, n = 10, 问题是检验假设 H 0 : σ 2 ≤ 80 .
2 2
(1) H 0 : σ ≤ 80 = σ 0 ; (2)选统计量 χ 2 并计算其值
χ2 =
(n − 1) S 2 9 × 121.82 = = 13.705 σ 02 80
·114·
设 X 为 新 品 种 产 量 , Y 为 旧 品 种 产 量 ; X ~ N ( µ1 , σ 2 ) ,
Y ~ N ( µ 2 , σ 2 ) ,问题是检验假设 H 0 : µ1 ≥ µ 2 X = 79.43 , S12 = 2.2246 , n1 = 10 2 Y = 76.23 , S2 = 3.3245 , n2 = 10
(1) H 0 : µ ≥ 21 . (2)选择统计量 t 并计算其值:
X − 21 20 − 21 n= 17 = −0.20 S 20.485 (3)对于给定的 α = 0.025 查 t 分布表求出临界值 tα ( n) = t0.025 (16) = 2.2 . t=
(4)因为 −t0.025 (16) = −2.20 < −0.20 = t 。所以接受 H 0 ,即认为维生素含 量合格. 8. 某种合金弦的抗拉强度 X ~ N ( µ , σ ) , 由过去的经验知 µ ≤ 10560 (公 斤/厘米 2) ,今用新工艺生产了一批弦线,随机取 10 根作抗拉试验,测得数据如 下: 10512,10623,10668,10554,10776, 10707,10557,10581,10666,10670.
22, 21, 20, 23, 21, 19, 15, 13, 16, 23, 17, 20, 29, 18, 22, 16, 25.
已知维生素 C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。
(α = 0.025) 解 设 X 为维生素 C 的含量,则 X ~ N ( µ , σ 2 ) , X = 20, S 2 = 419.625, S = 20.485 , n = 17 . 问题是检验假设 H 0 : µ ≥ 21.
·112·
2
问这批弦线的抗拉强度是否提高了?( α = 0.05 )
X = 10631.4 , S 2 = 6558.89 , S = 80.99 , n = 10 . 问题是检验假设 H 0 : µ ≤ 10560
解 (1) H 0 : µ ≤ 10560 . (2)选统计量并计算其值.
X − 10560 10631.4 − 10560 n= 10 S 80.99 = 2.772 (3)对于 α = 0.05 ,查 t 分布表,得临界值 tα (9) = t0.05 (9) = 1.833 . t=
3.25, 3.27, 3.24, 3.26, 3.24
设测定值服从正态分布,问能否认为这批矿砂的镍含量为 3.25(α = 0.01) ? 解 问题是在 σ 2 未知的条件下检验假设 H 0 : µ = 3.25
H 0 的否定域为
| t |> tα / 2 (4) 1 5 X = 3.252, S 2 = (∑ X i − 5 × X 2 ) = 0.00017, 4 i =1 t0.005 (4) = 4.6041
(4)因 t0.05 (9) = 1.833 < 2.772 = t ,故否定 H 0 即认为抗拉强度提高了。 9.从一批轴料中取 15 件测量其椭圆度,计算得 S = 0.025 ,问该批轴料椭 圆度的总体方差与规定的 σ 2 = 0.0004 有无显著差别?( α = 0.05 ,椭圆度服 从正态分布) 。 解
(1) H 0 : µ1 = µ 2 (2)选统计量 T 并计算其值.
T=
X −Y
(n1 − 1) S + (n2 − 1) S n1 + n2 − 2
2 1 2 2
n1 n2 = n1 + n2
131 − 135 4× 6 ⋅ 3 × 36.667 + 5 × 35.2 4 + 6 4+6−2
= −1.295
2
H 0 : µ ≥ 1000 . H 0 的否定域为 u ≤ −u0.05 ,其中 X − 1000 950 − 1000 u= 25 = × 5 = −2.5 σ 100 u0.05 = 1.64
因为
u = −2.5 < −1.64 = u0.05
所以否定 H 0 ,即元件不合格. 5.某批矿砂的 5 个样品中镍含量经测定为 X (%) :
S = 0.025, S 2 = 0.00065, n = 15 ,问题是检验假设 H0 :σ 2 = 0.0004.
2 2
(1) H 0 : σ = σ 0 = 0.0004 . (2)选统计量 χ 2 并计算其值
χ2 =
(n − 1) S 2 14 × 0.00065 = = 22.75 2 σ0 0.0004
99.3, 98.7, 100.5, 101.2, 98.3, 99.7, 99.5, 102.1, 100.5
·111·
问该日打包机工作是否正常( α = 0.05 ;已知包重服从正态分布) ?
1 9 X = 99.98 , S 2 = (∑ ( X i − X )2 ) = 1.47 , S = 1.21 , 8 i =1 问题是检验假设 H 0 : µ = 100



1.设 X 1 , X 2 ,⋯ , X n 是从总体 X 中抽出的样本,假设 X 服从参数为 λ 的 指 数 分 布 , λ 未 知 , 给 定 λ0 > 0 和 显 著 性 水 平 α (0 < α < 1) , 试 求 假 设
H 0 : λ ≥ λ0 的 χ 2 检验统计量及否定域.

