Moldflow分析解释
模流分析(MOLDFLOW)
一. 压力條件对产品的影响1.高保压压力能夠降低產品收縮的機會补充入模穴的塑料越多,越可避免產品的收縮高保压压力通常會造成产品不均勻收縮,而导致產品的翹曲变形对薄殼產品而言,由於壓力降更明顯,上述之情況更加嚴重2.Over packing 過保壓保壓壓力高,澆口附近體積收縮量少遠離澆口處保壓壓力低且體積收縮量較大導致產品翹曲變形,產品中央向四周推擠形成半球形(Dome Shape)3. Under packing 保壓不足澆口附近壓力低遠離澆口處壓力更低導致產品翹曲變形,產品中央向四周拉扯形成馬鞍形Twisted shape保壓時間如果夠長,足夠使澆口凝固,則可降低體積收縮的機會澆口凝固後,保壓效果就無效果一、澆口位置的要求:1.外观要求(浇口痕跡, 熔接线)2.產品功能要求3.模具加工要求4.產品的翹曲变形5.澆口容不容易去除二、对生产和功能的影响:1.流長(Flow Length)決定射出壓力,鎖模力,以及產品填不填的滿流長縮短可降低射出壓力及鎖模力2.澆口位置會影響保壓壓力保壓壓力大小保壓壓力是否平衡將澆口遠離產品未來受力位置(如軸承處)以避免殘留應力澆口位置必須考慮排氣,以避免積風發生不要將澆口放在產品較弱处或嵌入处,以避免偏位(Core Shaft)三、选择浇口位置的技巧1.將澆口放置於產品最厚處,從最厚處進澆可提供較佳的充填及保壓效果。
如果保壓不足,較薄的區域會比較厚的區域更快凝固避免將澆口放在厚度突然變化處,以避免遲滯現象或是短射的發生2.可能的話,從產品中央進澆將澆口放置於產品中央可提供等長的流長流長的大小會影響所需的射出壓力中央進澆使得各個方向的保壓壓力均勻,可避免不均勻的體積收縮射出量/切换点的影响射出量可由螺杆行程距离的設定決定射出量包括了填滿模穴需要的塑胶量以及保压時須填入模穴的塑膠量切換點是射出機由速度控制切換成壓力控制的點螺桿前进行程過短(切換點過早)會導致保壓壓力不足假如保压压力比所需射出壓力還低,產品可能发生短射PVT特性p –压力; v –比容; T –溫度描述塑胶如何随着压力及溫度的变化而发生体积上的变化。
moldflow分析案例解读
水路排布: 增加水路/支流; 改变位置
水温: 可设定到3种不同的温度
增加入子(insert)
流动率
保压分析
保压分析
保压分析最好在完成了零件的填充优化、流道
的尺寸优化、流道平衡和冷却分析后再进行。
MPa
选择保 压压力 , 设
定保压 曲线 , 进行
保压模拟分析。
保压曲线
temperature )
• 填充结束时的凝固层系数(Frozen layer
fraction )
• 胶料来源(Grow from)
• 填充结束时刻的压力(Pressure )
结果解释
中间数据结果
记录填充和保压过程中的多个时刻的结果。默
认设置是在填充阶段和保压阶段各记录20 个数据
点。可设置的中间结果的数量范围为0 到100。默
根据此图相应的调整冷却系统及浇注系统可以得到更好
的保压效果。
体积收缩 Volumetric Shrinkage
左图显示的是各
处的体积收缩百
分比。
作用: 体积收缩越均匀产品质量越好,翘曲量越小,收
缩不均可能产生局部严重缩水、凹痕等缺陷。根据图中
显示的收缩量,相应调整保压曲线,可以获得更好的保
压效果。
• 随时间降低压力一直降到浇口处为零
曲线保压
• 何时采用曲线保压曲线
• 当机器有能力时
• 当产品壁厚变化不大时
• 当翘曲很重要时
保压术语
实际注射时间
实际注射时间
制作保压曲线
• 最佳化
• 产品填充
• 流道平衡
• 冷却
• 确定初始保压压力
• 以机器最大锁模力的80%作为保压压力最大值(公
(完整版)MOLDFLOW分析报告
引言概述:MOLDFLOW分析是一种重要的工具,广泛应用于塑料制品设计和生产过程中。
它可以提供关于模具充填、冷却和固化的详细信息,帮助设计师优化模具设计,提高产品质量和生产效率。
本文将通过分析报告的方式,详细介绍MOLDFLOW分析的应用和意义。
正文内容:一、模具充填分析1. 熔体流动模拟:对熔体在模具中的流动进行模拟,可以分析熔体的充填情况、充填时间和充填压力等参数,以及可能出现的缺陷,如短充、气泡等。
2. 塑料充填模拟:通过模拟塑料在模具中的充填过程,可以评估模具的设计是否合理,以及可能存在的充填不良、厚薄不均等问题。
3. 充填时间分析:根据模具充填模拟的结果,可以计算出塑料充填的时间,从而优化生产周期和工艺参数。
二、冷却系统分析1. 冷却效果模拟:通过模拟冷却系统的布局和工艺参数,在模具充填结束后,对模具进行冷却效果的分析。
可以评估冷却系统的设计是否合理,以及可能存在的冷却不均、温度过高等问题。
2. 温度分布模拟:根据冷却系统分析结果,可以计算出模具内部的温度分布,帮助优化冷却系统的设计和工艺参数。
3. 冷却时间分析:根据冷却系统模拟的结果,可以计算出模具冷却的时间,从而优化生产周期和工艺参数。
三、固化模拟分析1. 熔体固化分析:通过模拟塑料在模具中的固化过程,可以评估模具冷却效果和固化时间,避免可能出现的缺陷,如收缩、变形等。
2. 温度变化分析:根据固化模拟分析结果,可以计算出模具内部的温度变化曲线,帮助优化冷却系统和固化参数的设计。
3. 固化时间分析:根据固化模拟分析的结果,可以计算出模具固化的时间,从而优化生产周期和工艺参数。
四、缺陷分析1. 模具缺陷预测:通过模拟模具充填、冷却和固化的过程,可以预测可能出现的缺陷,如短充、气泡、收缩等,并给出相应的解决方案。
2. 缺陷修复优化:根据缺陷分析结果,可以优化模具设计和工艺参数,减少缺陷的发生,并提高产品质量和生产效率。
五、效果验证与总结1. 效果验证:通过对MOLDFLOW分析结果与实际生产产品进行对比,验证分析的准确性和可靠性,并修正和改进分析模型。
Moldflow分析结果解释
© 2012 PiMold
路径图结果
➢ 任何点可以做出一条点路径 ➢ 拾取第一点位参考点 ➢ 定义X-轴通过
✓ 开始实体的距离 ✓ 整个路径的长度 ✓ X, Y, 或 Z 坐标
9
© 2012 PiMold
高亮显示
➢ 熔接线 ✓ 用户化
➢ 气泡 ➢ 锁模力中心
✓ 最大吨数
10
© 2012 PiMold
68
© 2012 PiMold
▪ 缩痕估算
69
© 2012 PiMold
▪ 缩痕阴影
70
© 2012 PiMold
▪ 熔接线
高亮结果,用高亮显示产品熔接线分布状况
71
© 2012 PiMold
8.3 冷却分析结果
默认分析结果共20项 ,可以增加或删除
72
© 2012 PiMold
▪ 冷却回路介质温度
▪ 充填结束时刻的压力
单一的,记录节点的结果,反映充填结束时刻每个节点的压力
63
© 2012 PiMold
▪ 推荐的螺杆速度:XY图
XY曲线结果,推荐的注塑量与填充速率的曲线,即注塑速率曲线
64
© 2012 PiMold
▪ 壁上剪切应力
中间的,记录在三角形单元上的结果,反映了产品壁厚上剪切应力随时间变化的结果
✓ 显示一个结果 ✓ 高亮第二个结果 ✓ 右击并选择覆盖 ✓ 若有必要激活第一个结果 ➢ 只渐变一个结果 ➢ 网格显示 ✓ 可能需要设置透明
27
© 2012 PiMold
灯光
➢ 在参考选择对话框 ✓ 在阅读图表上
➢ 阴影显示调节可见颜色的深度 ➢ 最大阴影显示可以得到颜色鲜明的结果 – 最好使用在3D结果中
MOLDFLOW模具分析技术基础知识
