【最新试题库含答案】数轴练习题(含答案)
人教版七年级数学第一章 数轴 同步测试题(含答案)
人教版七年级数学第一章1.2.2数轴同步测试题一、选择题1.关于数轴,下列说法最准确的是(D)A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下列是数轴的是(D)3.如图,数轴上点A表示的数是(C)A.-1 B.0 C.1 D.24.如图,数轴上蝴蝶所在点表示的数可能为(D)A.3 B.2 C.1 D.-15.下列说法正确的是(C)A.同一数轴中的单位长度不需要统一B.数轴上两个不同的点可以表示同一个有理数C.任何一个有理数都可以用数轴上的一个点表示D.有些有理数不能在数轴上表示出来6.数a,b,c对应的点在数轴上的位置如图所示,则下列说法正确的是(D)A.a,b,c是负数B.a,b,c是正数C.a,b是负数,c是正数D.a是负数,b,c是正数7.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有(C)A.0个B.1个C.2个D.3个8.数轴上原点及原点左边的点表示(C)A.正数B.负数C.非正数D.非负数9.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是(D)A.0 B.1 C.2 D.310.如图,数轴上表示-2的点A到原点的距离是(B)A.-2 B.2 C.-12D.1211.到原点的距离是2022个单位长度的点表示的数是(C)A.2022 B.-2022 C.±2022 D.202112.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为(B)A.-(a+1) B.-(a-1) C.a+1 D.a-113.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到点B时,点B所表示的数为(C)A.2 B.-6 C.2或-6 D.不同于以上答案14.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB,则AB盖住的整数点有(C)A.13个或14个B.14个或15个C.15个或16个D.16个或17个二、填空题15.在数轴上,表示+5的点在原点右侧,距离原点5个单位长度,表示-2的点与表示+5的点之间的距离是7个单位长度.16.数轴上点A 表示的数是2,那么与点A 相距5个单位长度的点表示的数是7或-3. 17.如图所示,在数轴上有A ,B ,C 三点.请回答:(1)将点A 向右移动2个单位长度后,表示的有理数是-1; (2)将点B 向左移动3个单位长度后,表示的有理数是-4; (3)将点C 向左移动5个单位长度后,表示的有理数是-2.18.将一刻度尺按如图所示放在数轴上(数轴的单位长度是1 cm),数轴上的两点A ,B 恰好与刻度尺上的“0 cm ”和“7 cm”分别对应.若点A 表示的数为-2.3,则点B 表示的数应为4.7.三、解答题19.如图,指出数轴上的点A ,B ,C 表示的数,并把-4,32,5这三个数分别用点D ,E ,F 在数轴上表示出来.解:点A ,B ,C 表示的数分别是-2.5,0,4;-4,32,5这三个数分别用点D ,E ,F 在数轴上表示如图所示.20.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C. (1)画出数轴并标出A ,B ,C 三点在数轴上的位置; (2)写出A ,B ,C 三点表示的数;(3)根据点C 在数轴上的位置,C 点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?解:(1)如图:(2)A,B,C三点表示的数分别为4,6,-4.(3)C点可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.21.一条东西走向的商业街上,依次有书店A、冷饮店B、鞋店C,B位于C西边50米处,C位于A东边60米处,王平先去书店,然后沿着这条街向东走了30米至D处,接着向西走50米到达E处.(1)以A为原点、向东为正方向画数轴,在数轴上表示出上述A,B,C,D,E的位置;(2)若在这条街上建一家超市F,使超市F与鞋店C分居E点两侧,且到E点的距离相等,问超市F在冷饮店B的什么方向?距离多远?解:(1)如图所示.(2)由数轴易知超市F在E的西边,距离80米,E在冷饮店B的西边,距离30米,故超市F在冷饮店B的西边,距离110米.22.如图,A,B,C三点在数轴上,点A表示的数为-10,点B表示的数为14,点C到点A和点B之间的距离相等.(1)求A,B两点之间的距离;(2)求C点对应的数;(3)甲、乙分别从A,B两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数.解:(1)A ,B 两点之间的距离为24个单位长度. (2)C 点对应的数是2.(3)相遇的时间为:24÷(1+2)=8(s ), 所以甲走了8个单位长度到D 点. 所以相遇点D 对应的数为-2.1、在最软入的时候,你会想起谁。
数轴练习题加答案
数轴练习题加答案数轴是一种数学工具,用于表示实数和它们的顺序。
它是一个直线,通常水平放置,标有等距的点,这些点代表整数。
数轴上每个点之间的距离代表一个单位长度。
以下是一些数轴练习题以及它们的答案。
练习题1:在数轴上标出以下数:-3, 0, 5, 7。
答案:在数轴上,从左到右依次标出-3, 0, 5, 7。
0位于数轴的中心,-3在0的左边,5和7在0的右边。
练习题2:如果点A在数轴上表示-2,点B表示3,求点A和点B之间的距离。
答案:点A和点B之间的距离是3 - (-2) = 5。
练习题3:在数轴上,如果点P表示一个数,且它与-1的距离是4个单位长度,求点P表示的数。
答案:如果点P在-1的右边,那么P表示的数是-1 + 4 = 3。
如果点P在-1的左边,那么P表示的数是-1 - 4 = -5。
练习题4:给定数轴上的点Q表示-4,点R表示6,求点Q和点R之间的中点。
答案:中点的值是(-4 + 6) / 2 = 1。
练习题5:在数轴上,点S表示-3,点T表示7。
如果点U表示一个数,使得点U与点S和点T的距离相等,求点U表示的数。
答案:点U表示的数是(-3 + 7) / 2 = 2。
练习题6:如果在数轴上有一个点V,它表示的数是-2,并且它与另一个点W的距离是3个单位长度,求点W表示的数。
答案:如果点W在点V的右边,那么W表示的数是-2 + 3 = 1。
如果点W在点V的左边,那么W表示的数是-2 - 3 = -5。
练习题7:在数轴上,点X表示一个数,并且与0的距离是5个单位长度,求点X表示的数。
答案:如果点X在0的右边,那么X表示的数是5。
如果点X在0的左边,那么X表示的数是-5。
练习题8:如果点Y表示一个数,并且它与点Z表示的数的和是10,而点Y和点Z在数轴上的距离是6个单位长度,求点Y和点Z各自表示的数。
答案:设点Y表示的数为y,点Z表示的数为z。
根据题意,我们有y + z = 10 和 |y - z| = 6。
数轴练习题含答案
数轴练习题含答案数轴是数学中表示数的直线,通常水平放置,原点位于中间,左边是负数,右边是正数。
数轴练习题可以帮助学生更好地理解数轴的概念和应用。
以下是一些数轴练习题及其答案:练习题1:在数轴上标出以下数:-3, 0, 5, 10。
答案:在数轴上,从原点向左数3个单位是-3,原点是0,向右数5个单位是5,再向右数5个单位是10。
练习题2:如果点A表示的数是-2,点B表示的数是4,求点A和点B 之间的距离。
答案:点A和点B之间的距离是4 - (-2) = 6。
练习题3:在数轴上,如果一个点P表示的数是x,并且点P到原点的距离是3,求x的可能值。
答案:点P到原点的距离是3,所以x的可能值是3或-3。
练习题4:给定数轴上的点Q表示的数是-5,点R表示的数是7。
如果点S表示的数是点Q和点R的平均值,求点S表示的数。
答案:点S表示的数是(-5 + 7) / 2 = 1。
练习题5:在数轴上,点A表示的数是-1,点B表示的数是3。
如果点C表示的数是点A和点B的中点,求点C表示的数。
答案:点C表示的数是(-1 + 3) / 2 = 1。
练习题6:在数轴上,如果点D表示的数是2,并且点D到点E的距离是5,求点E表示的数。
答案:点E表示的数可以是2 + 5 = 7,或者2 - 5 = -3。
练习题7:如果数轴上的点F表示的数是-3,并且点F到点G的距离是4,求点G表示的数。
答案:点G表示的数可以是-3 + 4 = 1,或者-3 - 4 = -7。
练习题8:给定数轴上的点H表示的数是5,点I表示的数是-3。
如果点J表示的数是点H和点I的相反数的平均值,求点J表示的数。
答案:点J表示的数是(5 + (-3)) / 2 = 1。
这些练习题涵盖了数轴的基本应用,包括点的表示、距离的计算以及平均值的求法。
通过这些练习,学生可以加深对数轴概念的理解,并提高解决相关问题的能力。
七年级数学上册《数轴》同步练习题(附答案)
