液化土
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液化土
一、土体液化及分布情况
土体液化是指饱和状态的砂土或粉土在一定强度的动荷载作用下表现出来的类似液体的性状,完全失去强度和刚度的现象。
土体的液化现象:松散的砂土和粉土,在地下水的作用之下达到饱和状态。如果在这种情况下土体受到震动,会有变得更紧密的趋势,这种趋于紧密的作用使孔隙水压力骤然上升,而在这短暂的震动过程中,骤然上升的孔隙水压力来不及消散,这就使原来由土颗粒间接触点传递的压力(有效压力)减小,当有效压力完全消失时,土层会完全丧失抗剪强度和承载能力,变成像液体一样,这就是土的液化现象。
土壤液化主要发生在砂质土壤为主并且地下水位较高的区域,例如:海岸地区、河水行经的冲积平原区或旧河道分布区等。这些区域常分布一些充满地下水而饱和的疏松砂土,由于它们本身的结构较弱,很容易因为外力而发生土壤结构的改变。在平时,地下水的压力与土壤层间的压力维持一个平衡状态,地下水与土壤层之间保持接口上的稳定,并不会侵入上面的土层。但是当地震发生受到应力的影响时,地下水的移动情形将大过砂土能将多余水分排出的速率。这时土体孔隙中的水压力,由于来不及消散而累积上升,并导致土壤剪力强度降低。当此情形继续演变,孔隙水压会增大到足以使土粒在孔隙水中悬浮,这时土层颗粒的承载力顿时会被水给取代,土壤结构内部会变成像液体一样可以流动的情形,最终导致整个地盘失去承载力并且大量变形。此时若砂土层液化的位置较浅,或者地表分布疏松的孔隙,泥水还可借着压力沿着裂隙喷发到地表,形成喷砂的现象。
二、土体液化的机理和危害
大量实验和历史表明,土体液化有两个必要的条件:一是土体必须处于饱和状态;二是要有一定条件的动荷载作用。但是并不是所有具有上述两个条件的土体都能液化。饱和的土在受到动荷载的往复剪切作用下,颗粒排列将趋于密室(剪缩性),如果土的透水性很差的话,土体的孔隙水压力将会很难排出,从而导致
孔隙水压力急剧上升,土体的有效应力却在减小,当孔隙水压力与土体的固结压力相等时,有效应力减小于零,土的抗剪强度完全消失,处于没有抵抗外荷载能力的悬浮状态,土体就发生了液化。发生液化的土类主要有两种:砂土和粉土。因为他们的透水能力很弱,而且粘聚力也很弱。碎石、砾石、砾砂的渗透性好,抗剪强度也很高,很少发生液化。粘土和粉质粘土间有黏性亦不易液化。中、粗、砾砂也常发生液化,但比粉、细砂和粉土要少些。砾石虽透水性好,但如果地震动很强或上覆透水性很差的土层,也可能发生液化。
地震、波浪、车辆、机器振动、打桩以及爆破等都可能一起饱和砂土或粉土的液化,其中又以地震引起的大面积甚至深层的土体液化的危害性最大,它具有面广、危害重等特点,常能造成场地的整体性失稳。因此,近年来一起国内外工程界的普遍重视,成为工程抗震设计的重要内容之一。
地震引起砂土液化造成的灾害宏观表现主要有:
1.喷砂冒水液化土层中出现相当高的孔隙水压力,会导致低洼的地方或土层缝隙处喷出砂、水混合物。喷出的砂粒可能破坏农田,淤塞渠道。喷砂冒水的范围往往很广,持续时间可达几个小时甚至几天,水头可达2~3m。
2.震陷液化喷砂冒水会带走大量土颗粒,地基产生不均匀沉陷,使建筑物倾斜、开裂甚至倒塌。
3.滑坡在岸坡或坝坡中的饱和砂粉土层,犹豫液化而丧失抗剪强度,使土坡失去稳定,沿着液化层滑动,形成大面积滑坡。
4.上浮贮罐、管道等空腹埋置结构可能在周围土体液化是上浮,对于生命线工程来讲,上浮常常引起严重的后果。
三、土体液化的影响因素
1.土类并不是所有的饱和砂土和少黏土在动荷载作用下一定发生液化现象。粘土有一定的粘聚力c,即使孔隙水压力等于全部的固结压力,粘土的抗剪强度也不会等于零,因而不具备液化的内在条件。粒径较大的砂土,由于透水性较好,孔隙水压力很难积累增长,因而一般也不会发生液化,而没有粘聚力或粘聚力很弱,又处于低水位以下的粉、细砂和粉土,透水系数小,孔隙水不易排出,
d=0.05-0.09mm 水压力会不断地积累增长,在动荷载作用下才会发生。平均粒径
50
的粉、细砂最容易液化,而实际范围更广一些,在地震作用下发生液化的饱和土d一般小于2mm,粘粒含量低于10%-15%,塑性指标常在8以下(范的平均粒径
50
围更大可能是因为地震的荷载作用比一般的荷载作用更强,地震波的周期更短的原因)。
2.土的密度松散的砂土在动荷载的作用下体积易于缩小,孔隙水压力上升快,所以松散砂较易液化。而如果砂土的密度很大,则其剪缩性非常的弱,在振动作用下很可能发生体积膨胀,一旦具有剪胀性的时候,土体被剪切的时候就会产生负的水压力,反而使土体抗阻力增大,因而不可能发生液化。
3.土的初始应力状态土单元体的固结压力随着土体的埋藏深度和地下水
位深度而直线增加。地震在土体单元中引起的动剪力随着深度的增加也在增加,但没有土体的固结压力增加的快,于是,土体的埋藏深度和地下水的深度,即土体的有效覆盖压力就成了影响土体液化可能性的因素。一般说来,埋藏越深的土体地震时液化的可能性越小。相关的海域地震砂土液化的报告指出:有效覆盖压力小于50KPa的地方,液化的普遍严重;有效覆盖压力介于50KPa-100KPa的地方,液化现象较轻;而未发生液化地段有效覆盖压力多大于100KPa。大多资料表明,埋藏深度大于20m时,甚至松散的砂土也很少发生液化。
4.地震强度和地震持续时间地震强度越高,持续时间越长,土体液化的越严重。
四、液化地基处理措施
我国是一个多地震国家,也是世界上地震灾害最严重的国家,地震经常威胁着工程安全。当前我国正处在新的地震活跃期,地震发生频率增大,这对我国正在蓬勃发展的基础设施建设构成了严重威胁。因此,在地震多发地区修建建筑物或构筑物,必须对可能液化土体进行处理。工程上采用的抗震措施一般分为两种,一种是全部消除地基液化沉陷措施,二是部分消除地基液化沉陷措施。根据建筑物的重要性、地基的液化等级,结合具体情况综合确定选择全部或部分消除液化沉陷。
综合各种法的性质和抗震的机理,地基液化的措施大致分为三类:
(一)采用桩基础(非摩擦桩)或者是深基础避开液化土层
这类方法能完全消除地基液化沉陷造成的危害。