第一章 MOLDFLOW剖析基础知识1.1 注塑成型基础知识所谓注塑成型是指将已加热融化的资料发射注入到模具内,经由冷却与固化后 ,获取成品的方法 .在树脂原料经由注塑机注塑成型变成塑料制品的整个过程中,包含以下几个部分 .1.计量 :为了成型必定大小的塑件 ,一定使用必定量的颗粒状塑料 ,这就需要计量 .2.塑化 :为了将塑料充入模腔 ,就一定使其变成熔融状态 ,流过充入模腔 .3.注塑充模 :为了将熔融塑料充入模腔 ,就需要对熔融塑料施加注塑压力 ,注入模腔 .4.保压增密 :熔融塑料充满模腔后 ,向模腔内增补因制品冷却缩短所需的物料 .5.制品冷却 :保压结束后 ,制品开始进入冷却定型阶段 .6.开模 :制品冷却定型后 ,注塑机的合模装置带动模具动模部分与定模部分分别 .7.顶件 :注塑机的顶出机构顶出塑件 .8.取件 :经过人力或机械手拿出塑件和浇注系统冷凝料等 .9.闭模 :注塑机的合模装置闭归并锁紧模具 .1.2 注塑成型机注塑成型机可分为柱塞式和螺杆式两种,这两种注塑成型机都是由注塑系统,锁模系统和模具构成 ..1.2.1 注塑系统注塑系统是注塑机的主要构成部分.它能够使树脂原料在注塞或螺杆的推动或旋转推动下均匀塑化,在高压下快速注入模具 ,注塑系统包含加料装置 ,料筒 ,螺杆或柱塞 ,喷嘴 ,加压和驱动装置等 .1.2.2 锁模系统注塑机上实现锁合模具,启闭模具和顶出制件的机构称为锁模系统.熔料在高压下注入模具,一定施加足够大的锁模力才能保证模具严实闭合不溢料,锁模构造还应保证模具启闭灵巧,正确 ,快速和安全 ,并防备破坏模具和制件 ,防止机械遇到激烈震动 ,达到安全运转以延伸机器和模具的使用寿命.1.2.3 模具模具是为了将树脂原料做成某种形状而用来承接射出树脂的零件.注塑模具主要由浇注系统,成型零件和构造零件构成 .1.3 注塑成型过程在注塑过程的塑化 ,填补 ,保压和冷却这四个主要阶段中,起主要作用的工艺参数也跟着注塑过程的变化而变化 .1.塑化塑化是指塑料在料筒内经加热达到优秀可塑性的流动状态的全过程.塑化是注塑成型的准备阶段.熔体在进入模腔以前应达到规定的成型温度,并能在规准时间内达到足足数目,熔体温度应均匀一致 ,不发生或很少发生热分解以保证生产的连续进行.2.填补这一阶段从柱塞或螺杆开始向前挪动起,直至模腔被塑料熔体充满为止.填补过程中包含的重要工艺参数有:熔体温度,注塑压力 ,填补时间 .充模刚开始一段时间内模腔中没有压力,待模腔充满时 ,料流压力快速上涨达到最大值.充模的时间与模塑压力有关 ,充模时间长 ,先进入模内的塑料遇到许多的冷却,粘度增大 ,后边的塑料就需要在较高的压力下才能进入模腔 ,反之 ,所需的压力则较小 .在前一状况下 ,因为塑料遇到较高的剪切应力,分子定向程度比较大.这类现象如果保存到料温降低至融化点此后,则制品中冻结的定向分子将使制品拥有各向异性.这类制品在温度变化较大的使用过程中会出现裂纹,裂纹的方向与分子定向方向是一致的.并且 ,制品的热稳固性也较差,这是因为塑料的融化点跟着分子定向程度增高而降低.高速充模时 ,塑料熔体经过喷嘴 ,主流道 ,分流道和浇口时产生许多的摩擦而使料温高升 ,这样当压力达到最大值时,塑料熔体的温度便可以保持较高的值,分子定向程度可减少 ,制品熔接强度也提升 .充模过快时 ,在嵌件后部的熔接常常不好,以致制品强度变劣 .3.保压这是指从熔体充满模腔时起,至柱塞或螺杆撤回时为止的一段时间.保压阶段包含的重要工艺参数有:保压压力 ,保压时间 .保压阶段中 ,塑料熔体因遇到冷却而发生缩短,但因塑料仍旧处于柱塞或螺杆的稳压下,料筒内的熔料会被持续注入模腔内补足因缩短而留出的缝隙,假如柱塞或螺杆停在原位不动,压力曲线就会略有衰减。
Moldflow分析结果解释大全
M o l d f l o w分析结果解释大全文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)一流动分析部分1 Fill time result填充时间填充时间显示了模腔填充时每隔一定间隔的料流前锋位置。
每个等高线描绘了模型各部分同一时刻的填充。
在填充开始时,显示为暗蓝色,最后填充的地方为红色。
如果制品短射,未填充部分没有颜色。
使用:制品的良好填充,其流型是平衡的。
一个平衡的填充结果:所有流程在同一时间结束,料流前锋在同一时间到达模型末端。
这个意味着每个流程应该以暗蓝色等高线结束。
等高线是均匀间隔,等高线的间隔指示了聚合物的流动速度。
宽的等高线指示快速的流动,而窄的等高线指示了缓慢的填充。
查看项目:确认填充行为的显示状况。
短射—在填充时间结果上,短射将显示为半透明的,查看流动路径的末端是否有半透明区域。
关于3D模型, 可以使用未填充的模穴(短射)结果来检查是否在制品的内部存在未充填的部分。
滞流—如果填充时间结果显示一些区域上的云图有很近的间隔,将产生滞流。
如果一个薄区域在制品完全填充之前冻结滞流会导致短射。
过保压—如果填充时间结果显示某个流程的流程之前完成,将显示过保压。
过保压会导致高的制品重量、翘曲和不均匀的密度分布。
熔接线和气穴—在填充时间结果上重叠熔接线结果可以确定其存在,熔接线会导致结构和视觉上的缺陷。
气穴—在填充时间结果上重叠气穴结果可以确认其存在,气穴会导致结构和视觉上的缺陷。
跑道效应—跑道效应会导致气穴和熔接线,查看气穴和熔接线的位置及数量。
2 Pressure at velocity/pressure switchover resultV/P切换时刻的压力该结果从流动分析产生,显示了通过模型内的流程在从速度到压力控制切换点的压力分布。
使用:在填充开始前,模腔内各处的压力为零(或者为大气压,绝对压力)。
熔料前沿到达的位置压力才会增加,当熔料前沿向前移动填充后面的区域时压力继续增加,此取决于该位置与熔料前沿的长度。
MOLDFLOW模流分析结果解释
MOLDFLOW模流分析结果解释解释结果的一个重要部分是理解结果的定义,并知道怎样使用结果。
下面将列出常用结果的定义及怎样使用它们的建议,越常用的结果将越先介绍。
屏幕输出文件(screen output)和结果概要(results summary)屏幕输出文件和结果概要都包含了一些分析的关键结果的总结性信息。
屏幕输出文件还包含如图169所示的附加输出,表明分析正在进行,同时还提供重要信息。
从它可以看出分析使用的压力和锁模力的大小、流率的大小和使用的控制类型。
图169. 充模分析的屏幕输出文件屏幕输出文件和结果概要都有与图170相似的部分。
它同时包含了分析过程中(第一部分)和分析结束时的关键信息。
使用这些信息可以快速查看这些变量,从而判断是否需要详细分析某一结果,以发现问题。
图170. 结果概要输出充模时间(Fill Time)充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,但使用云纹图可更容易解释结果。
云纹线的间距应该相同,这表明熔体流动前沿的速度相等。
制件的填充应该平衡。
当制件平衡充模时,制件的各个远端在同一时刻充满。
对大多数分析,充模时间是一个非常重要的关键结果。
压力(Pressures)有几种不同的压力图,每种以不同的方式显示制件的压力分布。
所有压力图显示的都是制件某个位置(一个节点)、或某一时刻的压力。
使用的最大压力应低于注射机的压力极限,很多注射机的压力极限为140 MPa (~20,000 psi)。
模具的设计压力极限最好为100 MPa (~14,500 psi)左右。
如果所用注塑机的压力极限高于140MPa,则设计极限可相应增大。
模具的设计压力极限应大约为注射机极限的70%。
假如分析没有包括浇注系统,设计压力极限应为注射机极限的50%。
象充模时间一样,压力分布也应该平衡。