七年级数学上册《数轴》同步练习题(附答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .2、如图,数轴上被墨水遮盖的数可能是( )A . 3.2-B .3-C .2-D .0.5-3、如图,在数轴上有A ,B ,C ,D 四个点,对它们表示的数,叙述正确的是( )A .点D 表示的数为﹣2.5B .点C 表示的数为﹣1.5 C .点B 表示的数为0.5D .点A 表示的数为1.254、如图的数轴被墨迹盖住一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个5、点123,,,,n A A A A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11A O =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;…,依照上述规律,点20182019,A A 所表示的数分别为 ( )A .2018,-2019B .1009,-1010C .-2018,2019D .-1009,1009二、填空题 6、已知在数轴上,位于原点左边的点A 到原点的距离是8,那么点A 所表示的数是______.7、如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是______.8、数轴上,到2这个点的距离等于3的点所表示的数是__________.9、正整数、0、负整数统称__________;正分数和负分数统称____________;整数和分数统称_________.10、画一条______,在直线上取一点表示0,并把这个点叫作_______,选取某一长度作为______,规定直线上向右的方向为_______,就得到_______.11、规定了______、______和_______的______叫数轴.12、在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.13、在数轴上到表示-2的点相距8个单位长度的点表示的数为_____.三、解答题,-0.514、已知下列有理数:-4,2,-3.5,0,-2,312(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?15、一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市。
数轴练习题(含答案)
亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档数轴练习题(含答案),这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习(含答案)《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为()A.-5B.5C.-15D.152.-的相反数是()A.-8B.1818C.0.8D.83.在下面所画的数轴中,你认为正确的数轴是()4.下列说法正确的是()A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3B.5C.6D.76.若a=7,b=5,则a-b的值为()A.2C.2或12B.12D.2或12或-12或-27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是()A.44B.1122C.00D.1.51.59.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2B.-1C.0D.110.如果abcd0,那么这四个数中的负因数至少有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数.21013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-120.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:31,-(+6.3),+(-32),12,3.52(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-311,4,2.5,0,1,-(-7),-5,-1.2221.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x=1,这样的数x可以是0或2.(1)等式x2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(2)等式x3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(3)在数轴上,表示数x的点与表示数5的点的距离等于6,其中x的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x的相反数是_______,m+的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21(2+6),那么2到点100和到点999距离相等的点表示的数是_______;到点m和点-n距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设abc0,abc0,求bccaab的值。
七年级初一上册数学人教版《数轴》 练习试题 测试卷(含答案)(1)
《1.2.2数轴》课时练一、选择题1.在下列图中,正确画出的数轴是()A.B.C.D.2.如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.4B.3C.2D.13.如图,数轴上点A对应的数是,将点A沿数轴向左移动3个单位至点B,则点B对应的数是()A.﹣B.﹣2C.3D.4.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣35.下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.66.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C 所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2 8.有理数a在数轴上的对应点的位置如图所示,如果有理数b满足a<b<﹣a,那么b的值可以是()A.2B.3C.﹣1D.﹣2二、填空题9.数轴上的点A表示的数为﹣10,点B表示的数为﹣4,则A、B之间的距离为.10.已知在数轴上点A所表示的数是﹣2,如果将点A向左移动3个单位长度得到点B,那么点B所表示的数是.11.已知A,B是数轴上的两点,且AB=4.5,点B表示的数为1,则点A表示的数为.12.在数轴上,表示数a的点在原点的左侧,距离原点4个单位长度,则a=.13.如果数轴上的点A对应的有理数为﹣4,那么与A相距四个单位长度的点所对应的有理数为.14.数轴上表示整数的点称为整点.某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2020cm的线段AB,则盖住的整点的个数是.15.有理数a、b在数轴上的位置如图所示,则a、b大小是:a b.16.在数轴上,已知点A所表示的数为﹣2,则点A移动4个单位长度后所表示的数是.17.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2020次后,该点所对应的数是.18.小明写作业时不小心将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有个.三、解答题19.已知下列有理数:.(1)这些有理数中,整数有个,非负数有个;(2)画数轴,在数轴上找出这些数所在的位置,并标出相应的点.20.某高速公路养护小组,乘车沿南北方向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下:(单位:km)﹣9,+7,﹣13,﹣3,+11,﹣6,+16,﹣8,+4,+14.(1)养护过程中,最远处离出发点有km.(2)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(3)若汽车耗油为0.6L/km,则这次养护共耗油多少升?21.李老师进行家访,从学校出发,先向西开车行驶4km到达A同学家,继续向西行驶7km 到达B同学家,然后又向东行驶15km到达C同学家,最后回到学校.(1)以学校为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴,并在数轴上表示出A、B、C三个同学的家的位置.(2)A同学家离C同学家有多远?(3)李老师一共行驶了多少km?22.根据如图给出的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.