初三中考数学 整式与因式分解
考点02 整式与因式分解【无答案】

考点02 整式与因式分解中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。
因式分解作为整式乘法的逆运算,在数学中考中占比不大,但是依然属于必考题,常以简单选择、填空题的形式出现,而且一般只考察因式分解的前两步,拓展延伸部分基本不考,所以学生在复习这部分内容时,除了要扎实掌握好基础,更需要甄别好主次,合理安排复习方向。
考向一、整式的加减;考向二、幂的运算考向三、整式的乘除考向四、因式分解考向一:整式的加减1.整式的概念及注意事项:【易错警示】1.(2022秋•泉州期中)单项式﹣2πr3的系数和次数分别是()A.﹣2,4B.﹣2,3C.﹣2π,3D.2π,32.(2022秋•包河区期中)已知单项式2x3y m与单项式﹣9x n y2是同类项,则m﹣n的值为()A.﹣1B.7C.1D.113.(2022秋•陇县期中)下列说法中,错误的是()A.数字1也是单项式B.单项式﹣5x3y的系数是﹣5C.多项式﹣x3+2x﹣1的常数项是1D.3x2y2xy+2y3是四次三项式4.(2022秋•高邮市期中)已知代数式3a﹣b2的值为3,则8﹣6a+2b2的值为.5.(2022秋•鄂州期中)若多项式a(a﹣1)x2+(a﹣1)x+2是关于x的一次多项式,则a的值为()A.0B.1C.0或1D.不能确定2.整式的加减【易错警示】1.(2022秋•黄石期中)下列计算正确的是()A.6a﹣5a=1B.a+2a2=3aC.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b2.(2022秋•老河口市期中)一个长方形的周长为6a+8b,其中一边长为2a﹣b,则与其相邻的一边长为()A.a+5b B.a+b C.4a+9b D.a+3b3.(2022秋•江都区期中)如图,长方形ABCD是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙).其中②③两块小长方形的长均为a,宽均为b,若BC=2,则①④两块长方形的周长之和为()幂的运算A .8B .2a +2bC .2a +2b +4D .164.(2022秋•沈北新区期中)化简:6x 2﹣[4x 2﹣(x 2+5)]= .5.(2022秋•北碚区校级期中)若关于x 的多项式3ax +7x 3﹣bx 2+x 不含二次项和一次项,则a +b 等于( )A .﹣B .C .3D .﹣36.(2022秋•扬州期中)化简:(1)x 2﹣3x ﹣4x 2+5x ﹣6;(2)3(2x 2﹣xy )﹣(x 2+xy ﹣6).7.(2022秋•黔东南州期中)阅读材料:“如果代数式5a +3b 的值为﹣4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =﹣4两边同乘以2.得10a +6b =﹣8.仿照上面的解题方法,完成下面的问题:(1)已知a 2+a =0,求a 2+a +2022的值;(2)已知a ﹣b =﹣3.求3(a ﹣b )﹣a +b +5的值;(3)已知a 2+2ab =﹣2,ab ﹣b 2=﹣4,求2a 2+5ab ﹣b 2的值.考向二:幂的运算1.(2022秋•朝阳区校级期中)下列运算正确的是( )A .a 3+a 6=a 9B .a 6•a 2=a 12()()是正整数)且)>且都是正整数为正整数)都是正整数)都是正整数)p a a a a a n m n m a a a a n b a ab n m a a n m a a a p p n m n m n n n mn n m n m n m ,0(1)0(1,,,0((,(,(0≠=≠=≠=÷===•--+C.(a3)2=a5D.a4•a2+(a3)2=2a62.(2022秋•浦东新区校级期中)计算(﹣)2021•(﹣)2022的结果是()A.B.C.D.3.(2022秋•闵行区校级期中)已知a m=2,a2n=3,求a m+2n=.4.(2022秋•永春县期中)若a m=2,a n=3,a p=5,则a m+n﹣p=.5.(2022秋•朝阳区校级期中)(1)计算:(a4)3+a8•a4;(2)计算:[(x+y)m+n]2;(3)已知2x+3y﹣2=0,求9x•27y的值.6.(2022秋•浦东新区期中)阅读下列材料:一般地,n个相同的因数a相乘a•a…,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.考向三:整式的乘除➢两个乘法公式可以从左到右应用,也可以从右到左应用;1.(2022春•南海区校级月考)下列各式中,计算正确的是()A.2a2•3a3=5a6B.﹣3a2(﹣2a)=﹣6a3C.2a3•5a2=10a5D.(﹣a)2•(﹣a)3=a52.(2022秋•阳信县期中)下列计算中,能用平方差公式计算的是()A.(x﹣2)(2﹣x)B.(﹣1﹣3x)(1+3x)C.(a2+b)(a2﹣b)D.(3x+2)(2x﹣3)3.(2022秋•铁西区校级月考)若(x+3)(2x﹣m)=2x2+nx﹣15,则()A.m=﹣5,n=1B.m=﹣5,n=﹣1C.m=5,n=1D.m=5,n=﹣14.(2022秋•思明区校级期中)设M=(x﹣1)(x﹣2),N=(2x﹣3)(x﹣2),则M与N的大小关系为()A.MN B.M≥N C.M=N D.M≤N5.(2022•雁塔区校级开学)如图,一块矩形土地的面积是x2+5xy+6y2(x>0,y>0),长为x+3y,则宽是()A.x﹣y B.x+y C.x﹣2y D.x+2y6.(2022秋•东城区校级期中)若(s﹣t)2=4,(s+t)2=16,则st=.7.(2022秋•阳信县期中)(1)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣1.(2)利用乘法公式简算:20212﹣2020×2022.8.(2022秋•西湖区校级期中)如图,有三张正方形纸片A,B,C,它们的边长分别为a,b,c,将三张纸片按图1,图2两种不同方式放置于同一长方形中,记图1中阴影部分周长为l1,图2中阴影部分周长为l2.(1)若a=7,b=5,c=3,则长方形的周长为;(2)若b=7,c=4,①求l1﹣l2的值;②记图1中阴影部分面积为S1,图2中阴影部分面积为S2,求S2﹣S1的值.考向四:因式分解基本概念公因式多项式各项都含有的相同因式因式分解把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解一般步骤“一提”【即:提取公因式】“二套”【即:套用乘法公式】222222)())((babababababa+±=±-=-+完全平方公式:平方差公式:“三分组”【即:分组分解因式】基本不考,如果考,多项式项数一般在四个及以上“二次三项想十字”【即:十字相乘法】()()()qxpxqpxqpx++=•+++2➢由定义可知,因式分解与整式乘法互为逆运算;➢公因式是各项系数的最大公约数与相同字母的最低次幂的积;单独的公因数也是公因式;➢将多项式除以它的公因式从而得到多项式的另一个因式;➢乘法公式里的字母,可以是单独的数字,也可以是一个单项式或者多项式;➢分解因式必须分解彻底,即分解到每一个多项式都不能再分解为止;1.(2022春•三水区校级期中)若二次三项式x2+mx﹣8可分解为(x﹣4)(x+2),则m的值为()A.1B.﹣1C.﹣2D.22.(2022秋•张店区期中)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,例如,由图1可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图2所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为()A.(a+b)(2a+b)B.(a+b)(3a+b)C.(a+b)(a+2b)D.(a+b)(a+3b)3.(2022秋•南安市期中)已知a=2020x+2020,b=2020x+2021,c=2020x+2022,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.34.(2022春•顺德区校级月考)三角形三边长分别是a,b,c,且满足a2﹣b2+ac﹣bc=0,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.形状不确定5.(2022秋•长宁区校级期中)因式分解:=.6.(2022秋•肇源县期中)因式分解:(1)15a3+10a2;(2)﹣3ax2﹣6axy+3ay2.7.(2022秋•巴南区校级期中)对于一个三位数,若其各个数位上的数字都不为0且互不相等,并满足十位数字最大,个位数字最小,且以各个数位上的数字为三边可以构成三角形,则称这样的三位数为“三角数”.将“三角数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,其中十位数字大于个位数字的两位数叫“全数”,十位数字小于个位数字的两位数叫“善数”,将所有“全数”的和记为Q(m),所有“善数”的和记为S(m),例如:Q(562)=62+52+65=179,S(562)=26+25+56=107;(1)判断:342 (填“是”或“不是”)“三角数”,572 (填“是”或“不是”)“三角数”,若是,请分别求出其“全数”和“善数”之和.(2)若一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若“三角数”n满足Q(n)﹣S(n)和都是完全平方数,请求出所有满足条件的n.1.(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y2.(2022•巴中)下列运算正确的是()A.=﹣2B.()﹣1=﹣C.(a2)3=a6D.a8÷a4=a2(a≠0)3.(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b24.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b25.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x6.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)27.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.128.(2022•广州)分解因式:3a2﹣21ab=.9.(2022•宜宾)分解因式:x3﹣4x=.10.(2022•巴中)因式分解:﹣a3+2a2﹣a=.11.(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.12.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.13.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.15.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.1.(2022•徐州)下列计算正确的是()A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2 2.(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x33.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)4.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣45.(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+16.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.37.(2022•绵阳)因式分解:3x3﹣12xy2=.8.(2022•丹东)因式分解:2a2+4a+2=.9.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.10.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.11.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.12.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣.(2)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),其中x=.13.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.14.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.15.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.1.(2022•肥东县校级模拟)下列各式中计算结果为x2的是()A.x2•x B.x+x C.x8÷x4D.(﹣x)22.(2022•雁塔区模拟)下列计算正确的是()A.(12a4﹣3a2)÷3a2=4a2B.(﹣3a+b)(b﹣a)=﹣2ab﹣3a2+b2C.(a﹣b)2=a2﹣b2D.(b+2a)(2a﹣b)=﹣b2+4a23.(2022•环江县模拟)如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x 的值是()A.3米B.3.2米C.4米D.4.2米4.(2022•路南区三模)在化简3(a2b+ab)﹣2(a2b+ab)◆2ab题中,◆表示+,﹣,×,÷四个运算符号中的某一个.当a=﹣2,b=1时,3(a2b+ab)﹣2(a2b+ab)◆2ab的值为22,则◆所表示的符号为()A.÷B.×C.+D.﹣5.(2022•蓬江区一模)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b26.(2022•峨眉山市模拟)若把多项式x2+mx﹣12分解因式后含有因式x﹣6,则m的值为()A.2B.﹣2C.4D.﹣47.(2022•五华区校级模拟)观察后面一组单项式:﹣4,7a,﹣10a2,13a3,…,根据你发现的规律,则第7个单项式是()A.﹣19a7B.19a7C.﹣22a6D.22a68.(2022•张店区二模)如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.89.(2022•邯郸二模)若20222022﹣20222020=2023×2022n×2021,则n的值是()A.2020B.2021C.2022D.202310.(2022•碑林区模拟)计算:(2x+1)(2x﹣1)(4x2+1)=.11.(2022•玉树市校级一模)分解因式:a2﹣16=.12.(2022•五华区校级模拟)已知x+y=2,xy=﹣3,则x2y+xy2=.13.(2022•丽水二模)如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.14.(2022•潮安区模拟)一个长方形的面积为10,设长方形的边长为a和b,且a2+b2=29,则长方形的周长为.15.(2022•雁塔区校级模拟)化简:(x﹣3)2﹣(x+1)(x﹣4).16.(2022•南关区校级模拟)已知a2+2a﹣2=0,求代数式(a﹣1)(a+1)+2(a﹣3)的值.17.(2022•安徽模拟)某学习小组在研究两数的和与这两数的积相等的等式时,有下面一些有趣的发现:①由等式3+=3×发现:(3﹣1)×(﹣1)=1;②由等式+(﹣2)=×(﹣2)发现:(﹣1)×(﹣2﹣1)=1;③由等式﹣3+=﹣3×发现:(﹣3﹣1)×(﹣1)=1;…按照以上规律,解决下列问题:(1)由等式a+b=ab猜想:,并证明你的猜想;(2)若等式a+b=ab中,a,b都是整数,试求a,b的值.18.(2022•万州区校级一模)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为8,则称数M为“团圆数”,并把数M分解成M=A×B 的过程,称为“欢乐分解”.例如:∵572=22×26,22和26的十位数字相同,个位数字之和为8,∴572是“团圆数”.又如:∵334=18×13,18和13的十位数字相同,但个位数字之和不等于8,∴234不是“团圆数”.(1)判断195,621是否是“团圆数”?并说明理由.(2)把一个“团圆数”M进行“欢乐分解”,即M=A×B,A与B之和记为P(M),A与B差的绝对值记为Q(M),令G(M)=,当G(M)能被8整除时,求出所有满足条件的M的值.。
初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)