压力图和充模时间图看起来应该十分相似,如果相似,则充模时制件内就只有很少或没有潜流。
具体的压力结果定义如下:•压力(Pressure)压力是一个中间结果,每一个节点在分析时间内的每一时刻的压力值都记录了下来。
MOLDFLOW模流分析
MOLDFLOW简介
优化制品形 状和结构
优化模具结构
优化注塑工艺 参数
18
MOLDFLOW简介 功能1
最佳浇口位置分析
根据塑件的形状结构,分析出最佳的胶口位置。
19
MOLDFLOW简介 功能2
填充过程动态模拟
通过填充、保压、冷却、开模等模拟来推算制品成型周期 可以看出是否出现缺胶或者短射现象。
自由边数量。 自由边是指一个三角形或3D单元 的某一边没有与其他单元共用。 Fusion和3D网格此项必须是”0”。
交叉边数量。
非折叠边是指由两个以上的三角 形或3D单元共用一条边。 Fusion网格此项必须是“0”。
共用边数量。 折叠边是指两个三角形或3D单元 共用一条边。 Fusion网格中只能存在折叠边。
35
STEP5-网格修补
经过网格信息统计, 一般都会发现网格中出现 问题,这就需要对网格进 行后期处理,使网格质要 符合分析要求。
MoldFlow提供了丰富 的网格诊断工具和处理工 具,这两种工具结合使用 就可达到提高网格质量的 目的。
Mesh Tools 网格处理工具
网格诊断工具
网格的划分和处 理
14
目录
11 MOLDFLOW简介 23 MOLDFLOW分析流程介绍 43 产品缺陷判定及优化对策
15
MOLDFLOW简介
Autodesk Moldflow是欧特克公司 开发的一款用于塑料产品、模具的 设计与制造的行业软件。 Moldflow 为企业产品的设计及制造的优化提 供了整体的解决方案,帮助工程人 员轻松的完成整个流程中各个关键 点的优化工作。
单击生成 网格
双击创建网格
29
STEP4-生成模型网格
moldflow结果解读
Moldflow分析结果解释一流动分析部分1 Fill time result填充时间填充时间显示了模腔填充时每隔一定间隔的料流前锋位置。
每个等高线描绘了模型各部分同一时刻的填充。
在填充开始时,显示为暗蓝色,最后填充的地方为红色。
如果制品短射,未填充部分没有颜色。
使用:制品的良好填充,其流型是平衡的。
一个平衡的填充结果:所有流程在同一时间结束,料流前锋在同一时间到达模型末端。
这个意味着每个流程应该以暗蓝色等高线结束。
等高线是均匀间隔,等高线的间隔指示了聚合物的流动速度。
宽的等高线指示快速的流动,而窄的等高线指示了缓慢的填充。
查看项目:确认填充行为的显示状况。
短射—在填充时间结果上,短射将显示为半透明的,查看流动路径的末端是否有半透明区域。
关于3D模型, 可以使用未填充的模穴(短射)结果来检查是否在制品的内部存在未充填的部分。
滞流—如果填充时间结果显示一些区域上的云图有很近的间隔,将产生滞流。
如果一个薄区域在制品完全填充之前冻结滞流会导致短射。
过保压—如果填充时间结果显示某个流程的流程之前完成,将显示过保压。
过保压会导致高的制品重量、翘曲和不均匀的密度分布。
熔接线和气穴—在填充时间结果上重叠熔接线结果可以确定其存在,熔接线会导致结构和视觉上的缺陷。
气穴—在填充时间结果上重叠气穴结果可以确认其存在,气穴会导致结构和视觉上的缺陷。
跑道效应—跑道效应会导致气穴和熔接线,查看气穴和熔接线的位置及数量。
2 Pressure at velocity/pressure switchover resultV/P切换时刻的压力该结果从流动分析产生,显示了通过模型内的流程在从速度到压力控制切换点的压力分布。
使用:在填充开始前,模腔内各处的压力为零(或者为大气压,绝对压力)。
熔料前沿到达的位置压力才会增加,当熔料前沿向前移动填充后面的区域时压力继续增加,此取决于该位置与熔料前沿的长度。
各个位置的压力不同促使聚合物熔料的填充流动,压力梯度是压力差除以两个位置间的距离。
MOLDFLOW模具分析技术基础知识
第一章MOLDFLOW 分析根底知识所谓注塑成型是指将已加热熔化的材料喷射注入到模具内,经由冷却与固化后,得到成品的方法. 在树脂原料经由注塑机注塑成型变为塑料制品的整个过程中,包括以下几个局部.1.计量:为了成型一定大小的塑件,必须使用一定量的颗粒状塑料,这就需要计量.2.塑化:为了将塑料充入模腔,就必须使其变为熔融状态,流过充入模腔.3.注塑充模:为了将熔融塑料充入模腔,就需要对熔融塑料施加注塑压力,注入模腔.4.保压增密:熔融塑料充满模腔后,向模腔内补充因制品冷却收缩所需的物料.5.制品冷却:保压结束后,制品开始进入冷却定型阶段.6.开模:制品冷却定型后,注塑机的合模装置带动模具动模局部与定模局部别离.7.顶件:注塑机的顶出机构顶出塑件.8.取件:通过人力或机械手取出塑件和浇注系统冷凝料等.9.闭模:注塑机的合模装置闭合并锁紧模具.注塑成型机可分为柱塞式和螺杆式两种,这两种注塑成型机都是由注塑系统,锁模系统和模具组成..注塑系统注塑系统匀塑化,在高压下快速注入模具,注塑系统包括加料装置,料筒,螺杆或柱塞,喷嘴,加压和驱动装置等.锁模系统注塑机上实现锁合模具,启闭模具和顶出制件的机构称为锁模系统.熔料在高压下注入模具,必须施加足够大的锁模力才能保证模具严密闭合不溢料,锁模结构还应保证模具启闭灵活,准确,迅速和平安,并防止损坏模具和制件,防止机械受到强烈震动,到达平安运行以延长机器和模具的使用寿命.模具模具是为了将树脂原料做成某种形状而用来承接射出树脂的部件.注塑模具主要由浇注系统,成型零件和结构零件组成.在注塑过程的塑化,填充,保压和冷却这四个主要阶段中,起主要作用的工艺参数也随着注塑过程的变化而变化.1.塑化塑化是指塑料在料筒内经加热到达良好塑成型的准备阶段.熔体在进入模腔之前应到达规定的成型温度,并能在规定时间内到达足够数量,熔体温度应均匀一致,不发生或极少发生热分解以保证生产的连续进行. 2.填充这一阶段从柱塞或螺杆开始向前移动起,直至模腔被塑料熔体充满为止.填充过程中包含的重要工艺参数有:熔体温度,注塑压力,填充时间.充模刚开始一段时间内模腔中没有压力,待模腔充满时,料流压力迅速上升到达最大值.充模的时间与模塑压力有关,充模时间长,先进入模内的塑料受到较多的冷却,粘度增大,后面的塑料就需要在较高的压力下种制品在温度变化较大的使用过程中会出现裂纹,裂纹的方向与分子定向方向是一致的.而且,制品的热,塑料熔体通过喷嘴,主流道,分流道和浇口时产生较多的摩擦而使料温升高,这样当压力到达最大值时,塑料熔体的温度就能够保持较高的值,分子定向程度可减少,制品熔接强度也提高.充模过快时,在嵌件后部的熔接往往不好,致使制品强度变劣.3.保压这是指从熔体充满模腔时起,至柱塞或螺杆撤回时为止的一段时间.保压阶段包括的重要工艺参数有:保压压力,保压时间.保压阶段中,塑料熔体因受到冷却而发生收缩,但因塑料仍然处于柱塞或螺杆的稳压下,料筒内的熔料会被继续注入模腔内补足因收缩而留出的空隙,如果柱塞或螺杆停在原位不动,压力曲密度,降低收缩和克服制品外表缺陷都有影响.此外,由于塑料还在流动,而且温度又在不断下降,定向分子容易被冻结,所以这一阶段是大分子定向形成的主要阶段.这一阶段拖延时间愈长,分子定向程度也将愈大.4.冷却这一阶段是指从浇口的塑料完全冻结时起,到制品从模腔中顶出时为止.冷却阶段包括的重要工艺参数是冷却时间冷却时模腔内压力迅速下降,模腔内塑料在这一阶段内主要是继续冷却,以便制品在脱模时具有足够的刚度而不致发生扭曲变形.在这一阶段内,虽无塑料从浇口流出或流入,但模内还可能有少量的塑料流动,因此到制品脱模时,模内压力不一定等于外界压力,模内压力与外界压力的差值成为剩余压力以,只有大剩余压力接近零时,脱模才比拟顺利,并能够获得满意的制品.