若将数轴折叠,使得A与﹣5表示的点重合,则B点与数表示的点重合;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)已知M点到A、B两点距离和为8,求M点表示的数.参考答案1.B 2.B 3.D 4.D 5.C 6.D 7.C 8.C9.6 10.﹣5 11.﹣3.5或5.5 12.﹣4 13.0或﹣814.2020或2021 15.<16.﹣6或2 17.﹣1010 18.619.解:(1)整数有﹣(﹣3),﹣3,0,+4,共4个,非负数有﹣(﹣3),0,+4,共3个.故答案为:4,3.(2)如图所示:20.解:(1))|﹣9+7|=2(千米),|﹣2+(﹣13)|=15(千米),|﹣15+(﹣3)|=18(千米),|﹣18+11|=7(千米),|﹣7+(﹣6)|=13(千米),|﹣13+16|=3(千米),|3+(﹣8)|=5(千米),|﹣5+4|=1(千米),|﹣1+14|=13(千米),最远处离出发点有18千米.故答案为:18.(2)(﹣9)+7+(﹣13)+(﹣3)+11+(﹣6)+16+(﹣8)+4+14=13(千米),答:养护小组最后到达的地方在出发点的北方距出发点13千米;(3)(|﹣9|+7+|﹣13|+|﹣3|+11+|﹣6|+16+|﹣8|+4+14)×0.6=91×0.6=54.6.(升),答:这次养护共耗油54.6升.21.解:(1)如图:(2)4﹣(﹣4)=8(km).答:A同学家离C同学家有8km.(3)4+7+15+4=30(km).答:李老师一共行驶了30km.22.解:(1)根据题意得:点A表示的数是1,点B表示的数是﹣3.将数轴折叠,使得A与﹣5表示的点重合,则B点与数﹣1表示的点重合;故答案为:1;﹣3;﹣1;(2)在A的左边时,1﹣4=﹣3,在A的右边时,1+4=5,所表示的数是﹣3或5;故答案为:﹣3或5;(3)∵M点到A、B两点距离和为8,设点M对应的数是x,当点M在点A右边时,x﹣(﹣3)+x﹣1=8,解得x=3;当点M在点B左边时,(﹣3)﹣x+1﹣x=8,解得x=﹣5.∴M点表示的数为3或﹣5.。
数轴考试题及答案
数轴考试题及答案一、单项选择题1. 数轴上,点A表示的数是-2,点B表示的数是3,那么AB 两点之间的距离是()。
A. 1B. 5C. 4D. 3答案:B2. 在数轴上,点P表示的数是-1,点Q表示的数是2,那么PQ 两点之间的距离是()。
A. 3B. 1C. 2D. 4答案:A3. 数轴上,点M表示的数是5,点N表示的数是-3,那么MN 两点之间的距离是()。
A. 8B. 2C. 5D. 3答案:A4. 如果数轴上点A表示的数是-4,点B表示的数是6,那么AB两点之间的距离是()。
A. 10B. 2C. 8D. 6答案:A5. 在数轴上,点C表示的数是-5,点D表示的数是4,那么CD两点之间的距离是()。
A. 9B. 1C. 3D. 5答案:A二、填空题6. 数轴上,点E表示的数是-3,点F表示的数是1,那么EF两点之间的距离是______。
答案:47. 如果数轴上点G表示的数是2,点H表示的数是-7,那么GH两点之间的距离是______。
答案:98. 数轴上,点I表示的数是0,点J表示的数是-6,那么IJ两点之间的距离是______。
答案:69. 在数轴上,点K表示的数是3,点L表示的数是-2,那么KL两点之间的距离是______。
答案:510. 数轴上,点M表示的数是-1,点N表示的数是5,那么MN两点之间的距离是______。
答案:6三、解答题11. 已知数轴上点P表示的数是-2,点Q表示的数是4,求PQ 两点之间的距离。
答案:PQ两点之间的距离是6。
12. 在数轴上,点A表示的数是-5,点B表示的数是3,求AB 两点之间的距离。
答案:AB两点之间的距离是8。
13. 数轴上,点C表示的数是1,点D表示的数是-4,求CD两点之间的距离。
答案:CD两点之间的距离是5。
14. 在数轴上,点E表示的数是-3,点F表示的数是2,求EF 两点之间的距离。
答案:EF两点之间的距离是5。
15. 数轴上,点G表示的数是0,点H表示的数是6,求GH两点之间的距离。
数轴测试题及参考答案
数轴测试题及参考答案
数轴是用于表示有序数的工具,可以帮助我们直观地理解和比较数
的大小关系。
在数轴上,数值越大的数离原点越远,数值越小的数离
原点越近。
下面是一些数轴测试题及其参考答案,希望可以帮助大家
更好地理解和运用数轴。
题目一:
将以下数填入数轴的适当位置:-3,2,0,5。
题目二:
根据下面的数轴,判断以下数是否在数轴上的标记对应的位置上,
并在括号内写出判断结果:
-4(),1(),3(),6()。
题目三:
将下面数轴上的数按照从小到大的顺序填入括号中:(),(),(),(),()。
题目四:
找出下面数轴上两个数之间的所有整数,并将其填入括号中:-2和
4之间的整数是(),0和5之间的整数是()。
参考答案:
题目一的参考答案:
-3在数轴上的位置是左边第三个刻度点。
2在数轴上的位置是原点的右边第二个刻度点。
0在数轴上的位置是原点。
5在数轴上的位置是右边第五个刻度点。
题目二的参考答案:
-4(✓),1(✓),3(✓),6()。
题目三的参考答案:
(-2),(0),(2),(4),(6)。
题目四的参考答案:
-2和4之间的整数是(-1,0,1,2,3)。
0和5之间的整数是(1,2,3,4)。
通过以上数轴测试题,我们可以更加熟练地掌握数轴的使用方法,以及数的大小和顺序关系。
在实际应用中,数轴可以帮助我们解决一些数学问题,比如寻找两个数之间的整数,或者进行数的比较和排序等。
希望本文提供的测试题和参考答案能够帮助大家更好地理解和运用数轴。
数轴练习题(含答案)
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.5的绝对值为A.5B.5c.15D.152.的相反数是A.8B.1818c..83.在下面所画的数轴中,你认为正确的数轴是4.下列说法正确的是A.正数与负数互为相反数B.符号不同的两个数互为相反数c.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为A.3B.5c.6D.76.若a=7,b=5,则ab的值为A.2c.2或12B.12D.2或12或12或27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是A.?4?4B.11?22c.0?0D.???9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子ab+c2d的值是A.2B.1c.0D.110.如果abcd0,那么这四个数中的负因数至少有A.4个B.3个c.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近2且比2大的负整数是______.12.111的相反数是______;2是______的相反数;_______与互为倒数.21013.数轴上表示2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点o的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:120.(5分)如图,根据数轴上各点的位置,写出它们所表示的数:31,,+(32),12,3.52用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.311,?4,,0,1,,5,1.2221.(6分)七班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:50分;B队:150分;c队:300分;D队:0分;E队:100分.将5个队按由低分到高分的顺序排序;把每个队的得分标在数轴上,并标上代表该队的字母;从数轴上看A队与B队相差多少分?c队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把5,3,5,1,3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x?=1,这样的数x可以是0或2.等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.在数轴上,表示数x的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)5的相反数是5,5的相反数是5,那么x的相反数是_______,m+的相反数是_______.数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21,那么2到点100和到点999距离相等的点表示的数是_______;到点m 和点n距离相等的点表示的数是_______.数轴上点4和点9之间的距离为5个单位,有这样的关系5=94,那么点10和点3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
初一数学数轴试题及答案
初一数学数轴试题及答案
一、选择题
1. 数轴上表示数-3的点在原点的哪一侧?