初中数学总复习整式
多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
—
~~~——
~~~
一找
=(4x2-3x2)+ (-8x+6x)+ (5-4) 二移
= x2 -2x +1
三并
初中数学总复习整式
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。 2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。
3、合并同类项 系数相加,字母及字母的指数不变 。
项式,最高次项是____x__23_y_2_,常数项是____13_____;
初中数学总复习整式
易错题
例5 下列各个式子中,书写格式正确的是( F)
A.a b D.a3
B. 1 1 ab 2
C.a 3
E. 1ab
F. a2b 3
初中数学总复习整式
小结:
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
初中数学总复习整式
多项式的项数与次数
例4 、请说出下列各多项式是几次几项式,并写出多项式的最高次
项和常数项;
(1)25 x2 y xy3是 __四___次 __三___ 项式,最高次项是_____x_y__3_,常数项是___2__5____;
初中数学 什么是整式的因式分解

初中数学什么是整式的因式分解整式的因式分解是将一个整式表示为若干个因式相乘的形式。
在初中数学学习中,因式分解是一个非常重要的知识点,它能够帮助我们简化复杂的代数式,提高计算的效率。
本文将详细介绍整式的因式分解的概念、方法和步骤,并给出一些例题进行说明。
一、整式的定义首先,我们回顾一下整式的定义。
整式是由若干个单项式相加(减)而成的代数式。
例如,3x^2-2x+1就是一个整式。
其中,3x^2、-2x和1都是单项式,它们相加得到整式3x^2-2x+1。
二、整式的因式分解的概念整式的因式分解是将一个整式表示为若干个因式相乘的形式。
通过因式分解,我们可以找到整式的因子,进而简化整式的表达形式,便于计算和研究。
三、整式的因式分解的方法和步骤整式的因式分解可以采用不同的方法和步骤,具体取决于整式的形式和特点。
下面介绍两种常见的因式分解方法:公因式法和分组分解法。
1. 公因式法公因式法是一种常用的因式分解方法,它适用于整式中存在公因子的情况。
下面是公因式法的步骤:步骤1:观察整式中是否存在公因子。
步骤2:如果整式中存在公因子,将公因子提取出来。
步骤3:将整式除以公因子,得到一个简化的整式。
步骤4:将公因子和简化的整式相乘,得到原始整式的因式分解形式。
例如,对于整式6x^2+9x,我们可以观察到整式中存在公因子3x,因此可以进行因式分解。
6x^2+9x = 3x(2x+3)通过公因式法,我们将整式6x^2+9x分解为3x和2x+3两个因子相乘的形式。
2. 分组分解法分组分解法适用于整式中存在特定的形式或模式的情况。
下面是分组分解法的步骤:步骤1:根据整式的形式和特点,将整式进行分组。
步骤2:在每个分组中,找出一个公因子,将其提取出来。
步骤3:将每个分组的公因子和剩余部分相乘,得到一个简化的整式。
步骤4:将简化的整式进行合并,得到原始整式的因式分解形式。
例如,对于整式x^2+4x+4,我们可以观察到整式中存在平方项x^2和平方项系数为1的情况,因此可以进行因式分解。
初三整式与因式分解.doc

辅导讲义学员编号: 年 级:初三 课 时 数:3 学员姓名: 辅导科目:数学 学科教师:授课类型 分解因式基本公式双十字相乘法,换元法 因式分解综合题教学目标 授课日期及时段教学内容一、同步知识梳理单项式和多项式都统称为整式。
因式分解,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.知识点1:提公因式法.: am+bm=(a+b)m知识点2:平方差公式: a 2±2ab+b 2=(a ±b)2完全平方公式: a 2±2ab+b 2=(a ±b)2知识点3:十字相乘法: (x+a)(x+b)=x²+(a+b)x+ab二、同步题型分析题型1:例1(★★):分解因式bn bm an am +++解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2 (★★):分解因式bx by ay ax -+-5102解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --题型2:例1 (★★):分解因式ay ax y x ++-22解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+ =))((a y x y x +-+例2 (★★):分解因式:2222c b ab a -+- 解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---题型3: 例1 (★★)分解因式:652++x x1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=例2 (★★)分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7三、课堂达标检测检测题1:分解因式: (★★)2a ab ac b -+-()()()(a c)a abc a b a b =-+-=-+分解因式: (★★) 1xy x y --+(x 1)(x 1)(x 1)(y 1)y =---=--检测题2:分解因式(★★):2293x x y y ---(3)(3)(3)(x 3y)(x 3y 1)x y x y x y =-+-+=+--分解因式: (★★) 222222()()()x y z yzx y z x y z x y z ---=-+=++--检测题3:分解因式(★★) :2576(5x 3)(x 2)x x +-=-+分解因式(★★):2372(31)(2)x x x x -+=--一、专题精讲例1:六、双十字相乘法。
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2. 整式的加减的实质:合并同类项。
3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。
31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
初中数学整式的展开与因式分解