注塑成型工艺条件主要包括温度,压力和时间等1.温度注塑成型过程中的温度主要有熔料温度和模具温度.熔料温度影响塑化和注塑充模,模具温度影响充模和冷却定型.熔料温度指塑化树脂的温度和从喷嘴射出的熔体温,熔料温度取决于料筒和喷嘴两局部的温度.熔料温度的上下决定熔体流动性能的好坏.熔料温度高,熔体的粘度小,流动性能好,需要的注塑压力小,成型后的制件外表光洁度好,出现熔接痕,缺料的可能性就小.反之熔料温度低,就会降低熔体的流动性能,会,导致材料物理和化学性能降低.模具温度是指和制品接触的模腔外表温度.模具温度直接影响熔体的充模流动行为,制件的冷却速度和制件在模腔内的流动性,增强制件的密谋和结晶度以及减小充模压力和制件中的压力.但是,提高模具温度会增加制件的冷却时间,增大制件收缩率和脱模后的翘曲,制件成型周期也会因为冷却时间的增加而变长,降低了生产效率.降低模具温度,虽然能够缩短冷却时间,提高生产率,但是,会降低熔体在模腔内的流动能力,并导致制件产生较大的内应力或者形成明显的熔接痕等制件缺陷.2.压力注塑过程中的压力主要有注塑压力,保压压力和背压注塑压力是指螺杆或者柱塞沿轴向前移时,其头部向塑料熔体施加的压力.它主要用于克服熔体在成型过程中的流动阻力,还对熔种,制件的复杂度,壁厚,喷嘴的结构形式,模具浇口的类型和尺寸以及注塑机类型等因素.保压压力是指对模腔内树脂熔体进行压力是重要的注塑工艺参数之一,保压压力和保压时间的选择直接影响注塑制品的质量,保压压力与注塑压力一样由液压系统决定.在保压初期,制品重量随保压时间而增加,到达一定时间不再增加.延长保压时间有助于减少制品的收缩率,但过长的保压时间会使制品两个方向上的收缩率程度出现差异.令制品各个方向上的内应力差异增大,造成制品翘曲,粘模.在保压压力及熔体温度一定时,保压时间的选择应取决于浇口凝固时间.背压是指螺杆顶部熔料在螺杆转动后退时对大背压可以排出原料中的空气,提高熔体密实程度,还会增大熔体内的压力,螺杆后退速度减小,塑化过程的剪切作用加强,摩擦热增多,熔体温度上升,塑化效果提高.但是背压增大后,如果不相应提高螺杆转速,那么,熔体在螺杆计量段螺槽中将会产生较大的逆流和漏流,从而使塑化能力下降.背压的大小与制件成型树脂原料品种,喷嘴种类以及加料方式有关.3.时间注塑成型周期主要由注塑时间Ti,保压时间Tp,冷却时间Tc,开模时间To组成.th为TP与TC之和.注塑时间是指注塑活塞在注塑油缸内开始向前运动直至模腔被全部充满为止所经历的时间.保压时间为从模腔充满后开始,到保压结束为止所经历的时间.注塑时间与保压时间由制件成型树脂原料的流动性能,制件几何形状,制件尺寸大小,模具浇注系统的形式,成型所用的注塑方式和其他工艺条件等到因素决定.冷却时间指保压结束到开启模具所经历的时间.冷却时间的长短受熔体温度,模具温度,脱模温度和冷却剂温度等因素的影响.在保证取得较好制件质量的前提下,应当尽量缩短冷却时间的大小,否那么,会延长制件成型周期,降低生产效率,还可能造成具有复杂几何形状的制件脱模困难.开模时间为模具开启取出制件到下个成型周期开始的时间.注塑机自动化程度高,模具复杂度低,那么开模时间短;否那么,开模时间较长.1.5.1短射短射是指由于模具模腔填充不完全造成制品不完整的质量缺陷,即熔体在完成填充之前就已凝结。
Moldflow判图说明解释
精英技術發展部
CAE組 精英制模實業有限公司
设计给的流道尺寸
第一天培訓內容
一. CAE需要的資料.
二. 每種軟件各有特點和時間.
三. MPA結果.
資料提供
申请模流分析必须提供的资料:
产品3D图档(最好提供PRO/E的原装图档,如要做详细分析加流道运 水,请提供2D模图,如果是3D图,请拆除与水道无关的部分.) 胶料名称(型号务必写全,写明厂商,最好附带物性表.) 注塑機台形號.大小.種類. 注塑周期. 注塑条件(如已试模请提供试模参数表,如有特殊要求请注明,如:周期 要求或固定模温等) 分析目的(说明分析目的)
射出壓力
鎖模力 ( Clamping Force F ) 的計算
F=P× A× 1.2
P = 射出壓力(Kg/cm2) A = 零件垂直射出方向投影面積(cm2) 1.2 = 注塑機安全系數
Pressure Drop
当一个位置被填充时,从注射位置到零件上要充填的这个位置所 要的压力就是压降;
Moldflow
MPAபைடு நூலகம்
分析技術 Fusion 好處 帮助用户快速优化零件和模具设计 缺點 1. 流动长度L与主平(曲)面厚度T的比值大于4 2. 分析結果的準確性較差
MPI
Midplane 技术原理简明、客易理解. 運算速度快. 选择模拟替代面较难且慢 网格划分结果简单,单元数量少,计算量较小 厚度定义有时难以把握 此技术最早出现在CEA分析里,因此技术比較成熟。 对于简复杂特征的模型 Fusion 分析速度快,后处理方便。 网格生成简单,不需过多操作。 修网格时可单独显示有问题的网格,方便修理. 3D 塑膠的真實流動 分析适用性宽 网格生成方便 运算速度慢 网格数量限小 结果太少 流动长度L与主平(曲)面厚度T的比值大于4 MPI流道、水道不便设置 Model易变形,STL格式易变形,而IGS格式会有多余的烂面。 画流道冷却水道太繁琐,不方便。
MOLDFLOW模具分析技术基础知识
第一章 MOLDFLOW 分析基础知识1.1注塑成型基础知识所谓注塑成型是指将已加热熔化的材料喷射注入到模具内,经由冷却与固化后,得到成品的方法.在树脂原料经由注塑机注塑成型变为塑料制品的整个过程中,包括以下几个部分.计量:为了成型一定大小的塑件,必须使用一定量的颗粒状塑料,这就需要计量.塑化:为了将塑料充入模腔,就必须使其变为熔融状态,流过充入模腔.注塑充模:为了将熔融塑料充入模腔,就需要对熔融塑料施加注塑压力,注入模腔.保压增密:熔融塑料充满模腔后,向模腔内补充因制品冷却收缩所需的物料.制品冷却:保压结束后,制品开始进入冷却定型阶段.开模:制品冷却定型后,注塑机的合模装置带动模具动模部分与定模部分分离.顶件:注塑机的顶出机构顶出塑件.取件:通过人力或机械手取出塑件和浇注系统冷凝料等.闭模:注塑机的合模装置闭合并锁紧模具.1.2注塑成型机注塑成型机可分为柱塞式和螺杆式两种,这两种注塑成型机都是由注塑系统,锁模系统和模具组成..1.2.1注塑系统注塑系统是注塑机的主要组成部分.它能够使树脂原料在注塞或螺杆的推动或旋转推进下均匀塑化,在高压下快速注入模具,注塑系统包括加料装置,料筒,螺杆或柱塞,喷嘴,加压和驱动装置等.1.2.2锁模系统注塑机上实现锁合模具,启闭模具和顶出制件的机构称为锁模系统.熔料在高压下注入模具,必须施加足够大的锁模力才能保证模具严密闭合不溢料,锁模结构还应保证模具启闭灵活,准确,迅速和安全,并防止损坏模具和制件,避免机械受到强烈震动,达到安全运行以延长机器和模具的使用寿命.1.2.3模具模具是为了将树脂原料做成某种形状而用来承接射出树脂的部件.注塑模具主要由浇注系统,成型零件和结构零件组成.1.3注塑成型过程在注塑过程的塑化,填充,保压和冷却这四个主要阶段中,起主要作用的工艺参数也随着注塑过程的变化而变化.塑化塑化是指塑料在料筒内经加热达到良好可塑性的流动状态的全过程.塑化是注塑成型的准备阶段.熔体在进入模腔之前应达到规定的成型温度,并能在规定时间内达到足够数量,熔体温度应均匀一致,不发生或极少发生热分解以保证生产的连续进行.填充这一阶段从柱塞或螺杆开始向前移动起,直至模腔被塑料熔体充满为止.填充过程中包含的重要工艺参数有:熔体温度,注塑压力,填充时间.