H 0 : λ ≥ λ0
(3)对于给定的 α = 0.05 ,查 χ 2 分布表得临界值
·113·
2 2 χα (n − 1) = χ 0.05 (9) = 16.919 .
(4)因 χ = 13.705 < 16.919 = χ 0.05 ,故接受 H 0 ,即可以认为方差不大于 80。 11.对两种羊毛织品进行强度试验,所得结果如下 第一种 第二种 138,127,134,125; 134,137,135,140,130,134.
2
H 0 的否定域为 u < −uα / 2 ,其中
·110·
u=
−u0.05
X − 1600 1580 − 1600 26 = × 5.1 = −1.02 . 100 100 = −1.64 .
因为 u = −1.02 > −1.64 = −u0.05 ,所以接受 H 0 ,即可以认为这批产品的指 标的期望值 µ 不低于 1600. 4.一种元件,要求其使用寿命不低于 1000 小时,现在从这批元件中任取 25 件, 测得其寿命平均值为 950 小时, 已知该元件寿命服从标准差为 σ = 100 小 时的正态分布,问这批元件是否合格?( α = 0.05 ) 解 设 元 件 寿 命 为 X , 则 X ~ N ( µ , 100 ) , 问 题 是 检 验 假 设
(3)对于给定的 α = 0.05 ,查 χ 2 分布表得临界值
2 2 2 2 χα / 2 (14) = χ 0.025 (14) = 26.119, χ1−α / 2 (14) = χ 0.975 (14) = 5.629 .
(4)因为 χ 0.975 = 5.629 < 22.75 = χ < χ 0.025 = 26.119 所以接受 H 0 ,即总 体方差与规定的 σ = 0.0004 无显著差异。 10.从一批保险丝中抽取 10 根试验其熔化时间,结果为 42,65,75,78,71,59,57,68,54,55. 问是否可以认为这批保险丝熔化时间的方差不大于 80?( α = 0.05 ,熔化时间 服从正态分布). 解
2
2
问是否一种羊毛较另一种好?设两种羊毛织品的强度都服从方差相同的正态分 布。 (α = 0.05) 解 设 第 一 、 二 种 织 品 的 强 度 分 别 为 X 和 Y , 则 X ~ N ( µ 1 , σ 2 ),
Y ~ N (µ 2 ,σ 2 ) X = 131, S12 = 36.667, n1 = 4 Y = 135, S22 = 35.2, n2 = 6 问题是检验假设 H 0 : µ1 = µ 2

H 0 的否定域为 | t |≥ tα / 2 (8) .
其中
X − 100 99.98 − 100 9= × 3 = −0.05 S 1.21 t0.025 (8) = 2.306 t=
因为
| t |= 0.05 < 2.306 = t0.025 (8)
所以接受 H 0 ,即该日打包机工作正常. 7.按照规定,每 100 克罐头番茄汁中,维生素 C 的含量不得少于 21 毫克, 现从某厂生产的一批罐头中抽取 17 个,测得维生素 C 的含量(单位:毫克)如 下
S = 0.013
t=
因为
X − 3.25 3.252 − 3.25 5= × 2.24 = 0.345 S 0.013
| t |= 0.345 < 4.6041 = t0.005 (4)
所以接受 H 0 ,即可以认为这批矿砂的镍含量为 3.25. 6.糖厂用自动打包机打包,每包标准重量为 100 公斤,每天开工后要检验 一次打包机工作是否正常,某日开工后测得 9 包重量(单位:公斤)如下:
2 2
பைடு நூலகம்
2
2
H 0 的否定域为 | u |≥ uα / 2
其中
u0.025
X − 32.50 29.46 − 32.50 n= × 2.45 = −6.77 σ 1.1 = 1.96 ,因 | u |= 6.77 > 1.96 ,所以否定 H 0 ,即不能认为平均尺寸是 32.5 u=
相关文档
最新文档