初中数学整式的展开与因式分解整式(expanded form)是数学中一个重要的概念,它由多个代数项组成,每个代数项包含有一个系数和一个或多个变量的乘积。
在初中数学中,我们经常需要对整式进行展开与因式分解的运算。
本文将以详细的说明和实例来介绍整式的展开与因式分解。
一、整式的展开整式的展开指的是将整式中的乘法运算进行计算,求出最终结果。
展开整式的方法主要有两种:分配律展开法和综合展开法。
1. 分配律展开法分配律展开法适用于将一个整式通过分配律进行展开。
分配律的表达式为:a * (b + c) = a * b + a * c。
通过这个分配律,可以将整式中的每一个项按照乘法进行展开。
举例来说明,展开整式 (2x + 3) * (4x - 5):首先,根据分配律,将第一项 2x 与括号中的两个项相乘,即:2x * 4x + 2x * (-5),结果为 8x^2 - 10x。
然后,将第二项 3 与括号中的两个项相乘,即:3 * 4x + 3 * (-5),结果为 12x - 15。
最终,将两个结果相加,得到展开后的整式:8x^2 - 10x + 12x - 15。
2. 综合展开法综合展开法适用于展开较为复杂的整式,通过依次乘法运算、合并同类项,直到将整个整式展开为最简形式。
举例来说明,展开整式 (2x + 3)^2:首先,将整式按照乘法进行展开,即:(2x + 3) * (2x + 3)。
根据分配律展开第一项:2x * 2x + 2x * 3,并将结果记作 A。
根据分配律展开第二项:3 * 2x + 3 * 3,并将结果记作 B。
将 A 和 B 相加,并将同类项合并,得到展开后的整式:4x^2 + 12x + 9。
二、整式的因式分解因式分解是指将一个整式写成几个乘积的形式。
它是整式的逆运算。
因式分解是对展开的整式进行逆向思考和操作,找到最简形式的乘积形式。
1. 公因式提取法公因式提取法适用于整式中存在相同因子的情况。
数学初三中考(浙教版)【浙教版】21版数学《新中考ABC》(浙江专版)教材基础复习篇 第2课

【思维导图】
【学前检测】 1.(2020·金华丽水)下列多项式中,能运用平方差公式分解因式的是( C )
A.a2+b2
B.2a-b2
C.a2-b2
D.-a2-b2
2.(2020·宁波)下列计算正确的是
(C)
A.a3·a2=a6
B.(a3)2=a5
C.a6÷a3=a3
D.a2+a3=a5
3.(2020·温州)分解因式:m2-25=___(_m_+_5_)_(_m_-_5_)___. 4.(2020·嘉兴)化简:(a+2)(a-2)-a(a+1). 【解析】原式=a2-4-a2-a=-4-a. 5.(2020·宁波)计算(a+1)2+a(2-a). 【解析】原式=a2+2a+1+2a-a2=4a+1.
A.2a
B.2b
C.2a-2b
D.-2b
变式2.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加 b厘米,木工师傅设计了如图所示的三种方案:
小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,
对于方案一,小明是这样验证的: a2+ab+ab+b2=a2+2ab+b2=(a+b)2.
整数, 且m>n)
同底数幂相除 幂的乘方
积的乘方
性质或法则 am·an =___a_m+_n___ am÷an =___a_m_-_n __(a≠0) (am)n =___a_mn___ (ab)n=___a_n _b_n___
运算
单项式乘 单项式
整式的 单项式乘 乘法 多项式
初三中考数学复习-整式及因式分解

A.2
B.3
C.4
D.6
9.把多项式 ax3-2ax2+ax 分解因式,结果正确的是
A.ax(x2-2x)
B.ax2(x-2)
C.ax(x+1)(x-1)
D.ax(x-1)2
10.若 a2 kab 9b2 是完全平方式,则常数 k 的值为
A.±6 C.±2
B.12 D.6
11.若有理数 a,b 满足 a2 b2 5 , (a b)2 9 ,则 4ab 的值为
多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变
化,最后把所得式子化简,即合并同类项.
典例 6 已知 a﹣b=5,c+d=﹣3,则(b+c)﹣(a﹣d)的值为
A.2
B.﹣2
C.8
D.﹣8
11.一个长方形的周长为 6a 8b ,相邻的两边中一边长为 2a 3b ,则另一边长为
的指数是否相同.
多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数
是否相同.
单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是 0.
典例 2 下列说法中正确的是
A. xy2 的系数是-5 5
B.单项式 x 的系数为 1,次数为 0
D. 35x3 y2 5x2 y 7xy
12.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中 a=2.
考向六 因式分解
因式分解的概念与方法步骤 ①看清形式:因式分解与整式乘法是互逆运算.符合因式分解的等式左边是多项式,右边是整式乘积的形 式. ②方法:(1)提取公因式法;(2)运用公式法. ③因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解 必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的 2 倍,如 果没有两数乘积的 2 倍还不能分解. 一“提”(取公因式),二“用”(公式).要熟记公式的特点,两项式时考虑平方差公式,三项式时考虑完全平 方公式.
初三数学教材整式的因式分解与化简

初三数学教材整式的因式分解与化简在初三数学教材中,我们学习了整式的因式分解与化简,这是一个重要的内容,对于我们解决数学问题很有帮助。
本文将详细介绍整式的因式分解与化简的方法和步骤,以及相关的例题分析和解答。
一、整式的因式分解整式的因式分解是将一个整式写成几个乘积的形式,每个因子都是一次式或者多项式的乘积。
因式分解的目的是为了简化整式,使其更易计算或者更便于进一步研究。
1. 提取公因式法对于一个整式,如果所有的项都有一个公共因子,我们可以采用提取公因式的方法进行因式分解。
具体步骤如下:- 找出整式中的所有项的公共因子;- 将这个公共因子从每一项中提取出来,得到一个公因式;- 将每一项除以公因式,得到新的整式。
例如,对于整式4x^2 + 8xy,我们可以提取公因式4,得到4(x^2 + 2xy),进一步化简。
2. 分组法对于一个多项式,如果其中的项可以进行适当的分组,使得每个组的项都有一个公因子,我们可以采用分组法进行因式分解。
具体步骤如下:- 将多项式的项进行适当的分组,使得每个组的项都有一个公因子;- 对每个组应用提取公因式法,将公因子提取出来;- 将每个组的公因子相乘,得到一个因式。
例如,对于整式x^2 + x + 2x + 2,我们可以将其中的项进行分组,得到(x^2 + x) + (2x + 2),然后对每一组应用提取公因式法,并最终得到因式(x + 1)(x + 2)。
3. 公式法针对某些特定的整式,我们可以使用一些公式进行因式分解。
常见的有平方差公式、完全平方公式和差平方公式等。
根据不同类型的整式,使用相应的公式进行因式分解。
二、整式的化简整式的化简是将一个整式通过合并同类项、降幂等操作,使其变得更简洁清晰,方便计算和研究。
1. 合并同类项合并同类项是将整式中相同指数的项合并成一个项的过程。
具体步骤如下:- 找出整式中的所有同类项;- 将同类项相加或相减,保留原来的指数。
例如,对于整式3x^2 + 2x^2 - x + 4x - 1,我们可以合并同类项,得到5x^2 + 3x - 1。
人教版九年级数学-中考复习-整式与因式分解

整式、因式分解一、知识要点(一)整式的概念 1、代数式①像3(1)2s a x t-+、等式子都是代数式,单独一个数或字母也是 . ②一般地,用 代替代数式里的字母,按照代数式中的运算关系,计算得出结果,叫做代数式的值. 2、整式的分类数: .3、同类项:所含 相同,且 也相同的项叫做同类项.4、合并同类项:只把系数 ,所含字母及字母的指数不变. (二)整式的运算1、整式的加减运算:实际就是 . 3、整式的乘法(各举一例)①单项式乘以单项式: 2、幂的运算性质(k l m n 、、、均为整数) ②单项式乘以多项式: ①同底数幂的乘法:k la a ⋅= ; ③多项式乘以多项式: ②幂的乘方:()m na = ; 4、整式的除法(各举一例)③积的乘方:()m ab = ; ①单项式除以单项式: ④同底数幂的除法:mna a ÷= . ②多项式除以单项式: 5、乘法公式:①平方差公式: ②完全平方公式:(三)因式分解: 1、将一个多项式化成几个整式的 的形式,叫做把这个多项式进行因式分解。
2、因式分解的方法(各举一例) ①提公因式法: ; ②公式法: ; ③分组分解法: .⎧⎧⎧⎪⎨⎪⎪⎨⎩⎨⎪⎩⎪⎪⎩单项式整式有理式多项式代数式分式无理式例6图甲乙3、一般步骤:“一提”“二套”“三分组”;分解因式要分解彻底.二、知识运用典型例题例1:(烟台)若523m x y +与3n x y 的和是单项式,则m n = .例2:(太原)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x + 例3:(1)(恩施)下列计算正确的是( )A.633)(x x =B.2446a a a =⋅C.2224)()(c b bc bc =-÷- D .236x x x =÷(2)(长沙)下列计算正确的是 ( )A .2242a aa += B .2(2)4a a = C3D 32=例4:(天津)若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .例5:(长沙)先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.例6:(浙江湖州)将图甲中阴影部分的小长方形 变换到图乙位置,你能根据两个图形的面积关系得 到的数学公式是:________ __.例7:分解因式:①34a a - ②33824a b ab c - ③232(1)6(1)x y x -+-④244x x -+- ⑤266m n mn m +-- ⑥(南通)2(2)(4)4x x x +++-.(杭州)在实数范围内分解因式:44-x = _____________.例8:观察下面的单项式:x ,-22x ,4x 3,-8x 4,……。
数学中考复习 整式的加减乘除与因式分解