充模刚开始一段时间内模腔中没有压力,待模腔充满时,料流压力迅速上升达到最大值.充模的时间与模塑压力有关,充模时间长,先进入模内的塑料受到较多的冷却,粘度增大,后面的塑料就需要在较高的压力下才能进入模腔,反之,所需的压力则较小.在前一情况下,由于塑料受到较高的剪切应力,分子定向程度比较大.这种现象如果保留到料温降低至软化点以后,则制品中冻结的定向分子将使制品具有各向异性.这种制品在温度变化较大的使用过程中会出现裂纹,裂纹的方向与分子定向方向是一致的.而且,制品的热稳定性也较差,这是因为塑料的软化点随着分子定向程度增高而降低.高速充模时,塑料熔体通过喷嘴,主流道,分流道和浇口时产生较多的摩擦而使料温升高,这样当压力达到最大值时,塑料熔体的温度就能够保持较高的值,分子定向程度可减少,制品熔接强度也提高.充模过快时,在嵌件后部的熔接往往不好,致使制品强度变劣.保压这是指从熔体充满模腔时起,至柱塞或螺杆撤回时为止的一段时间.保压阶段包括的重要工艺参数有:保压压力,保压时间.保压阶段中,塑料熔体因受到冷却而发生收缩,但因塑料仍然处于柱塞或螺杆的稳压下,料筒内的熔料会被继续注入模腔内补足因收缩而留出的空隙,如果柱塞或螺杆停在原位不动,压力曲线就会略有衰减;如果柱塞或螺杆保持压力不变,也就是随着熔料入模的同时向前做少许移动,则在此段中模内压力维持不变.此时压力曲线与时间轴平行.压实阶段对于提高制品的密度,降低收缩和克服制品表面缺陷都有影响.此外,由于塑料还在流动,而且温度又在不断下降,定向分子容易被冻结,所以这一阶段是大分子定向形成的主要阶段.这一阶段拖延时间愈长,分子定向程度也将愈大.冷却这一阶段是指从浇口的塑料完全冻结时起,到制品从模腔中顶出时为止.冷却阶段包括的重要工艺参数是冷却时间冷却时模腔内压力迅速下降,模腔内塑料在这一阶段内主要是继续冷却,以便制品在脱模时具有足够的刚度而不致发生扭曲变形.在这一阶段内,虽无塑料从浇口流出或流入,但模内还可能有少量的塑料流动,因此到制品脱模时,模内压力不一定等于外界压力,模内压力与外界压力的差值成为残余压力.残余压力的大小与压实阶段的时间长短有密切关系.残余压力为正值时,脱模比较困难,制品容易被刮伤或破裂;残余压力为负值时,制品表面容易有陷痕或内部有真空泡.所以,只有大残余压力接近零时,脱模才比较顺利,并能够获得满意的制品.1.4注塑成型工艺条件注塑成型工艺条件主要包括温度,压力和时间等温度注塑成型过程中的温度主要有熔料温度和模具温度.熔料温度影响塑化和注塑充模,模具温度影响充模和冷却定型.熔料温度指塑化树脂的温度和从喷嘴射出的熔体温度,前者称为塑化温度,后都称为熔体温度.由此看来,熔料温度取决于料筒和喷嘴两部分的温度.熔料温度的高低决定熔体流动性能的好坏.熔料温度高,熔体的粘度小,流动性能好,需要的注塑压力小,成型后的制件表面光洁度好,出现熔接痕,缺料的可能性就小.反之熔料温度低,就会降低熔体的流动性能,会引起表面光洁度低,缺料,熔接痕明显缺陷.但是熔料温度过高会引起材料热降解,导致材料物理和化学性能降低.模具温度是指和制品接触的模腔表面温度.模具温度直接影响熔体的充模流动行为,制件的冷却速度和制件最终质量.提高模具温度可以改善熔体在模腔内的流动性,增强制件的密谋和结晶度以及减小充模压力和制件中的压力.但是,提高模具温度会增加制件的冷却时间,增大制件收缩率和脱模后的翘曲,制件成型周期也会因为冷却时间的增加而变长,降低了生产效率.降低模具温度,虽然能够缩短冷却时间,提高生产率,但是,会降低熔体在模腔内的流动能力,并导致制件产生较大的内应力或者形成明显的熔接痕等制件缺陷.压力注塑过程中的压力主要有注塑压力,保压压力和背压注塑压力是指螺杆或者柱塞沿轴向前移时,其头部向塑料熔体施加的压力.它主要用于克服熔体在成型过程中的流动阻力,还对熔体起一定程度的压实作用.注塑压力对熔体的流动,充模及制件质量都有很大影响.注塑压力的大小取决于制件成型树脂原料的品种,制件的复杂度,壁厚,喷嘴的结构形式,模具浇口的类型和尺寸以及注塑机类型等因素.保压压力是指对模腔内树脂熔体进行压实以及维护向模腔内进行补料流动所需要的压力.保压压力是重要的注塑工艺参数之一,保压压力和保压时间的选择直接影响注塑制品的质量,保压压力与注塑压力一样由液压系统决定.在保压初期,制品重量随保压时间而增加,达到一定时间不再增加.延长保压时间有助于减少制品的收缩率,但过长的保压时间会使制品两个方向上的收缩率程度出现差异.令制品各个方向上的内应力差异增大,造成制品翘曲,粘模.在保压压力及熔体温度一定时,保压时间的选择应取决于浇口凝固时间.背压是指螺杆顶部熔料在螺杆转动后退时对其施加的反向压力.增大背压可以排出原料中的空气,提高熔体密实程度,还会增大熔体内的压力,螺杆后退速度减小,塑化过程的剪切作用加强,摩擦热增多,熔体温度上升,塑化效果提高.但是背压增大后,如果不相应提高螺杆转速,那么,熔体在螺杆计量段螺槽中将会产生较大的逆流和漏流,从而使塑化能力下降.背压的大小与制件成型树脂原料品种,喷嘴种类以及加料方式有关.时间注塑成型周期主要由注塑时间Ti,保压时间Tp,冷却时间Tc,开模时间To组成.th为TP与TC之和.注塑时间是指注塑活塞在注塑油缸内开始向前运动直至模腔被全部充满为止所经历的时间.保压时间为从模腔充满后开始,到保压结束为止所经历的时间.注塑时间与保压时间由制件成型树脂原料的流动性能,制件几何形状,制件尺寸大小,模具浇注系统的形式,成型所用的注塑方式和其他工艺条件等到因素决定.冷却时间指保压结束到开启模具所经历的时间.冷却时间的长短受熔体温度,模具温度,脱模温度和冷却剂温度等因素的影响.在保证取得较好制件质量的前提下,应当尽量缩短冷却时间的大小,否则,会延长制件成型周期,降低生产效率,还可能造成具有复杂几何形状的制件脱模困难.开模时间为模具开启取出制件到下个成型周期开始的时间.注塑机自动化程度高,模具复杂度低,则开模时间短;否则,开模时间较长.1.5常见制品缺陷及产生原因1.5.1短射短射是指由于模具模腔填充不完全造成制品不完整的质量缺陷,即熔体在完成填充之前就已凝结。
模流分析(moldflow)从入门精通教程
模流分析(moldflow)从入门精通教程
什么是moldflow:
在以往的模具设计行业中,都是一些在一线制造模具,修理模具的一些老师傅,他们都是凭借自己多年的经验,设计出来的模具并不能达到理想的要求,塑件的表面粗糙,凹陷等现象时有发生,导致企业生产效率较低,整个模具市场制造成本较高。
现在我们运用Moldflow软件对塑件进行分析,从材料、最佳浇注位置、-模几腔、流道、冷却系统的对比分析,结合零件本身的性质,从而选择出最佳方案,为接下来的模具.设计提供理论基础。
本次案例设计运用Moldflow软件对调色盘注塑的填充、冷却等行为进行了动态模拟,为该制品的模具设计和注塑工艺参数的确定提供理论依据,从而改善制品的成型质量。
运用Moldflow软件对各主要参数进行对比,选择最佳方案,从而达到边设计边改进的效果。
总结:此零件的材料为ABS,由充填时间、冻结层因子、气穴分析等分析,得知调色盘适合使用点浇口,为不影响塑件的表面质量,方便塑件顶出,所以选择点浇口且在零件内表面。
面上的全局边长为2mm时,最佳浇口位置为点1323.综合零件产量,以及零件对表面的光滑度要求所以选择一模四腔。
选择管道直径为10mm, 水管与零件距离为50mm,管道数为8,管道中心之间距为30,零件之外距离为100mm。
Moldflow分析报告结果解释大全
一流动分析部分1 Fill time result填充时间填充时间显示了模腔填充时每隔一定间隔的料流前锋位置。
每个等高线描绘了模型各部分同一时刻的填充。