A. 左侧
B. 右侧
C. 不确定
答案:A
2. 若数轴上A点表示的数为-2,B点表示的数为3,则A、B两点之间的距离是多少?
A. 1
B. 5
C. 4
答案:B
二、填空题
3. 在数轴上,若点P表示的数是5,点Q表示的数是-2,则P、Q两点之间的距离是______。
答案:7
4. 数轴上,若点M表示的数是-3,点N表示的数是4,则M、N两点之间的距离是______。
答案:7
三、解答题
5. 画出数轴,并标出数-1,2,-4,5的位置。
答案:
数轴上,原点标为0,从原点向右依次标出1,2,3,4,5等点,表示相应的正数;从原点向左依次标出-1,-2,-3,-4等点,表示相应的负数。
6. 若数轴上点A表示的数是-6,点B表示的数是8,求A、B两点之间的距离。
答案:
A、B两点之间的距离为8 - (-6) = 14。
七年级数学上册暑假预习《数轴》测试题练习(含答案解析)
七年级数学上册暑假预习《数轴》测试题练习(含答案解析)一.选择题(共6小题)1.(2023•开阳县模拟)在数轴上,点A,B在原点O的两侧,分别表示数a,3,将点A向左平移1个单位长度,得到点C,若CO=BO,则a的值为()A.4 B.2 C.﹣2 D.﹣1【思路点拨】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【规范解答】解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:C.【考点评析】本题考查了数轴和绝对值方程的解法,用含a的式子表示出点C是解决本题的关键.2.(2022秋•洪山区校级期末)如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a﹣1)(b﹣1)>0;②(a﹣1)(b+1)>0;③(a+1)(b+1)>0.其中,正确的式子有()个.A.0 B.1 C.2 D.3【思路点拨】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【规范解答】解:∵a<1,∴a﹣1<0.∵b<1,∴b﹣1<0.∴(a﹣1)(b﹣1)>0.∴①正确,∵b<﹣1,∴b﹣(﹣1)<0.即b+1<0,∴(a﹣1)(b+1)>0.∴②正确,∵a>0,∴a+1>0,又∵b<﹣1,∴b+1<0,∴(a+1)(b+1)<0.∴③错误.故选:C.【考点评析】本题考查数轴和数轴上点的大小的比较,还考查了两个数相乘,积的符号问题.3.(2022秋•内江期末)如图,点A在数轴上表示的数为﹣3,点B表示的数为2,点P在数轴上表示的是整数,点P不与A、B重合,且PA+PB=5,则满足条件的P点表示的整数有()个A.1 B.2 C.3 D.4【思路点拨】不管点P在点A的左边,还是在点B的右边,PA+PB>5,故点P在A,B之间.【规范解答】解:∵PA+PB=5,∴点P在A,B两点之间,A,B两点之间的整数有﹣2,﹣1,0,1,故选:D.【考点评析】本题考查的是数轴,解题的关键是确定点P的大概位置.4.(2022秋•鼓楼区校级期末)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【思路点拨】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【规范解答】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上.故选:A.【考点评析】本题考查了相反数的性质,数轴的定义,数形结合是解题的关键.5.(2023•裕华区二模)如图,某同学用直尺画数轴,数轴上点A,B分别在直尺的1cm,9cm 处,若点A对应﹣4,直尺的0刻度位置对应﹣6,则线段AB中点对应的数为()A.4 B.5 C.8 D.0【思路点拨】在直尺中找到线段AB的中点对应的数字是5.根据题意可知直尺中每一厘米是数轴上两个单位长度,即可推理出直尺中数字5对应数轴上的数.【规范解答】解:由题可得线段AB的中点在直尺上是数字5,∵点A对应﹣4,直尺的0刻度位置对应﹣6,∴直尺中一厘米是数轴上两个单位长度.∴(5﹣1)×2=8,﹣4+8=4.∴线段AB中点对应的数为4.故选:A.【考点评析】本题以数轴为背景考查了学生在数轴上的数形结合的能力.本题难度不大,找出线段AB的中点,明确直尺上1厘米对数轴是几个单位长度,再推理得出答案即可.6.(2022秋•荆门期末)如图,正六边形ABCDEF(每条边长相等、每个角相等)在数轴上的位置如图所示,点E、F对应的数分别为﹣3、﹣1,现将正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点A所对应的数为1,像这样连续翻转后数轴上2023这个数所对应的点是()A.点C B.点D C.点E D.点F【思路点拨】根据点的坐标所呈现的规律得出答案即可.【规范解答】解:由题意得,A(1,0),B(3,0),C(5,0),D(7,0),E(9,0),F(11,0)…设第n个点所对应的数是2023,则2n﹣1=2023,解得n=1012,而1012÷6=168……4,因此数轴上2023这个数所对应的点为点D,故选:B.【考点评析】本题考查数轴,掌握数轴表示数的方法以及各个点所对应数轴上的数的规律是正确解答的前提.二.填空题(共5小题)7.(2022秋•五莲县期末)已知数轴上三点M,O,N对应的数分别是﹣1,0,3,点P为数轴上任意点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时P点到点M、点N的距离相等,则t的值为或4..【思路点拨】分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【规范解答】解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M 永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1,PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.【考点评析】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.8.(2022秋•叙州区期末)数轴上A、B两点对应的数分别为﹣18和﹣3,P为数轴上一点,若AP:PB=3:2,则点P表示的数是﹣9或27 .【思路点拨】分两种情况,分别根据P点到A、B距离的比为3:2列出方程,即可解得答案.【规范解答】解:当P在线段AB上时,设点P表示的数是x,∵A、B两点对应的数分别为﹣18和﹣3,∴PA=x﹣(﹣18)=x+18,PB=﹣3﹣x,∴(x+18):(﹣3﹣x)=3:2,解得x=﹣9,经检验,x=﹣9符合题意,当P在线段AB延长线上时,PA=x﹣(﹣18)=x+18,PB=x+3,∴(x+18):(x+3)=3:2,解得x=27,经检验,x=27符合题意,故答案为:﹣9或27.