第一讲 整式的加减乘除与因式分解代数式、单项式、多项式代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式. 单独的一个数或字母也是代数式.列代数式:列代数式实质上是把“文字语言”翻译成“符号语言”.列代数式的关键是正确地分析数量关系,要掌握和、差、积、商、幂、倍、分、大、小、多、少、增加、增加到等数学概念和有关知识.在列代数式时,应注意以下几点:(1) 在同一问题中,要注意不同的对象或不同的数量必须用不同的字母来表示;(2) 字母与字母相乘时可以省略乘号;(3) 在所列代数式中,若有相除关系要写成分数形式;(4) 列代数式时应注意单位,单位名称在代数式后面写出来,如果结果为加减关系,必须用括号将代数式括起来;(5) 代数式中不要使用带分数,带分数与字母相乘时必须把带分数化成假分数.单项式: 像2-a ,2r π,213-x y ,-abc ,237x yz ,……这些代数式中,都是数字与字母的积,这样的代数式称为单项式.也就是说单项式中不存在数字与字母或字母与字母的加、减、除关系,特别的单项式的分母中不含未知数.!单独的一个字母或数也叫做单项式,例:a 、3-.单项式的次数:是指单项式中所有字母的指数和.例如:单项式212-ab c ,它的指数为1214++=,是四次单项式.单独的一个数(零除外),它们的次数规定为零,叫做零次单项式.单项式的系数:单项式中的数字因数叫做单项数的系数.例如:我们把47叫做单项式247x y 的系数. 同类项: 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.多项式: 几个单项式的和叫做多项式.例如:27319-+x x 是多项式. 多项式的项: 其中每个单项式都是该多项式的一个项.多项式中的各项包括它前面的符号.多项式中不含字母的项叫做常数项. 多项数的次数:多项式里,次数最高项的次数就是这个多项式的次数.整式: 单项式和多项式统称为整式.【例1】 讲下列代数式分别填入相应的括号内:222221112113232333a x ab x x m n mn n x b x y x-+-+-+-+,,,,,,, 单项式( );多项式( );二项式( );二次多项式( );整式( )【例2】 找出下列各代数式中的单项式,并写出各单项式的系数和次数.223xy ;-a ;a bc ;32+mn ;572t ;233-a b c ;2;-x π【例3】 单项式113+--a b a x y 与23x y 是同类项,求-a b 的值.【巩固】 若12223559+--m m n ab 与2a b 是同类项,求m ,n 的值.板块二 整式加减合并同类项: 把多项式中同类项合并成一项,叫做合并同类项.合并同类项时,只需把系数相加,所含字母和字母指数不变.【例4】 若232+m m n a b 与39a b 的和仍是一个单项式,求m 、n 的值.【例5】 化简:3223225115225363363--+-+++a b a b ab a b ab ba【巩固】 化简:2222222243{3[24(2)]}--+--+-xy x y x y xy xy x y x y xy【例6】 第一个多项式是2222-+x xy y ,第二个多项式是第一个多项式的2倍少3 ,第三个多项式是前两个多项式的和,求这三个多项式的和.【例7】 有这样一道题:“已知222223=+-A a b c ,22232=--B a b c ,22223=+-C c a b ,当1=a ,2=b ,3=c 时,求-+A B C 的值”.有一个学生指出,题目中给出的2=b ,3=c 是多余的.他的说法有没有道理?为什么?幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数. 含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.例如:53表示33333⨯⨯⨯⨯,5(3)-表示(3)(3)(3)(3)(3)-⨯-⨯-⨯-⨯-,53-表示(33333)-⨯⨯⨯⨯52()7表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯ 特别注意负数及分数的乘方,应把底数加上括号.“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:⑴多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=.⑵有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号, 例如:(3)(2)(6)36-⨯-⨯-=-,而(3)(2)(6)36-⨯-⨯+=.⑶有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如:2(3)9-=,3(3)27-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()n n a a -=.负数的奇次幂是负数,负数的偶次幂是正数正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”.⑴ 同底数幂相乘.同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m n a a a +⋅=(,m n 都是正整数).⑵ 幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘.用式子表示为:()nm mn a a =(,m n 都是正整数). ⑶ 积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用式子表示为:()n n n ab a b =(n 是正整数).⑷ 同底数幂相除.同底数的幂相除,底数不变,指数相减.用式子表示为:m n m n a a a -÷= (0a ≠,m ,n 都是正整数)⑸ 规定()010a a =≠;1p p a a-=(0a ≠,p 是正整数). 【例1】 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=【巩固】 下列计算错误的是( )A .()333327ab a b -=-B .2326411416a b a b ⎛⎫-= ⎪⎝⎭ C .()326xy xy -=- D .()24386a b a b -=计算:()43- 计算:43- 计算:332⎛⎫- ⎪⎝⎭ 计算:332-填空:54x x x ÷⨯= ;填空:()()()324a a a -⋅-⋅-= ; 填空:()()2322a b b ⋅-= ; 填空:()()3223x x x --⋅=【巩固】 ()4m m x x ÷=填空:;()224m a a +⋅=;()234n n n n a b =;()()()284n a a a ⎡⎤==⎣⎦【例2】 计算:()()()24143 6.526313⎛⎫--⨯+-÷-= ⎪⎝⎭__________【例3】 n 为自然数,那么(1)n -= ;2(1)n -= ;21(1)n +-= ;当n 为 数时,()()n 2n 110-+-=;当n 为 数时,()()n 2n112-+-=【例4】 计算:12468...(1)2n n +-+-++-⨯【例5】 计算:23456789102222222222--------+=_____________.计算:6660.12524⨯⨯计算:10200.252⨯计算:1996199519952(1.5)(1)3⎛⎫⨯⨯- ⎪⎝⎭【例6】 已知2m a =,3n a =,求32m n a +的值.【例7】 若2530x y +-=,求432x y ⋅.【巩固】 已知3m a =,2n a =,m 、n 是正整数且m n >.求下列各式的值:①1m a +;②32m n a -.【例8】 已知232122192x x ++-=,求x .板块二 幂的大小比较【例9】 比较503,404,305的大小.【例10】 已知221410103498a b c d ====,,,,则a b c d ,,,的大小关系为整式的乘法⑴单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式.以下举例说明单项式与单项式相乘的规则如下:23234233ab a b c a b c ⋅=,两个单项式的系数分别为1和3,乘积的系数是3,两个单项式中关于字母a 的幂分别是a 和2a ,乘积中a 的幂是3a ,同理,乘积中b 的幂是4b ,另外,单项式ab 中不含c 的幂,而2323a b c 中含2c ,故乘积中含2c . ⑵单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a b c ++为多项式.⑶多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++【例11】 若M N ,分别是关于x 的2次多项式与3次多项式,则MN ( )A .一定是5次多项式B .一定是6次多项式C .一定是2次或3次多项式D .无法确定次数【例12】 先化简,在求值:()()()()22215423125a a a a a a a -⋅------,其中1a =-【巩固】 计算2332536()()()()1245x y x y x y y x ⎡⎤+⋅--⋅--⋅-⎢⎥⎣⎦.【巩固】 使22(8)(3)x px x x q ++-+的积中不含2x 和3x ,求p ,q 的值.整式的除法⑴ 单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.如:2322233a b c ab ab c ÷=,被除式为2323a b c ,除式为ab ,系数分别为3和1,故商中的系数为3,a 的幂分别为2a 和a ,故商中a 的幂为21a a -=,同理,b 的幂为2b ,另外,被除式中含2c ,而除式中不含关于c 的幂,故商中c 的幂为2c .⑵ 多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:()a b c m a m b m c m ++÷=÷+÷+÷,其中m 为单项式,a b c ++为多项式.【例13】 计算:472632211()()393a b a b ab -÷-;计算:823423236( 1.8)0.655a b a b a b ab --÷【例14】 算:()()()2226969x x x x +-÷++= ;【例15】 如果257x kx -+被52x -除后余6,求k 的值及商式.【例16】 计算:22221112222x y x y x y ⎡⎤⎛⎫⎛⎫⎛⎫-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦因式分解的基本概念因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式因式分解的常用方法:提取公因式法、运用公式法、分组分解法、十字相乘法.分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式十字相乘法分解,如还不能,就试用分组分解法或其它方法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;②结果一定是乘积的形式;③每一个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;③单项式因式写在多项式因式的前面;④每个因式第一项系数一般不为负数;⑤形式相同的因式写成幂的形式.判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++【例17】 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)提公因式法提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面.确定公因式的方法:系数——取多项式各项系数的最大公约数;字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.【例18】 分解因式:ad bd d -+【例19】 分解因式:4325286x y z x y -【例20】 分解因式:322618m m m -+- 分解因式:23229632x y x y xy ++ 分解因式:2222224x y x z y z z --+【例21】 不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.【例22】 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【例23】 求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.公式法平方差公式:22()()a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.一些需要了解的公式:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++33223()33a b a a b ab b +=+++ 33223()33a b a a b ab b -=-+-2222()222a b c a b c ab ac bc ++=+++++【例24】 分解因式:44a b -【例25】 分解因式:2249()16()m n m n +--【例26】 分解因式:22()()a x y b y x -+-【例27】 分解因式:229()4()m n m n --+【例28】 分解因式:22(32)16x y y --【例29】 利用分解因式证明:712255-能被120整除.【例30】 分解因式:2242x x -+= ;【例31】 分解因式:244ax ax a -+= ;【例32】 分解因式:2844a a --= ;【例33】 分解因式:2292416x xy y -+=【例34】 分解因式:3269x x x -+【例35】 分解因式:2363x x -+【例36】 在实数范围内分解因式:224x -;【例37】 在实数范围内分解因式:264m m -+【例38】 分解因式:22222(91)36a b a b +--【例39】 若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解【例40】 分解因式:256x x ++【例41】 分解因式:256x x -+【例42】 分解因式2299x x +-等于( )A .()()911x x --B .()()911x x +-C .()()911x x -+D .()()911x x ++【例43】 分解因式:276x x ++【例44】 分解因式:268x x ++【例45】 分解因式:278x x +-【例46】 分解因式:212x x +-【例47】 分解因式:2376a a --【例48】 分解因式:2383x x --【例49】 分解因式:25129x x +-【例50】 分解因式:2121115x x --板块三:双十字相乘双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
最新人教版初中九年级下册数学【总复习第二讲 整式与因式分解】教学课件