在填充开始时,显示为暗蓝色,最后填充的地方为红色。
如果制品短射,未填充部分没有颜色。
使用:制品的良好填充,其流型是平衡的。
一个平衡的填充结果:所有流程在同一时间结束,料流前锋在同一时间到达模型末端。
这个意味着每个流程应该以暗蓝色等高线结束。
等高线是均匀间隔,等高线的间隔指示了聚合物的流动速度。
宽的等高线指示快速的流动,而窄的等高线指示了缓慢的填充。
查看项目:确认填充行为的显示状况。
短射—在填充时间结果上,短射将显示为半透明的,查看流动路径的末端是否有半透明区域。
关于3D模型, 可以使用未填充的模穴(短射)结果来检查是否在制品的内部存在未充填的部分。
滞流—如果填充时间结果显示一些区域上的云图有很近的间隔,将产生滞流。
如果一个薄区域在制品完全填充之前冻结滞流会导致短射。
过保压—如果填充时间结果显示某个流程的流程之前完成,将显示过保压。
过保压会导致高的制品重量、翘曲和不均匀的密度分布。
????熔接线和气穴—在填充时间结果上重叠熔接线结果可以确定其存在,熔接线会导致结构和视觉上的缺陷。
气穴—在填充时间结果上重叠气穴结果可以确认其存在,气穴会导致结构和视觉上的缺陷。
跑道效应—跑道效应会导致气穴和熔接线,查看气穴和熔接线的位置及数量。
2 Pressure at velocity/pressure switchover resultV/P切换时刻的压力该结果从流动分析产生,显示了通过模型内的流程在从速度到压力控制切换点的压力分布。
使用:在填充开始前,模腔内各处的压力为零(或者为大气压,绝对压力)。
熔料前沿到达的位置压力才会增加,当熔料前沿向前移动填充后面的区域时压力继续增加,此取决于该位置与熔料前沿的长度。
各个位置的压力不同促使聚合物熔料的填充流动,压力梯度是压力差除以两个位置间的距离。
moldflow分析报告解读
250.000000 deg.C 300.000000 deg.C 50.000000 deg.C 100.000000 deg.C 50000.000000 1/s 0.4500000 Mpa
產品模型簡介
產品長寬高約為303*189*58mm,大部分肉厚較爲均勻,基本肉厚為2.6mm。但局部區域 較厚,達6.0mm以上(如左圖),可能會發生嚴重縮水問題;局部大面積區域較薄,僅 0.9mm左右(如右圖),可能會發生嚴重滯流問題。
充填時間(點擊Fill time圖面即可播放動畫)
Original1
充填時間約為2.2秒,充填流動不太平衡。箭頭指示處為最後充填區域。圈示處的薄肋發 生嚴重滯流現象,導致產品短射。歸因於此肋太薄(僅0.9mm左右),而澆口又距離此肋 太近,塑膠流動到該處時受到極大阻力而停滯不前並迅速凝固了。實際試模中用GE PPE +PS+40%GF的塑膠可能勉強填滿,但成型窗口很窄,仍可能短射,對此應高度重視。
公母模側表面溫差
Original1
從圖中可知,公母模側 表面溫差較大,會使產 品公母模側收縮不均一 而導致翹曲變形問題。
產品凝固需要的時間
Original1
上面兩圖表示的是從循環周期開始到產品完全凝固所需要的時 間。開模時圈示的幾個區域仍未凝固(如右圖,大部分區域在 16s内就可以凝固),而最長凝固時間竟達80s左右(也正是產 品上最厚的區域),故必將有嚴重縮水發生。
由圖中可知,水溫升高較小 (進出口水溫差在兩度以 内),冷卻水路的長度設計 是可以達成冷卻要求的。成 型時不要爲了省事而將水路 串聯起來,否則會導致水路 過長水溫持續升高而降低冷 卻效果。
公母模側表面溫度分佈
Original1
MoldFlow分析结果各项概念解释
MoldFlow分析结果解释分析结果的一个重要部分是理解结果的定义,并知道怎样使用结果。
下面将列出常用结果的定义及怎样使用。
屏幕输出文件(screen output)和结果概要(results summary)屏幕输出文件和结果概要都包含了一些分析的关键结果的总结性信息。
屏幕输出文件还包含如图169所示的附加输出,表明分析正在进行,同时还提供重要信息。
从它可以看出分析使用的压力和锁模力的大小、流率的大小和使用的控制类型。
Filling phase: Status: V = Velocity controlP = Pressure controlV/P= Velocity/pressure switch-over|-------------------------------------------------------------| | Time | Volume| Pressure | Clamp force|Flow rate|Status || (s) | (%) | (MPa) | (tonne) |(cm^3/s) | ||-------------------------------------------------------------|| 0.25 | 4.20 | 7.71 | 4.34 | 441.92 | V || 0.50 | 8.87 | 12.20 | 16.95 | 485.10 | V || 0.74 | 13.48 | 15.99 | 38.17 | 480.56 | V || 0.98 | 17.98 | 20.85 | 79.31 | 480.06 | V || 1.23 | 22.65 | 25.65 | 134.77 | 484.03 | V || 1.47 | 27.23 | 30.39 | 202.10 | 485.47 | V || 1.72 | 31.81 | 35.11 | 282.36 | 488.61 | V || 1.97 | 36.58 | 40.06 | 381.25 | 491.44 | V || 2.21 | 41.22 | 44.52 | 483.00 | 494.45 | V || 2.45 | 45.83 | 49.45 | 611.51 | 494.44 | V || 2.70 | 50.57 | 54.59 | 765.69 | 492.31 | V || 2.95 | 55.15 | 59.99 | 937.90 | 496.41 | V || 3.19 | 59.67 | 64.97 | 1105.54 | 499.49 | V || 3.43 | 64.36 | 70.14 | 1291.49 | 500.91 | V || 3.68 | 69.11 | 75.35 | 1494.82 | 502.35 | V || 3.92 | 73.66 | 80.19 | 1699.99 | 503.89 | V || 4.17 | 78.43 | 85.30 | 1934.89 | 505.82 | V || 4.41 | 83.13 | 90.23 | 2184.04 | 506.97 | V || 4.66 | 87.74 | 95.01 | 2439.39 | 508.52 | V || 4.91 | 92.48 | 100.01 | 2726.84 | 509.75 | V || 5.08 | 95.68 | | | | V/P || 5.08 | 95.68 | 106.06 | 3112.09 | 503.26 | P || 5.15 | 96.54 | 84.85 | 2592.91 | 247.17 | P || 5.40 | 98.17 | 84.85 | 3007.69 | 156.82 | P || 5.71 | 98.99 | 84.85 | 3399.84 | 82.69 | P || 5.90 | 99.38 | 84.85 | 3477.54 | 64.25 | P || 6.14 | 99.73 | 84.85 | 3537.26 | 49.34 | P || 6.37 | 99.97 | 84.85 | 3585.52 | 38.73 | P || 6.38 | 99.98 | 84.85 | 3592.73 | 37.66 | P || 6.39 |100.00 | 84.85 | 3599.93 | 37.66 |Filled |充模分析的屏幕输出文件屏幕输出文件和结果概要都有与图170相似的部分。