【考点评析】本题考查数轴上两点之间的距离问题,解题的关键是分类讨论,分别列方程解决问题.9.(2022秋•陈仓区期末)点A为数轴上表示﹣1的点,若将点A沿数轴一次平移一个单位,平移两次后到达点B,则点B表示的数是﹣3或1或﹣1 .【思路点拨】讨论每次平移向右或向左平移即可得到答案.【规范解答】解:当两次都向左平移时,点B表示的数为﹣1﹣1﹣1=﹣3;当两次都向右平移时,点B表示的数为﹣1+1+1=1;当第一次向右,第二次向左或第一次向左,第二次向右平移时,点B表示的数为﹣1+1﹣1=﹣1;故答案为:﹣3或1或﹣1.【考点评析】本题主要考查了数轴上两点的距离,利用分类讨论的思想求解是解题的关键.10.(2022秋•郑州期末)如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4,某同学将刻度尺如图放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.则数轴上点B所对应的数b为﹣2 .【思路点拨】数轴上A、C两点间的单位长度是9,刻度尺对应的是5.4,所以数轴的单位长度是0.6cm,AB的长度是1.8cm,除以0.6得AB在数轴上的单位长度.【规范解答】解:∵5.4÷[4﹣(﹣5)]=0.6(cm),∴数轴的单位长度是0.6厘米,∵1.8÷0.6=3,∴在数轴上A,B的距离是3个单位长度,∴点B所对应的数b为﹣5+3=﹣2.故答案为:﹣2.【考点评析】本题考查的是数轴的概念和单位长度的换算,解题的关键是数轴上的单位长度等于多少cm.11.(2022秋•丽水期中)如图,将一条长为60cm的卷尺铺平放置在数轴上,使得0cm刻度线和60cm刻度线分别落在数轴上表示数﹣20和数10的点上.(1)数轴的原点O对应的是卷尺上40 cm的刻度线;(2)将卷尺沿直线MN向右折叠,使得0cm刻度线与58cm刻度线重合,此时10cm刻度线在数轴上对应点表示的数是 4 .【思路点拨】(1)根据已知可得数轴上的一个单位长度表示2cm,再根据原点与﹣20的距离即可求出答案;(2)根据0cm刻度线与58cm刻度线重合,可知直线MN过卷尺的29cm刻度线,所以10cm 刻度线与29×2﹣10=48cm刻度线重合,即可求出答案.【规范解答】解:(1)∵0cm刻度线和60cm刻度线分别落在数轴上表示数﹣20和数10的点,∴数轴上的一个单位长度表示2cm,∵原点与﹣20的距离为20的单位长度,∴20×2=40(cm),∴数轴的原点O对应的是卷尺上40cm的刻度线;故答案为:40.(2)∵0cm刻度线与58cm刻度线重合,∴直线MN过卷尺的29cm刻度线,∴10cm刻度线与29×2﹣10=48cm刻度线重合,∴48cm刻度线在数轴上对应点表示的数是=4.故答案为:4.【考点评析】本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.三.解答题(共6小题)12.(2022秋•迁安市期末)如图1,已知数轴上A、B两点所表示的数分别为﹣1和4.(1)线段AB长是 5 ;(2)若P为线段AB上的一点(点P不与A、B两点重合),当PM=AP,PN=BP,如图2所示,求此时MN的长.【思路点拨】(1)根据数轴上两点间距离公式计算可得,即数轴上两点A、B表示的数分别为x1、x2,则AB=|x1﹣x2|;(2)根据当,,相加可得.【规范解答】解:(1)AB=|4﹣(﹣1)|=5,故答案为:5;(2)∵,,∴MN=MP+NP,∴,∴,∴.【考点评析】本题考查了线段的和差倍分关系,解题的关键是找到线段之间的数量关系.13.(2022秋•晋安区期末)已知点P、点A、点B是数轴上的三个点.若点P到原点的距离等于点A、点B到原点距离的和的一半,则称点P为点A和点B的“关联点”.(1)已知点A表示1,点B表示﹣3,下列各数﹣2、﹣1、0、2在数轴上所对应的点分别是P1、P2、P3、P4,其中是点A和点B的“关联点”的是P1,P4;(2)已知点A表示3,点B表示m,点P为点A和点B的“关联点”,且点P到原点的距离为5,求m的值.【思路点拨】(1)设点A和点B的“关联点”所表示的数为:x,根据“关联点”的定义,列出一元一次方程,进行求解,即可得出结论;(2)根据“关联点”的定义,列出一元一次方程,进行求解即可.【规范解答】解:(1)设点A和点B的“关联点”所表示的数为:x,由题意得:,∴|x|=2,∴x=±2,∵﹣2、﹣1、0、2在数轴上所对应的点分别是P1、P2、P3、P4,∴其中是点A和点B的“关联点”的是:P1,P4.故答案为:P1,P4.(2)∵点P为点A和点B的“关联点”,且点P到原点的距离为5,点A表示3,点B表示m,∴2×5=3+|m|,∴|m|=7,∴m的值为:7或﹣7.【考点评析】本题考查绝对值的意义,以及一元一次方程的应用.理解并掌握“关联点”的定义,是解题的关键.14.(2022秋•礼泉县期末)如图,在一条不完整的数轴上从左到右有点A,B,C,D,其中AD=6,且AB=BC=CD.(1)则BC的长为 2 ;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和.【思路点拨】(1)由AD=6,B、C是AD的三等分点,直接计算即可;(2)分别得出AB,BC,BD的长,再根据数轴与实数的对应关系解答.【规范解答】解:(1)∵AD=6,B、C是AD的三等分点,∴BC=AD==2.故答案为:2.(2)∵AD=6,B、C是AD的三等分点,∴AB=BC=CD=AD=2,若B为原点,则点A,C,D所对应的数分别为﹣2,2,4,∴点A,C,D所对应的数的和为﹣2+2+4=4.【考点评析】本题主要考查了数轴以及有理数的计算,解题的关键是熟练掌握数轴上点的坐标特征,是基础考点.15.(2022秋•南充期末)出租车司机沿东西方向的公路送乘客,如果规定向东为正,向西为负,当天的历史记录如下(单位:km).+17,﹣9,+7,﹣15,﹣4,+10,﹣6,﹣8,+5,+13.(1)最后一名乘客到达的地方在出租车出发点的什么方向?距出发点多少千米?(2)若汽车每千米耗油量为0.06L,出租车送完最后一名乘客回到出发点时,共耗油多少L?【思路点拨】(1)对所有记录数据求和,根据结果的符号和绝对值进行求解;(2)先求得所有行驶路程的和,再乘以每千米耗油量为0.06L进行求解.【规范解答】解:(1)(+17)+(﹣9)+(+7)+(﹣15)+(﹣4)+(+10)+(﹣6)+(﹣8)+(+5)+(+13)+17﹣9+7﹣15﹣4+10﹣6﹣8+5+13=10(km),答:最后一名乘客到达的地方在出租车出发点的东方;距出发点10千米;(2)0.06×(|+17|+|﹣9|+|+7|+|﹣15|+|﹣4|+|+10|+|﹣6|+|﹣8|+|+5|+|+13|)=0.06×(17+9+7+15+4+10+6+8+5+13)=0.06×94=5.64(L),答:出租车送完最后一名乘客回到出发点时,共耗油5.64L.【考点评析】此题考查了运用正负数解决实际问题的能力,关键是能准确理解并运用该知识进行列式、计算.16.