(续表)
类别
法则
整式的除法
单项式除以单项式 单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对
于只在被除式里含有的字母,则连同它的指数作为商的一个因式
多项式除以单项式:(am+bm)÷m=a+b
知识过关 知识点二、整式的运算
例题1.判断正误
:
(1)a2
a3
( 2×
(6)(a b)
) a2 b2 ;
当a 2时,
原式 2 2 2 15 Nhomakorabea 知识梳理 三、因式分解
1.定义:把一个多项式化为几个整式的 积 的形式,这样的式子变形叫
做这个多项式的因式分解.
2.方法:(1)提公因式法:ma mb mc m(a b c)
(2)公式法完平全方平差方公公式式::a2 a2b2
(a b)(a b) 2ab b2 (a b)
有的字母,则连同它的指数作为积的一个因式
整式的乘法 单项式与多项式相乘
m(a b c) ma mb mc
多项式与多项式相乘
(m n)(a b) ma mb na nb
乘法公式
平方差公式:(a+b)(a-b)= a2 b2 完全平方公式:(a±b)2= a2 2ab b2
(1)a2+b2= (a b)2 2ab = (a b)2 2ab ; 常用恒等变形 (2) (a b)2 (a b)2 4ab
2
3.步骤:
一提(提公因式);二套(套公式);三检验(检验是否分解彻底).
知识过关
知识点四、因式分解
例题3.[2019·株洲]下列各选项中因式分解正确的是 ( D )
A.x2 1 (x 1)2 B.a3 2a2 a a2 (a 2) C. 2 y2 4 y 2 y( y 2) D.m2n 2mn n n(m 1)2
人教版九年级数学中考总复习 第2课时 整式及因式分解 含解析及答案

第2课时整式及因式分解知能优化训练一、中考回顾1.(2021云南中考)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n2.(2021安徽中考)计算x2·(-x)3的结果是()A.x6B.-x6C.x5D.-x53.(2021四川成都中考)下列计算正确的是()A.3mn-2mn=1B.(m2n3)2=m4n6C.(-m)3·m=m4D.(m+n)2=m2+n24.(2021江苏连云港中考)下列运算正确的是()A.3a+2b=5abB.5a2-2b2=3C.7a+a=7a2D.(x-1)2=x2+1-2x5.(2021天津中考)计算4a+2a-a的结果等于.a6.(2021云南中考)分解因式:x3-4x=.(x+2)(x-2)二、模拟预测1.下列计算正确的是()A.3a2-a2=2B.2a3·a3=2a9C.a8÷a2=a6D.(-2a)3=-2a22.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.63.若关于x的二次三项式x2-kx-b可因式分解为(x-1)(x-3),则k+b的值为()A.-1B.1C.-7D.74.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底部为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm5.若3x m+5y2与x3y n的和是单项式,则n m=.6.按照下图所示的操作步骤,若输入x的值为2,则输出的值为.7.若(a+1)2+|b-2|=0,则a(x2y+xy2)-b(x2y-xy2)的化简结果为.3x2y+xy28.先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中,x=-√3.=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=-√3时,原式=(-√3)2-5=3-5=-2.。
2024年中考数学总复习课件第一部分第一章:2 整式与因式分解(共27张PPT)

[北师大七上P99习题3.8 T1改编] 下图是一组有规律的图案,它由若干大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片, .依此规律,第
个图案中有_________(用含的代数式表示)个白色圆片.
1.多项式各项的公因式是( )
续表
考点二 列代数式与代数式求值
1.用基本运算符号把数或表示数的字母连接起来的式子叫做代数式. 2.代数式求值 (1)直接代入法:把已知字母的值直接代入代数式,并按原来的运算顺序计算可求值. (2)整体代入法:先对比已知定值关系式与所求代数式,找出两个式子间共同的部分作为切入点,再对已知关系式与所求代数式进行变形(一般会用到提公因式法、平方差公式法、完全平方公式法),最后将已知定值关系式或变形后的式子整体代入计算可求值.
体验2 [2023·白山一模] 为了调研大众的低碳环保意识,小刚在某超市收银台出口统计后发现:一小时内使用自带环保袋的人数比使用超市塑料袋人数的2倍少4人.如果使用超市塑料袋的有人,那么使用自带环保袋的有__________(用含的代数式表示)人.
考点三 幂的运算性质
幂的运算(,,为正整数) 同底数幂相乘:底数不变,指数相加,即______. 同底数幂相除:底数______,指数______,即______. 幂的乘方:底数不变,指数______,即_____. 积的乘方:先把积中的每一个因式分别乘方,再把所得的幂______,即______.体验3 [2023·锦州] 下列运算中正确的是( )
(1) 已知实数,,满足,,则的值为___.(2) 分解因式:___________________.
6
类型三 规律探索
中考数学 考点系统复习 第一章 数与式 第三节 整式与因式分解

解:(1)S 空白部分=(a-1)(b-1); (2)当 a=3,b=2 时,S 空白部分=(3-1)×(2-1)=2.
命题点 2:整式的概念及运算(2021 年考查 6 次,2020 年考查 8 次,2019
年考查 5 次,2018 年考查 4 次,2017 年考查 9 次)
πr2 5.(2017·铜仁第 3 题 4 分)单项式 2 的系数是
子来表示
( C)
A.CnH2n+1
B.CnH2n C.CnH2n+2
D.CnHn+3
命题点 1:代数式求值(2019 年考查 1 次,2018 年考查 1 次,2017 年考 查 1 次) 1.(2018·贵阳第 1 题 3 分)当 x=-1 时,代数式 3x+1 的值是( B ) A.-1 B.-2 C.4 D.-4
( D)
8.(2021·毕节第 6 题 3 分)下列运算中正确的是
A.(3-π)0=-1 B. 9=±3
C.3-1=-3
D.(-a3)2=a6
( D)
9.(2021·贵阳第 8 题 3 分)如图,已知数轴上 A,B 两点表示的数分别
是 a,b,则计算|b|-|a|正确的是
( C)
A.b-a B.a-b C.a+b D.-a-b
( A)
12.(2020·黔西南州第 12 题 3 分)若 7axb2 与-a3by 的和为单项式,则 yx =_8_8__. 13.(2020·贵阳第 11 题 3 分)化简 x(x-1)+x 的结果是_x_2x2__.
14.(2021·贵阳第 17(2)题 6 分)小红在计算 a(1+a)-(a-1)2时,解答 过程如下:
10.(2020·毕节第 6 题 3 分)已知 a≠0,下列运算中正确的是 ( B ) A.3a+2a2=5a3 B.6a3÷2a2=3a C.(3a2)2=6a6 D.3a3÷2a2=5a5
人教版九年级数学下册中考知识点梳理:第2讲整式与因式分解