Moldflow 分析结果解释
解释结果充模时间(Fill Time )充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是渲染图,如图1。
但使用等值线图可更容易解释结果,等值线的间距应该相同,这表明熔体流动前沿的速度相等,如 图1 充填渲染图 图2。
制件的填充应该平衡。
当制件平衡充模时,制件的各个远端在同一时刻充满。
对大多数分析,充模时间是一个非常重要的关键结果。
图2 充填等值线图 压力(Pressures )有几种不同的压力图,每种以不同的方式显示制件的压力分布。
所有压力图显示的都是制件某个位置(一个节点)、或某一时刻的压力。
使用的最大压力应低于注射机的压力极限,很多注射机的压力极限为140 MPa (~20,000 psi)。
模具的设计压力极限最好为100 MPa (~14,500 psi)左右。
如果所用注塑机的压力极限高于140MPa ,则设计极限可相应增大。
模具的设计压力极限应大约为注射机极限的70%。
假如分析没有包括浇注系统,设计压力极限应为注射机极限的50%。
象充模时间一样,压力分布也应该平衡。
压力图和充模时间图看起来应该十分相似,如果相似,则充模时制件内就只有很少或没有潜流。
具体的压力结果定义如下:• 压力(Pressure )压力是一个中间结果,每一个节点在分析时间内的每一时刻的压力值都记录了下来。
默认的动画是时间动画,因此,你可以通过动画观察压力随时间变化的情况。
压力分布应该平衡,或者在保压阶段应保证均匀的压力分布和几乎无过保压。
图3 型腔压力分布•压力(充模结束时)(Pressure (end of filling))Array充模结束时的压力属于单组数据,该压力图是观察制件的压力分布是否平衡的有效工具。
因为充模结束时的压力对平衡非常敏感,因此,如果此时的压力图分布平衡,则制件就很好地实现了平衡充模。
图4充填结束时型腔压力分布•体积/压力控制转换时的压力(Pressure at V/P switchover)体积/压力控制转换时的压力属于单组数据,该Array压力图同样是观察制件的压力分布是否平衡的有效工具。
Moldflow模流分析经典报告(简体版)
设置注射压力、注射速度、注射温度等边界条件。
塑化边界条件
设置塑化温度、塑化速度等边界条件。
模拟求解与结果分析
模拟求解
根据设置的边界条件进行模拟求解。
结果分析
对模拟结果进行分析,如压力分布、温度分布、流动行为等。
结果优化
根据分析结果对模型进行优化,提高成型质量和效率。
Moldflow模流分析
Moldflow模流分析是一种计算机模 拟技术,用于预测塑料模具填充、流 动、冷却和翘曲等行为,从而优化模 具设计和产品成型过程。
通过模拟分析,Moldflow可以帮助工 程师预测和解决模具制造和塑料产品 成型过程中可能出现的问题,减少试 模次数和缩短产品上市时间。
Moldflow模流分析的重要性
2. 翘曲变形分析不准确
翘曲变形是塑料成型过程中的常见问题,分析不准确可能导致模具优化措施失效。
3. 解决方案
加强Moldflow模流分析理论学习,深入理解流动前沿、翘曲变形等关键指标的含义和影 响。结合实际案例进行分析和总结,提高模拟结果解读能力。积极参与行业交流和技术培 训,不断更新知识和技能。
Moldflow模流分析的应用领域
汽车行业
01
Moldflow在汽车行业中广泛应用于汽车零部件的模具设计和产
品成型过程优化,如保险杠、仪表盘和座椅等。
电子产品
02
Moldflow模流分析可用于手机、电视、电脑等电子产品的模具
设计和产品成型过程优化。
包装行业
03
Moldflow可以帮助包装企业优化包装盒、瓶盖等产品的模具设
案例三:热流道系统模拟
总结词
热流道系统是塑料加工中常用的技术,通过加热模具流道来控制塑料熔体的温度和流动。 Moldflow模流分析可以用于热流道系统的模拟和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Moldflow分析结果解释一流动分析部分1 Fill time result填充时间填充时间显示了模腔填充时每隔一定间隔的料流前锋位置。
每个等高线描绘了模型各部分同一时刻的填充。
在填充开始时,显示为暗蓝色,最后填充的地方为红色。
如果制品短射,未填充部分没有颜色。
使用:制品的良好填充,其流型是平衡的。
一个平衡的填充结果:所有流程在同一时间结束,料流前锋在同一时间到达模型末端。
这个意味着每个流程应该以暗蓝色等高线结束。
等高线是均匀间隔,等高线的间隔指示了聚合物的流动速度。
宽的等高线指示快速的流动,而窄的等高线指示了缓慢的填充。
查看项目:确认填充行为的显示状况。
短射—在填充时间结果上,短射将显示为半透明的,查看流动路径的末端是否有半透明区域。
关于3D模型, 可以使用未填充的模穴(短射)结果来检查是否在制品的内部存在未充填的部分。
滞流—如果填充时间结果显示一些区域上的云图有很近的间隔,将产生滞流。
如果一个薄区域在制品完全填充之前冻结滞流会导致短射。
过保压—如果填充时间结果显示某个流程的流程之前完成,将显示过保压。
过保压会导致高的制品重量、翘曲和不均匀的密度分布。
熔接线和气穴—在填充时间结果上重叠熔接线结果可以确定其存在,熔接线会导致结构和视觉上的缺陷。
气穴—在填充时间结果上重叠气穴结果可以确认其存在,气穴会导致结构和视觉上的缺陷。
跑道效应—跑道效应会导致气穴和熔接线,查看气穴和熔接线的位置及数量。
2 Pressure at velocity/pressure switchover resultV/P切换时刻的压力该结果从流动分析产生,显示了通过模型内的流程在从速度到压力控制切换点的压力分布。
使用:在填充开始前,模腔内各处的压力为零(或者为大气压,绝对压力)。
熔料前沿到达的位置压力才会增加,当熔料前沿向前移动填充后面的区域时压力继续增加,此取决于该位置与熔料前沿的长度。
各个位置的压力不同促使聚合物熔料的填充流动,压力梯度是压力差除以两个位置间的距离。
聚合物总是朝着负压力梯度方向移动,从高压力到低压力(这个类似于水的流动从高处流向低处)。
因而,最大压力总是发生在聚合物注射位置处,最小压力发生在填充过程中的熔料前沿。
压力大小(或压力梯度)取决于聚合物在模腔中的阻抗;高粘性的聚合物要求更多的压力来填充模腔。
模型中的受限制区域,比如薄部分、小的流道、长的流动长度也要求大的压力梯度高压力来填充。
查看项目:在填充阶段,压力分布的大变化通过间隔很近的云图表示,应该要避免。
大多数的注塑过程在100-150MPa的注射压力或者在更低的。
在保压期间,压力的改变影响体积收缩,因此在保压阶段模腔的压力变化也应该最小化。
滞流。
过保压。
收缩。
3 Temperature at flow front result流动前沿处温度流动前沿处温度是熔料流动经过节点时的结果,产生于Midplane、Fusion、3D 流动分析,显示了在流动前沿到达某个节点时的聚合物温度。
这个可以在分析结束时,或者在分析中指定时刻。