(2022秋•越秀区校级期末)如图,已知数轴上A,B两点表示的数分别为﹣1,3,点P 为数轴上一动点,其表示的数为x.(1)若点P为AB的中点,则x的值为 1 ;(2)若点P在原点的右侧,且到点A,B的距离之和为8,则x的值为 5 ;(3)某时刻点A,B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时沿数轴向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.求当点A,B之间的距离为3个单位长度时,点P表示的数.【思路点拨】(1)利用数轴上两点A、B对应的数分别为﹣1、3,得出中点位置P点表示的数,可得x的值;(2)根据PA+PB=8列方程可解答;(3)利用当A在B的左侧或B右侧时,分别列方程得出即可.【规范解答】解:(1)∵数轴上A,B两点表示的数分别为﹣1,3,点P为AB的中点,其表示的数为x,∴x==1;故答案为:1;(2)∵数轴上A,B两点表示的数分别为﹣1,3,∴AB=3﹣(﹣1)=4,∵点P在原点的右侧,且到点A,B的距离之和为8,∴x﹣3+x+1=8,∴x=5,故答案为:5;(3)设运动时间为t秒,则运动后点A表示:﹣1+2t,点B表示3+0.5t,点P表示:x =1﹣6t,∵点A,B之间的距离为3个单位长度,∴(3+0.5t)﹣(﹣1+2t)=±3,解得:t=或,∴x=1﹣6×=﹣3或x=1﹣6×=﹣27;答:点P表示的数是﹣3或﹣27.【考点评析】此题主要考查了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识,利用分类讨论得出是解题关键.17.(2022秋•南召县期末)如图,在一条不完整的数轴上从左到右依次有三个点A、B、C;其中AB=2BC,设点A、B、C所对应数点和为m.(1)若点C为原点,BC=1,则点A对应的数为﹣3 ,点B对应的数为﹣1 ,m 的值为﹣4 ;(2)若点B为原点,AC=9,求m的值.(3)若原点O到点C的距离为6,且OC=AB,直接写出m的值.【思路点拨】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【规范解答】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=9,AB=2BC,∴点A所对应的数为﹣6,点C所对应的数为3,∴m=﹣6+3+0=﹣3;(3)∵原点O到点C的距离为6,∴点C所对应的数为±6,∵OC=AB,∴AB=6,当点C对应的数为6,∵AB=6,AB=2BC,∴BC=3,∴点B所对应的数为3,点A所对应的数为﹣3,∴m=3﹣3+6=6;当点C所对应的数为﹣6,∵AB=6,AB=2BC,∴BC=3,∴点B所对应的数为﹣9,点A所对应的数为﹣15,∴m=﹣15﹣9﹣6=﹣30综上所述m=6或﹣30.【考点评析】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.。
数轴练习题(含答案)
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习(含答案)《数轴、相反数、绝对值》专题练习一、选择题(每题3分,共30分)1.-5的绝对值为( )A.-5B.5C.-1 5 D.1 52.-的相反数是( )A.-8B.1818 C.0.8D.83.在下面所画的数轴中,你认为正确的数轴是()4.以下说法正确的选项( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如下列图,那么线段AB的长度为()A.-3B.5C.6D.76.假设a=7,b=5,那么a-b的值为( )A.2C.2或12 B.12 D.2或12或-12或-27.实数a,b在数轴上的位置如下列图,以下说法正确的选项()8.以下式子不正确的选项( )A.?4?4B.11? 229.假设有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是( )A.-2B.-1C.0D.110.假设abcdlt;0,a+b=0,cd0,那么这四个数中的负因数至少有( )A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数.210 13.数轴上表示-2的点离原点的间隔是______个单位长度;表示+2的点离原点的间隔是______个单位长度;数轴上与原点的间隔是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,假设A,B表示互为相反数的两个点,同时这两点的间隔为8,那么这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x-1成立,你写出的x的值是______.17.假设x,y是两个负数,且xlt;y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,假设abc,那么该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出以下各数的绝对值:-120.(5分)(1)如图,按照数轴上各点的位置,写出它们所表示的数:31,-(+6.3),+(-32),12,3.52(2)用数轴上的点表示以下各数,并用“lt;”号把以下各数连接起来.-311,?4,2.5,0,1,-(-7),-5,-1.2221.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏完毕后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的间隔等于1,其几何意义可表示为:x?=1,如此的数x可以是0或2.(1)等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(2)等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(3)在数轴上,表示数x的点与表示数5的点的间隔等于6,其中x的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x的相反数是_______,m+的相反数是_______.(2)数轴上到点2和点6间隔相等的点表示的数是4,有如此的关系4=1n21(2+6),那么2 到点100和到点999间隔相等的点表示的数是_______;到点m和点-n间隔相等的点表示的数是_______.(3)数轴上点4和点9之间的间隔为5个单位,有如此的关系5=9-4,那么点10和点-3之间的间隔是_______;点m和点n之间的间隔是_______.25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
数轴测试题及答案
数轴测试题及答案
1. 题目:在数轴上,-3和5之间有多少个整数?