第2讲整式与因式分解中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°【答案】B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B2.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.3.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC【答案】D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.6.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+【答案】D【解析】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.7.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是(). A.m>-1且m≠0B.m<1且m≠0C.m<-1 D.m>1【答案】A【解析】∵一元二次方程mx2+2x-1=0有两个不相等的实数根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故选A.【点睛】本题考查一元二次方程ax 2+bx+c=0(a≠0)根的判别式: (1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根; (2)当△=b 2﹣4ac=0时,方程有有两个相等的实数根; (3)当△=b 2﹣4ac <0时,方程没有实数根.8.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( )A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0【答案】A【解析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m , 解不等式②得:x>-1,由于原不等式组无解,所以m≤-1, 故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.9.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .【答案】B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB 、CB 、AC 2210、 只有选项B 的各边为125B . 【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.10.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.13【答案】D【解析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题(本题包括8个小题)11.函数y=2x-x的取值范围是_________.【答案】x≤1且x≠﹣1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020xx-≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.【答案】4m【解析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x ﹣1.8+x ﹣1.5=4.7, 解得:x=4m ,答:路灯AD 的高度是4m .13.如图,若正五边形和正六边形有一边重合,则∠BAC =_____.【答案】132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°. 14.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2019a =___________ .【答案】34. 【解析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题. 【详解】∵a 1=4 a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环,∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34.【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律. 15.若a+b =3,ab =2,则a 2+b 2=_____. 【答案】1【解析】根据a 2+b 2=(a+b )2-2ab ,代入计算即可. 【详解】∵a+b =3,ab =2, ∴a 2+b 2=(a+b )2﹣2ab =9﹣4=1. 故答案为:1. 【点睛】本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.16.在平面直角坐标系中,点 A 的坐标是(-1,2) .作点A 关于x 轴的对称点,得到点A 1 ,再将点A 1 向下平移 4个单位,得到点A 2 ,则点A 2 的坐标是_________. 【答案】(-1, -6)【解析】直接利用关于x 轴对称点的性质得出点A 1坐标,再利用平移的性质得出答案. 【详解】∵点A 的坐标是(-1,2),作点A 关于x 轴的对称点,得到点A 1, ∴A 1(-1,-2),∵将点A 1向下平移4个单位,得到点A 2, ∴点A 2的坐标是:(-1,-6). 故答案为:(-1, -6). 【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.17.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下: ... -1 0 1 2 3 ......105212...则当5y <时,x 的取值范围是_________. 【答案】0<x<4【解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为0<x<4.【点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.18.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.【答案】135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=453,所以在Rt△ACD中,3453×3.考点:解直角三角形的应用.三、解答题(本题包括8个小题)19.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?【答案】12【解析】设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.20.如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B 两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?【答案】(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP=22=302≈42海里,PE EB故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x=20是原方程的解,甲船的速度为1.2x=1.2×20=24(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.21.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE 的长.【答案】解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD ⊥CE ,∴直线CD 是⊙O 的切线,即直线CD 和⊙O 的位置关系是相切;(2)∵AC=2,⊙O 的半径是3,∴OC=2+3=5,OD=3,在Rt △CDO 中,由勾股定理得:CD=4,∵CE 切⊙O 于D ,EB 切⊙O 于B ,∴DE=EB ,∠CBE=90°,设DE=EB=x ,在Rt △CBE 中,由勾股定理得:CE 2=BE 2+BC 2,则(4+x )2=x 2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理22.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【答案】(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.23.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A :0个学科,B :1个学科,C :2个学科,D :3个学科,E :4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.【答案】(1)图形见解析;(2)1;(3)1.【解析】(1)由A 的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B 的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D 和E 人数占总人数的比例即可得.【详解】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B 类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×105100=1(人),故答案为1.【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.24.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.【答案】(1)()P =两数相同13;(2)()10P =两数和大于49. 【解析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6﹣2 7 6(6,6) (6,﹣2) (6,7) ﹣2(﹣2,6) (﹣2,﹣2) (﹣2,7) 7 (7,6) (7,﹣2)(7,7) (1)P (两数相同)=.(2)P (两数和大于1)=.【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.25.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB =1.25 m ,已知李明直立时的身高为1.75 m ,求路灯的高CD 的长.(结果精确到0.1 m)【答案】路灯的高CD的长约为6.1 m. 【解析】设路灯的高CD为xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴BN AB CD AC=,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴1.75 1.251.75x x=-,解得x=6.125≈6.1.∴路灯的高CD约为6.1m.26.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D 13 【答案】B【解析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去),∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+=, ∴3313cos 1313BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 2.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .9 【答案】B【解析】由已知可得:2,(12)(12)1m n mn +==+-=-,223m n mn +-=2()5m n mn +-.【详解】由已知可得:2,(12)(12)1m n mn +==+-=-,原式=22()525(1)93m n mn +-=-⨯-== 故选:B【点睛】考核知识点:二次根式运算.配方是关键.3.如图,已知△ABC ,按以下步骤作图:①分别以 B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点 M ,N ;②作直线 MN 交 AB 于点 D ,连接 CD .若 CD=AC ,∠A=50°,则∠ACB 的度数为( )A .90°B .95°C .105°D .110°【答案】C 【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN 垂直平分线段BC ,根据线段垂直平分线定理可知BD=CD ,根据等边对等角得到∠B=∠BCD ,根据三角形外角性质可知∠B+∠BCD=∠CDA ,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD ,即可解决问题.【详解】∵CD=AC ,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN 垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.4.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .3【答案】B 【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B .【点睛】此题考查由三视图判断几何体,解题关键在于识别图形5.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠C.1903∠=+∠D.以上都不对【答案】C【解析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°【答案】C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.7.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A.16cm B.13cm C.12cm D.1cm【答案】D【解析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分别是△OAB和△OCD的高,∴OF CDOE AB=,即2126CD=,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.8.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【解析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D .【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.9.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D . 【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A .不是轴对称图形,也不是中心对称图形.故错误;B .不是轴对称图形,也不是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D .不是轴对称图形,是中心对称图形.故错误.故选C .【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.二、填空题(本题包括8个小题)11.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.【答案】1【解析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π 【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.13.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.【答案】16000【解析】用毕业生总人数乘以“综合素质”等级为A 的学生所占的比即可求得结果.【详解】∵A ,B ,C ,D ,E 五个等级在统计图中的高之比为2:3:3:1:1,∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×223311++++=16000, 故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.14.如图,是用火柴棒拼成的图形,则第n 个图形需_____根火柴棒.。
中考数学总复习 第2讲 整式及因式分解二次函数(基础讲