使用:如果流动前沿温度在制品的薄区域很低,可能发生滞流或者短射。
某个区域的流动前沿温度很高,可能发生材料降解和表面缺陷。
确保流动前沿温度总是在聚合物使用的推荐范围之内。
确保冷却和保压的压力尽可能地均匀分布来最小化翘曲。
符合要求的注射曲线来获得满意的温度分布。
查看项目:热点,通常显示了在最后填充区域和浇口附近的过剩剪切热。
查看模型冷却率,是否在模型里有热点或者冷点。
冷点,指示了滞流。
材料的剪切热或者冷却是否过度。
4 Bulk temperature result体积温度聚合物熔体温度的改变不仅在时间和位置,还由于整个注射成型期间的不同厚度。
通过某个单一的显示很难解释这些改变。
体积温度用来替代使用,指示通过厚度的加权平均温度。
在聚合物熔体流动中体积温度比一个简单的平均温度有更多的物理意义,体积温度描绘了在传送中通过确定位置的能量。
注意:体积温度是一个中间结果,其动画默认随着时间变化,默认比例是整个结果范围从最小到最大。
使用:当聚合物在流动时, 体积温度是一个速度加权平均温度;当聚合物流动停止时,是一个简单的平均温度。
对于每个单元,结果图的体积温度对时间显示了从体积温度到平均温度的切换是一个平滑的曲线。
在填充期间均匀的体积温度分布是想要的模型设计。
体积温度显示是检查流动分布的另外一种方式。
连续流动的区域(热对流)的体积温度会比较高,当在该区域的流动停止时,体积温度下降得很快。
在填充期间,热点会显示在体积温度的云图上或者是在阴影图上,热点是由于在填充阶段过多的粘性发热。
如果最大体积温度接近于材料降解温度,考虑在热点部分更改产品的几何形状或者改变工艺条件。
微小的温度也能导致不均匀的收缩和翘曲。
查看项目:热点。
5 Bulk temperature at end of fill result填充结束时的体积温度体积温度描绘了在传送中通过确定位置的能量,聚合物熔体温度的改变不仅在时间和位置,而且还由于整个注射成型期间的不同厚度。
通过某个单一的显示很难解释这些改变。
体积温度用来替代使用,指示通过厚度的加权平均温度。
在聚合物熔体流动中体积温度比一个简单的平均温度有更多的物理意义。
使用:当聚合物在流动时, 体积温度是一个速度加权平均温度;当聚合物流动停止时,是一个简单的平均温度。
对于每个单元,结果图的体积温度vs时间显示了从体积温度到平均温度的切换是一个平滑的曲线。
在填充期间均匀的体积温度分布是想要的模型设计。
体积温度显示是检查流动分布的另外一种方式。
连续流动的区域(热对流)的体积温度会比较高,当在该区域的流动停止时,体积温度下降得很快。
在填充期间,热点会显示在体积温度的云图上或者是在阴影图上,热点是由于在填充阶段过多的粘性发热。
如果最大体积温度接近于材料降解温度,考虑更改在热点部分产品的几何形状或者改变工艺条件。
微小的温度也能导致不均匀的收缩和翘曲。
查看项目:热点。
6 Shear rate, bulk result剪切率,体积该结果显示整个截面的剪切率大小。
体积剪切率来自于壁剪切应力和流动性,表现任何截面的剪切率特点。
首先粘度从流动性和制品厚度计算出,然后体积剪切率从壁剪切应力和粘度计算出。
注意:体积剪切率是中间结果,其动画默认随着时间变化,默认比例是整个结果范围从最小到最大。
使用:剪切率是衡量胶料层彼此间的滑行有多快。
如果这个发生得太快,聚合物链中断材料降解。
体积剪切率不应该超过材料数据库里的最大推荐值,超过这个值将可能导致聚合物降解。
当温度一定,剪切率随着厚度改变。
体积剪切率给出了在填充阶段大概的剪切率分布。
与体积温度相比,体积剪切率不是穿过厚度的平均或者加权平均的剪切率。
平均或者加权平均不适合因为剪切率在穿过制品的厚度上有很大的改变。
查看项目:在流动末端或者薄区域局部变厚可以用来减小剪切应力。
减小注射速度可以导致温度降低,提高粘性,导致剪切应力增加。
替换一个粘性比较小的材料或者提高熔体温度可以减小剪切应力。
7 Pressure at injection location result注射位置处压力该结果是一个XY结果图,显示了在填充和保压阶段不同时刻的压力。
使用:注射位置处压力对于检查是否有压力阻止很有用的,其通常是不平衡的标示。
该结果对平衡很敏感。
可以在制品内部或者制品之间。
如果在制品内部,通常可以通过改变浇口位置来确定。
有时仅仅是细微的改变都是必需的。
查看项目:此结果可以用来确认分析中在转变点的模腔压力分布。
8 Volumetric shrinkage at ejection result顶出时的体积收缩该结果显示每个单元在顶出时对于最初体积的体积收缩百分比。
顶出时的体积收缩是在制品冷却到周围环境温度时(25°C /77°)。
注意:对于体积收缩结果明确的解释,取消节点平均数显示选项是一个好方法。
这个可以通过右击结果名选择属性,在动画页面选择框架动画,然后取消设置页的节点平均数选项。
使用:顶出时的体积收缩结果也可以用来检测模型的缩痕。
体积收缩必须均匀的分布于整个制品来减小翘曲,并且尽量小于材料的推荐最大值。
高的收缩值指示了缩痕或者制品内部的空洞。
体积收缩可以通过保压曲线控制。
查看项目:缩痕。
其值是否在材料的预期范围之内?一个保守的方法是线性收缩=1/3体积收缩。
这只是对于没有充填物的矮胖制品是确切的(其在任何局部区域没有可辨别的“厚度”趋势)。
这种情况下就是体积收缩在所有方向上是均匀的分布。
可以把它理解为最大值。
如果几何是壳状的,大部分的注射模制品都是这样的。
这种情况下在厚度方向上的收缩要高于制品水平面的收缩。
这个意味着厚度方向上的收缩大于体积收缩的1/3,而水平面上的收缩应该小于体积收缩的1/3。
这是由于两方面的原因:许多模型特征会约束水平面上的收缩;如果材料是纤维充填物的,制品水平面上的纤维取向会限制这个方向上的收缩。
因此,为了达到体积收缩(这个是由制品保压和材料的PVT属性关系决定的),在厚度方向上必须有更多的收缩,这个通常不受约束。
是否有负值显示膨胀而不是收缩。
对于筋条要避免这些因为其会导致在有问题的模型和接下来的顶出时发生粘滞。
是否有高值。
在制品冷却时,这个会导致内部的空洞。
9 Time to freeze result (Midplane/Fusion)冻结时间该结果显示了从填充结束(100%)到顶出温度时所花的时间。
此结果考虑填充和保压阶段的状态,在哪些地方热的材料注入了模腔。
这个热的材料影响冷却时间。
使用:理想的,制品应该均匀冻结并且越快越好。
察看大多数模型冻结时间和最后冻结的单元间的不同。
如果该差值很大,考虑增加最后冻结区域的冷却或者重新设计产品。
冻结时间结果也可以用来查看模型上浇口的冻结时间,如果浇口冻结在制品完全填充之前,制品会浇不足导致短射。
如果浇口冻结在制品冻结之前,会出现低保压。
注意:大多数制品可以顶出在流道冻结50%,制品冻结80%。
查看项目:均匀的聚合物冻结分布。
查看是否浇口冻结在制品之前。
10 Frozen layer fraction result冻结层因子该结果显示冻结层因子的厚度,越高的值描绘越厚的冻结层,同时越薄的聚合物熔体层。
注意:冻结层因子是中间结果,其动画默认随着时间变化,默认比例是整个结果范围从最小到最大。
使用:这个值描绘了冻结层的厚度因子,其范围从0到1。
越高的值描绘越厚的冻结层(或者越薄的流动层)和越高的流动阻抗。
在填充期间,冻结层应该保持一个常量厚度使这些区域连续的流动。
因为模具壁的热损失通过来自前面的热熔体得到平衡。
一旦流动停止,通过厚度的热损失占优势,从而快速增加冻结层厚度。
冻结层厚度对流动阻抗影响很大。