答案:在数轴上,-3和5之间的整数包括-2,-1,0,1,2,3,4,共6个整数。
2. 题目:如果数轴上A点表示的数是-4,B点表示的数是8,那么A
点和B点之间的距离是多少?
答案:A点和B点之间的距离是8 - (-4) = 12。
3. 题目:在数轴上,哪个点表示的数是0?
答案:在数轴上,原点表示的数是0。
4. 题目:数轴上,-2和3之间有多少个单位长度?
答案:数轴上,-2和3之间的单位长度有5个,即从-2到3需要
跨越5个单位长度。
5. 题目:如果数轴上C点表示的数是-1.5,那么C点左侧最近的整数
点表示的数是多少?
答案:C点左侧最近的整数点表示的数是-2。
6. 题目:数轴上,-5和7之间不包括端点的整数有多少个?
答案:数轴上,-5和7之间不包括端点的整数有-4,-3,-2,-1,0,1,2,3,6,共9个整数。
7. 题目:数轴上,哪个点表示的数是数轴上任意两点间距离的中点?
答案:数轴上,表示任意两点间距离中点的点是这两点坐标的平均值。
8. 题目:数轴上,如果D点表示的数是5,E点表示的数是-3,那么D 点和E点之间的距离是多少?
答案:D点和E点之间的距离是5 - (-3) = 8。
结束语:通过以上数轴测试题及答案,可以检验你对数轴概念的理解和应用能力。
希望这些题目能帮助你更好地掌握数轴的相关知识。
中考数学专题复习《数轴》测试卷(附带答案)
中考数学专题复习《数轴》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.解答题(共15小题)1.如图1 将一根木棒放在数轴(单位长度为1)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所对应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为3 由此可得这根木棒的长为图中点A所表示的数是点B所表示的数是(2)受(1)的启发请借助“数轴”这个工具解决下列问题:①一天爸爸对小明说:“我若是你现在这么大你才刚出生你若是我现在这么大我就84岁啦!”则爸爸的年龄是岁.(在图2中标出分析过程)②爷爷对小明说:“我若是你现在这么大你还要14年才出生你若是我现在这么大.我就118岁啦!”则爷爷的年龄是岁.(画出示意图展示分析过程)2.数轴上两点A B A在B左边原点O是线段AB上的一点已知AB=4 且OB=3OA.点A B对应的数分别是a b点P为数轴上的一动点其对应的数为x.(1)a=b=(2)若P A=2PB求x的值(3)若点P以每秒2个单位长度的速度从原点O向右运动同时点A以每秒1个单位长度的速度向左运动点B以每秒3个单位长度的速度向右运动设运动时间为t秒.请间在运动过程中3PB﹣P A的值是否随着时间t的变化而改变?若变化请说明理由若不变请求其值.3.【定义】点M N Q是一条直线上从左到右的三个点若直线上点P满足PM+PN=PQ 则称点P是点M N Q的“和谐点”.【理解】(1)在数轴上(图1)点A B C P表示的数分别为﹣2 0 5 1 点P是否为点A B C的“和谐点”?请通过计算作出判断.(2)点A B C是一条直线上从左到右的三个点且AB=2 BC=3 若点P是点A B C的“和谐点”则AP的长是.【拓展】(3)在数轴上(图2)点A B C表示的数分别为a a+2 a+5(a是整数)点P 在点A的左侧且点P是点A B C的“和谐点”点A B C P表示的数之和是否能被4整除?请通过计算作出判断.4.已知数轴上A B C三点对应的数分别为﹣1 3 5 点P为数轴上任意一点其对应的数为x.点A与点P之间的距离表示为AP点B与点P之间的距离表示为BP.(1)若AP=BP则x=(2)若AP+BP=8 求x的值(3)若点P从点C出发以每秒3个单位的速度向右运动点A以每秒1个单位的速度向左运动点B以每秒2个单位的速度向右运动三点同时出发.设运动时间为t秒试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.5.一年一度的“双十一”全球购物节完美收官来自全国各地的包裹陆续发到本地快递公司.一快递小哥骑三轮摩托车从公司P出发在一条东西走向的大街上来回投递包裹现在他一天中七次连续行驶的记录如表(我们约定向东为正向西为负单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣2+7﹣9+10+4﹣5﹣8(1)快递小哥最后一次投递包裹结束时他在公司P的哪个方向上?距离公司P多少千米?(2)在第次记录时快递小哥距公司P地最远(3)如果每千米耗油0.08升每升汽油需7.2元那么快递小哥投递完所有包裹需要花汽油费多少元?6.对数轴上的点P进行如下操作:先把点P沿数轴向右平移m个单位长度得到点P1再把点P1表示的数乘以n所得数对应的点为P2.若mn=k(m n是正整数)则称点P2为点P的“k倍关联点”.已知数轴上点M表示的数为2 点N表示的数为﹣3.例如当m=1 n=2时若点A表示的数为﹣4 则它的“2倍关联点”对应点A2表示的数为﹣6.(1)当m=1 n=2时已知点B的“2倍关联点”是点B2若点B2表示的数是4 则点B表示的数为(2)已知点C在点M右侧点C的“6倍关联点”C2表示的数为11 则点C表示的数为(3)若点P从M点沿数轴正方向以每秒2个单位长度移动同时点Q从N点沿数轴正方向以每秒1个单位长度移动且在任何一个时刻点P始终为点Q的“k倍关联点”直接写出k的值.7.阅读材料:我们知道|x|的几何意义是在数轴上的数x对应的点与原点的距离即|x|=|x ﹣0| 这个结论我们可以推广到数轴上任意两点之间的距离如图若数轴上两点A B 分别对应有理数a b则A B两点之间的距离为AB=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示2和﹣3的两点之间的距离是(2)数轴上表示x和﹣2的两点A B间的距离是若AB=3 则x (3)求|x﹣6|﹣|x+2|的最大值并求出x的取值范围(4)互不相等的有理数a b c在数轴上的对应点分别为A B C.若|a﹣b|+|c﹣a|=|b ﹣c| 请分析判断在点A B C中哪个点居于另外两点之间.8.如图1 已知数轴上点A表示的数为a点B表示的数是b并且a b满足|a+16|+(b ﹣4)2=0.(1)点A表示的数为点B表示的数为(2)若点C是线段AB上一点点H为线段AC的中点图中所有的线段长度和是64 求点H表示的数(3)若点P开始从点A以每秒2个单位的速度向右移动同时点Q从点B开始以每秒1个单位的速度也向右移动设运动时间为t秒M是线段PB的中点N是线段BQ的中点.若线段MN= 2 求t.9.