第2讲整式及因式分解考标要求考查角度1.明确字母表示数的真实内涵及其规范的书写格式,能用代数式探索有关的规律.2.会用语言文字叙述代数式的意义,同时掌握求代数式的值的方法.3.理解同类项的概念,掌握合并同类项的法则和去括号的法则以及乘法公式,能准确地进行整式的加、减、乘、除、乘方等混合运算.4.能对多项式进行因式分解.整式作为初中数学的基础内容之一,在中考试题中多以填空题和选择题的形式命题,重点考查其基本概念及运算法则,同时也会设计一些新颖的探索与数、式有关的规律性问题.知识梳理一、整式的有关概念1.整式整式是单项式与__________的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的________因数叫做单项式的系数;单项式中所有字母指数的____叫做单项式的次数.3.多项式几个单项式的______叫做多项式;多项式中,每一个________叫做多项式的项,其中不含字母的项叫做常数项;多项式中__________项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:a m·a n=______,(a m)n=______,(ab)n=a n b n,a ma n=a m-n(m,n是正整数).三、同类项与合并同类项1.同类项所含字母相同,并且相同字母的______也分别相同的项叫做同类项.2.合并同类项把多项式中的同类项合并成一项叫做____________,合并的法则是系数相加,所得的结果作为合并后的______,字母和字母的指数不变.四、求代数式的值1.代数式的值一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要______.2.整式的乘除(1)整式的乘法.①单项式与单项式相乘:把______、__________分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mc .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法.①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2;(2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 六、因式分解1.因式分解的概念把一个多项式化成几个整式的____的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法.①运用平方差公式:a 2-b 2=__________.②运用完全平方公式:a 2±2ab +b 2=________. 3.因式分解的一般步骤一提(提取公因式法);二套(套公式法).一直分解到不能分解为止. 自主测试1.(2012福建福州)下列计算正确的是( )A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 72.下列各式中,与x 2y 是同类项的是( )A .xy 2B .2xyC .-x 2yD .3x 2y 23.(2012四川绵阳)图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空白部分的面积是( )A .2mnB .(m +n )2C .(m -n )2D .m 2-n 24.(2012四川宜宾)分解因式:3m 2-6mn +3n 2=__________.5.单项式-3π5m 2n 的系数是______,次数是______.考点一、整数指数幂的运算【例1】 (2012湖南郴州)下列计算正确的是( )A .a 2·a 3=a 6B .a +a =a 2C .(a 2)3=a 6D .a 8÷a 2=a 4解析:A 项是同底数幂的乘法,a 2·a 3=a 2+3=a 5,故A 项错误;B 项是整式的加减运算,a +a =2a ,故B 项错误;C 项是幂的乘方,(a 2)3=a 2×3=a 6,故C 项正确;D 项是同底数幂的除法,a 8÷a 2=a 8-2=a 6,故D 项错误.答案:C方法总结 幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.触类旁通1下列运算中,正确的是( )A .x 3·x 2=x 5B .x +x 2=x3C .2x 3÷x 2=xD .⎝ ⎛⎭⎪⎫x 23=x 32考点二、同类项与合并同类项【例2】 单项式-13x a +b y a -1与3x 2y 是同类项,则a -b 的值为( )A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧a +b =2,a -1=1,解得⎩⎪⎨⎪⎧a =2,b =0.所以a -b =2-0=2. 答案:A方法总结 1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项. 3.根据同类项概念,相同字母的指数相同,列方程(组)是解此类题的一般方法.触类旁通2如果3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A .3和-2 B .-3和2 C .3和2 D .-3和-2 考点三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝ ⎛⎭⎪⎫-13=-2. 方法总结 整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,注意套用公式.触类旁通3 已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值. 考点四、因式分解【例4】 (2012湖南常德)分解因式:m 2-n 2=__________. 答案:(m +n )(m -n )方法总结 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提取公因式时,若括号内合并的项有公因式,应再次提取;注意符号的变换y -x =-(x -y ),(y -x )2=(x -y )2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方公式及其特点. (4)因式分解要分解到每一个多项式不能分解为止.1.(2012湖南常德)下列运算中,结果正确的是( )A .a 3·a 4=a 12B .a 10÷a 2=a 5C .a 2+a 3=a 5D .4a -a =3a 2.(2012湖南益阳)下列计算正确的是( )A .2a +3b =5abB .(x +2)2=x 2+4C .(ab 3)2=ab 6D .(-1)0=13.(2012湖南湘潭)因式分解:m 2-mn =__________.4.(2012湖南益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:__________.5.(2012湖南怀化)当x =1,y =15时,3x (2x +y )-2x (x -y )=__________.6.(2012湖南株洲)一组数据为:x ,-2x 2,4x 3,-8x 4,…观察其规律,推断第n 个数据应为__________.1.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+42.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a ±b )2=a 2±2ab +b 23.多项式__________与m 2+m -2的和是m 2-2m .4.若3x m +5y 2与x 3y n 的和是单项式,则n m=__________.5.若m -n =2,m +n =5,则m 2-n 2的值为__________.6.若2x =3,4y =5,则2x -2y的值为__________.7.给出3个整式:x 2,2x +1,x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?参考答案 【知识梳理】一、1.多项式 2.数字 和 3.和 单项式 次数最高二、a m +n a mn三、1.指数 2.合并同类项 系数 五、1.(2)变号2.(1)①系数 同底数幂 (2)①指数 六、1.积2.(2)①(a +b )(a -b ) ②(a ±b )2导学必备知识 自主测试1.A a +a =2a ,A 项正确;b 3·b 3=b 6,B 项错误;a 3÷a =a 2,C 项错误;(a 5)2=a 10,D 项错误.2.C 只有C 选项中相同字母的指数与x 2y 分别相同.3.C 因为长方形的长为2m ,宽为2n (m >n ),则小长方形的长为m ,宽为n ,小正方形的边长为(m -n ),所以面积是(m -n )2.4.3(m -n )2 原式=3(m 2-2mn +n 2)=3(m -n )2.5.-3π53探究考点方法触类旁通1.A A 项是同底数幂相乘,x 3·x 2=x3+2=x 5,B 项中的两项不是同类项,不能合并,C 项是单项式相除,2x 3÷x 2=(2÷1)x 3-2=2x ,D 项⎝ ⎛⎭⎪⎫x 23=x 323=x38.触类旁通 2.C 此题考查同类项概念和二元一次方程组的解法,由题意得⎩⎪⎨⎪⎧ 2n -1=m ,m =3,解得⎩⎪⎨⎪⎧m =3,n =2. 触类旁通3.分析:本题需先把2x -1=3进行整理,得出x 的值,把代数式进行化简,再把x 的值代入即可求出结果.解:由2x -1=3得x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.品鉴经典考题1.D a 3·a 4=a 7,所以A 项不正确;a 10÷a 2=a 8,所以B 项不正确;a 2与a 3不是同类项,不能合并,所以C 项不正确;4a -a =3a ,D 项正确.2.D 2a 与3b 不能合并,A 项不正确;(x +2)2=x 2+4x +4,B 项不正确;(ab 3)2=a 2b 6,C 项不正确;由任何一个不等于零的数的零次幂等于1,知D 项正确.3.m (m -n ) m 2-mn =m (m -n ).4.答案不唯一,如x 2-1.5.5 3x (2x +y )-2x (x -y )=6x 2+3xy -2x 2+2xy =4x 2+5xy .当x =1,y =15时,原式=4×12+5×1×15=4+1=5.6.(-2)n -1x n x 的系数为1=(-2)1-1,次数为1;-2x 2的系数为-2=(-2)2-1,次数为2;4x 3的系数为4=(-2)3-1,次数为3;-8x 4的系数为-8=(-2)4-1,次数为4;….所以第n 个数据的系数为(-2)n -1,次数为n ,即(-2)n -1x n.研习预测试题1.C x 2+4x -1=(x 2+4x +4)-4-1=(x +2)2-5.2.C 因为第一个图是一个大的正方形挖去了一个小的正方形,其面积表达式为a 2-b 2.第二个图是一个梯形,下底为2a ,上底为2b ,高为(a -b ),其面积为12(2a +2b )(a -b )=(a+b )(a -b ),所以两个图验证了公式:a 2-b 2=(a +b )(a -b ).3.2-3m 由题意得此多项式为(m 2-2m )-(m 2+m -2)=m 2-2m -m 2-m +2=2-3m . 4.14 由题意得m +5=3,n =2,所以m =-2,所以n m =2-2=122=14. 5.10 m 2-n 2=(m +n )(m -n )=5×2=10. 6.35 2x -2y =2x ÷22y =2x ÷4y =3÷5=35. 7.解:(1)x 2+(2x +1)=x 2+2x +1=(x +1)2或x 2+(x 2-2x )=2x 2-2x =2x (x -1)或(2x+1)+(x 2-2x )=2x +1+x 2-2x =x 2+1.(2)由(1)可知,概率为23.。
九年级整式的知识点

九年级整式的知识点整式是代数学中的重要概念,九年级的学生们将会接触到并学习有关整式的知识。
在本文中,我们将详细介绍九年级整式的相关知识点,包括定义、运算规则、因式分解等。
一、定义整式是由若干个单项式相加(减)而成的代数表达式。
单项式是由常数、变量或者它们的积组成的代数式,而整式则是由若干个单项式相加(减)得到的。
一般来说,整式可以表示为:f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0其中,a_n、a_{n-1}、...、a_1、a_0为整数系数,n为非负整数,x为变量。
二、运算规则1. 加法运算整式的加法运算是指将两个或多个整式相加得到一个新的整式。
在加法运算中,需要按照相同次数的项进行合并,并且系数相加。
2. 减法运算整式的减法运算是指将一个整式减去另一个整式得到一个新的整式。
在减法运算中,可以将减法转化为加法,即将减数变为相应的相反数,然后按照加法运算的规则进行操作。
3. 乘法运算整式的乘法运算是指将两个或多个整式相乘得到一个新的整式。
在乘法运算中,需要按照乘法公式将单项式相乘,并根据指数运算规则进行合并。
4. 除法运算整式的除法运算是指将一个整式除以另一个整式得到一个新的整式。
在除法运算中,可以将除法转化为乘法,即将除数的倒数乘以被除数,然后按照乘法运算的规则进行操作。
三、因式分解因式分解是指将一个整式表示为几个单项式的乘积的形式。
通过因式分解,可以简化整式的表达形式,使计算更加方便。
常见的因式分解方法包括公因式提取法、配方法等。
1. 公因式提取法公因式提取法是指从一个整式中提取出公共的因式,并将其提取出来。
例如,对于整式3x^2 + 6x,可以提取出公因式3x,得到3x(x + 2)。
2. 配方法配方法是指将一个整式表示为两个括号中的乘积的形式。
通过配方法可以将一个整式进行因式分解,例如将整式x^2 + 5x + 6分解为(x + 2)(x + 3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式与因式分解一、选择题1. (•安徽省,第2题4分)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. (•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. (•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. (•福建泉州,第2题3分)下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.解答:解:A、a3+a3=2a3,故选项错误;B、2(a+1)=2a+2≠2a+1,故选项错误;C、(ab)2=a2b2,故选项正确;D、a6÷a3=a3≠a2,故选项错误.故选:C.点评:本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算5. (•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.6. (•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. (•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. (•珠海,第3题3分)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点:合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:解:A、不是同类项,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类项,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.9.(四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(•新疆,第3题5分)下列各式计算正确的是()11.(年云南省,第2题3分)下列运算正确的是()A. 3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(•温州,第5题4分)计算:m6•m3的结果()A.m18B.m9C.m3D.m2考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答:解:m6•m3=m9.故选B.点评:本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.13.(•舟山,第6题3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.14.(•毕节地区,第3题3分)下列运算正确的是()15.(•毕节地区,第4题3分)下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+216.(•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()17.(•武汉,第5题3分)下列代数运算正确的是()考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.解答:解:A、(x3)2=x6,原式计算错误,故本选项错误;B、(2x)2=4x2,原式计算错误,故本选项错误;C、x3•x2=x5,原式计算正确,故本选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.18.(•襄阳,第2题3分)下列计算正确的是()A.a2+a2=2a4B.4x﹣9x+6x=1 C.(﹣2x2y)3=8x6y3D.a6÷a3=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:运用同底数幂的加法法则,合并同类项的方法,积的乘法方的求法及同底数幂的除法法则计算.解答:解:A、a2+a2=2a2≠2a4,故A选项错误;B,4x﹣9x+6x=x≠1,故B选项错误;C、(﹣2x2y)3=﹣8x6y3,故C选项正确;D、a6÷a3=a3≠a2故D选项错误.故选:C.点评:本题主要考查了同底数幂的加法法则,合并同类项的方法,积的乘方的求法及同底数幂的除法法则,解题的关键是熟记法则进行运算.19.(•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.考点:二次根式的化简求值;因式分解的应用分析:根据x、y的值,先求出x﹣y和xy,再化简原式,代入求值即可.解答:解:∵x=1﹣,y=1+,∴x﹣y=(1﹣)(1+)=﹣2,xy=(1﹣)(1+)=﹣1,∴x2+y2﹣xy﹣2x+2y=(x﹣y)2﹣2(x﹣y)+xy=(﹣2)2﹣2×(﹣2)+(﹣1)=7+4.点评:本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式.20.(•邵阳,第2题3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式专题:计算题.分析:A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.解答:解:A、原式=x,正确;B、原式=x5,错误;C、原式=a2﹣2ab+b2,错误;D、原式=a2﹣b2,故选A点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式是解本题的关键.21.(•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()22.(•四川自贡,第2题4分)(x4)2等于()A.x6B.x8C.x16D.2x4考点:幂的乘方与积的乘方分析:根据幂的乘方等于底数不变指数相乘,可得答案.解答:解:原式=x4×2=x8,故选:B.点评:本题考查了幂的乘方,底数不变指数相乘是解题关键.23.(•四川自贡,第11题4分)分解因式:x2y﹣y=y(x+1)(x﹣1).考点:提公因式法与公式法的综合运用分析:观察原式x 2y ﹣y ,找到公因式y 后,提出公因式后发现x 2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:解:x 2y ﹣y , =y (x 2﹣1),=y (x +1)(x ﹣1).点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.24.(·台湾,第2题3分)若A 为一数,且A =25×76×114,则下列选项中所表示的数,何者是A 的因子?( )A .24×5B .77×113C .24×74×114D .26×76×116分析:直接将原式提取因式进而得出A 的因子.解:∵A =25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.故选:C .点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键.25.(·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x 2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式.解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5). 故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可.解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)=(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5)=﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1)=﹣(3x 6﹣4x 5)(2x +1).故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(·云南昆明,第4题3分)下列运算正确的是( )A . 532)(a a =B . 222)(b a b a -=-C . 3553=-D . 3273-=-考点: 幂的乘方;完全平方公式;合并同类项;二次根式的加减法;立方根.分析: A、幂的乘方:mn n m a a =)(; B 、利用完全平方公式展开得到结果,即可做出判断;C 、利用二次根式的化简公式化简,合并得到结果,即可做出判断.D 、利用立方根的定义化简得到结果,即可做出判断;解答: 解:A 、632)(a a =,错误;B 、 2222)(b ab a b a +-=- ,错误;C 、52553=-,错误;D 、3273-=-,正确.故选D点评: 此题考查了幂的乘方,完全平方公式,合并同类项,二次根式的化简,立方根,熟练掌握公式及法则是解本题的关键.28.(•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( )A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x 分析:原式利用单项式乘以多项式法则计算即可得到结果.解:原式=6x 3+2x ,故选CX点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】A .()22x 9-B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+- 【答案】C .【解析】30. (•湘潭,第2题,3分)下列计算正确的是()A.a+a2=a3B.2﹣1= C.2a•3a=6a D.2+=2考点:单项式乘单项式;实数的运算;合并同类项;负整数指数幂.分析:A、原式不能合并,错误;B、原式利用负指数幂法则计算得到结果,即可做出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式不能合并,故选项错误;B、原式=,故选项正确;C、原式=6a2,故选项错误;D、原式不能合并,故选项错误.故选B.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.31. (•益阳,第2题,4分)下列式子化简后的结果为x6的是()A.x3+x3B.x3•x3C.(x3)3D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项错误;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.32. (年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (•泰州,第2题,3分)下列运算正确的是()A.x3•x3=2x6B.(﹣2x2)2=﹣4x4C.(x3)2=x6D.x5÷x=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.解答:解:A、原式=x6,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选C.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.34.(•扬州,第2题,3分)若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x考点:单项式乘单项式专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:3x2y÷3xy=x,故选C点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.35.(•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a考点:列代数式.分析:原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1﹣10%),由此解决问题即可.解答:解:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.点评:本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.36.(•滨州,第2题3分)一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|考点:零指数幂;绝对值;有理数的乘方;算术平方根.分析:根据非0的0次幂等于1,可得答案.解答:解:A、C、D、a=0时,a2=0,故A、C、D错误;B、非0的0次幂等于1,故B正确;故选:B.点评:本题考查了零指数幂,非0的0次幂等于1是解题关键.37.(•济宁,第2题3分)化简﹣5ab+4ab的结果是()A.﹣1 B.a C.b D.﹣ab考点:合并同类项.分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.解答:解:﹣5ab+4ab=(﹣5+4)ab=﹣ab故选:D.点评:本题考查了合并同类项的法则.注意掌握合并同类项时把系数相加减,字母与字母的指数不变,属于基础题.38.(年山东泰安,第2题3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. (•广东,第11题4分)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. (•珠海,第7题4分)填空:x2﹣4x+3=(x﹣2)2﹣1.考点:配方法的应用.专题:计算题.分析:原式利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.3. (•广西贺州,第13题3分)分解因式:a3﹣4a=a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. (•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a5考点:幂的乘方与积的乘方.分析:利用幂的乘方与积的乘方的性质求解即可求得答案.解答:解:(2a2)3=8a6.故选C.点评:此题考查了幂的乘方与积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.5.(•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+1考点:实数范围内分解因式.分析:利用因式分解的方法,分别判断得出即可.解答:解;A、x2+y2,无法因式分解,故此选项错误;B、x2﹣y,无法因式分解,故此选项错误;C、x2+x+1,无法因式分解,故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用公式是解题关键.6.(年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(•温州,第11题5分)分解因式:a2+3a=.考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.(年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2=.分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(•武汉,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是n(m﹣1)2.11.(•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.考点:完全平方公式分析:运用平方差公式,化简代入求值,解答:解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.点评:本题主要考查了平方差公式,关键要注意运用公式来求值.12.(•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).14.(•浙江宁波,第19题6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.15. (•湘潭,第10题,3分)分解因式:ax﹣a=a(x﹣1).16. (•益阳,第9题,4分)若x2﹣9=(x﹣3)(x+a),则a=3.考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解得出即可.解答:解:∵x2﹣9=(x+3)(x﹣3)=(x﹣3)(x+a),∴a=3.故答案为:3.点评:此题主要考查了公式法分解因式,熟练掌握平方差公式是解题关键.17. (•株洲,第9题,3分)计算:2m2•m8=2m10.考点:单项式乘单项式.分析:先求出结果的系数,再根据同底数幂的乘法进行计算即可.解答:解:2m2•m8=2m10,故答案为:2m10.点评:本题考查了单项式乘以单项式,同底数幂的乘法的应用,主要考查学生的计算能力.18. (•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.19.(•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).考点:因式分解-十字相乘法等.分析:首先将首尾两项分解因式,进而提取公因式合并同类项得出即可.解答:解:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).故答案为:(x﹣3)(4x+3).点评:此题主要考查了分组分解法分解因式,正确分组得出是解题关键.20.(•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y(3x ﹣y)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式﹣y,进而利用完全平方公式分解因式得出即可.解答:解:6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2.故答案为:﹣y(3x﹣y)2.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握完全平方公式是解题关键.21.(•滨州,第14题4分)写出一个运算结果是a6的算式a2•a4.22.(•菏泽,第11题3分)分解因式:2x3﹣4x2+2x= 2x(x﹣1)2=__________ .23.(•济宁,第11题3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.考点:列代数式(分式).分析:这卷电线的总长度=截取的1米+剩余电线的长度.解答:解:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.点评:注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题1. (•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. (•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.考点:整式的混合运算—化简求值分析:首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.解答:解:(a+2)2+a(a﹣4)=a2+4a+4+a2﹣4a=2a2+4,当a=时,原式=2×()2+4=10.点评:此题考查整式的化简求值,注意先化简,再代入求值.3.(•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+0;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.4.(•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值 专题:计算题. 分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答: 解:(1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x 2+4x +4﹣x 2+3x =7x +4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5. (·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-.【答案】7.【解析】。