根据所学数轴知识解答下面的问题:(1)知识再现:在数轴上有三个点A B C如图1所示.①A点表示的数是AB之间的距离是②将点B向左平移4个单位此时该点表示的数是(2)知识迁移:如图2 将一根木棒放在数轴(单位长度为1cm)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.①若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为6 由此可得这根木棒的长为cm?②图中点A所表示的数是点B所表示的数是(3)知识应用:如图3由(2)中①②的启发请借助“数轴”这个工具解决下列问题:一天妙妙去问奶奶的年龄奶奶说:“我若是你现在这么大你还要37年才出生你若是我现在这么大我就119岁啦!”请问奶奶现在多少岁了?琪琪的想法是:借助数轴把妙妙和奶奶的年龄差看作木棒AB奶奶像妙妙这样大时可看作点B移动到点A此时点A向左移动后所对应的点C所表示的数为﹣37根据琪琪的想法完成一下问题:①若把A移动到B时此时点B向右移动后所对应的点D表示的数为②求奶奶现在多少岁了.10.如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣7 b2.某同学将刻度尺按如图2所示的方式放置使刻度尺上的数字0对齐数轴上的点A发现点B对齐刻度2.1cm点C对齐刻度6.3cm.(1)求数轴上的一个单位长度对应刻度尺上的长度是多少cm?(2)求在数轴上点B所对应的数b(3)若Q是数轴上一点且满足A Q两点间的距离是A B两点间的距离的2倍求点Q在数䌷上所对应的数.11.已知数轴上的点A B对应的有理数分别为a b且(12ab+10)2+|a−2|=0点P是数轴上的一个动点.(1)求出A B两点之间的距离.(2)若点P到点A和点B的距离相等求出此时点P所对应的数.(3)数轴上一点C距A点7.2个单位长度其对应的数c满足|ac|=﹣ac.当P点满足PB=2PC时求P点对应的数.12.已知数轴上A B两点对应的数分别为a b且a b满足|a+20|=﹣(b﹣13)2点C 对应的数为16 点D对应的数为﹣13.(1)求a b的值(2)点A B沿数轴同时出发相向匀速运动点A的速度为6个单位/秒点B的速度为2个单位/秒若t秒时点A到原点的距离和点B到原点的距离相等求t的值(3)在(2)的条件下点A B从起始位置同时出发.当A点运动到点C时迅速以原来的速度返回到达出发点后又折返向点C运动.B点运动至D点后停止运动当B停止运动时点A也停止运动.求在此过程中A B两点同时到达的点在数轴上对应的数.13.【阅读理解】我国著名数学家华罗庚曾经用诗句“数形结合百般好割裂分家万事非”表达了数形结合的重要性.点A B在数轴上分别表示有理数a b A B两点之间的距离表示为AB在数轴上A B两点之间的距离AB=|a﹣b|.【理解应用】如图1 已知数轴上的点A B C分别表示有理数a b c其中b是最大的负整数且a b c满足(a﹣4b)2+|c﹣11|=0.(1)请你直接写出a b c的值a=b=c=.(2)若D为数轴上的一个动点且DC=3DB求点D在数轴上表示的数.【拓展延伸】(3)若点P R Q分别从点A B C同时出发在数轴上运动点P以每秒4个单位的速度向左运动点Q以每秒5个单位的速度向右运动点R以每秒3个单位的速度朝某个方向运动若PQ+nRQ的值不随时间t的变化而变化请求出n的值.14.在数轴上把原点记作点O表示数1的点记作点A.对于数轴上任意一点P(不与点O点A重合)将线段PO与线段P A的长度之比定义为点P的特征值记作P即P= POPA例如:当点P是线段OA的中点时因为PO=P A所以P=1.(1)如图点P1P2P3为数轴上三个点点P1表示的数是−14点P2与P1关于原点对称.①P2̂=②比较P1̂P2̂P3̂的大小(用“<”连接)(2)数轴上的点M满足OM=13OA求M(3)数轴上的点P表示有理数p已知P<100且P为整数则所有满足条件的p的倒数之和为.15.如图数轴上从左到右排列的A B C三点的位置如图所示.点B表示的数是3 A 和B两点间的距离为8 B和C两点间的距离为4.(1)求A C两点分别表示的数(2)若动点P从点A出发以每秒2个单位长度的速度向右运动运动时间为t秒.①当点P运动到与点B和点C的距离相等时求t的值②若同时有M N两动点分别从点B C同时出发都以每秒1个单位长度的速度沿着数轴向左运动把点P与点M之间的距离表示为PM点P与点N之间的距离表示为PN当PM+PN取最小值时求t的最大值和最小值.参考答案与试题解析一.解答题(共15小题)1.如图1 将一根木棒放在数轴(单位长度为1)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所对应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为 3 由此可得这根木棒的长为9图中点A所表示的数是12点B所表示的数是21(2)受(1)的启发请借助“数轴”这个工具解决下列问题:①一天爸爸对小明说:“我若是你现在这么大你才刚出生你若是我现在这么大我就84岁啦!”则爸爸的年龄是56岁.(在图2中标出分析过程)②爷爷对小明说:“我若是你现在这么大你还要14年才出生你若是我现在这么大.我就118岁啦!”则爷爷的年龄是74岁.(画出示意图展示分析过程)【考点】数轴.【专题】实数运算能力.【答案】(1)9 12 21(2)①56 ②74.【分析】(1)由图象可知3倍的AB长为30﹣3=27 即可求AB得长度.A点在3的右侧距离3有9个单位长度故A点为12 B点在A的左侧距离A有9个单位长度故B点为21.(2)根据题意设数轴上小木棒的A端表示小明的年龄B端表示爸爸(爷爷)的年龄则木棒的长度表示二人的年龄差参照(1)中的方法结合已知条件即可得出.【解答】解:(1)观察数轴可知三根这样长的木棒长为30﹣3=27 则这根木棒的长为27÷3=9∴A点表示为3+9=12 B点表示的数是3+9+9=21故答案为:9 12 21(2)①借助数轴把小明和爸爸的年龄差看作木棒AB同理可得爸爸比小明大84÷3=28∴爸爸的年龄是84﹣28=56(岁)故答案为:56.②借助数轴把小明和爷爷的年龄差看作木棒AB同理可得爷爷比小明大(118+14)÷3=44∴爷爷的年龄是118﹣44=74(岁)故答案为:74.【点评】本题考查了数轴的认识用数轴表示数及有理数的加减法读懂题干及正确理解题意是解决本题的关键.2.数轴上两点A B A在B左边原点O是线段AB上的一点已知AB=4 且OB=3OA.点A B对应的数分别是a b点P为数轴上的一动点其对应的数为x.(1)a=﹣1b=3(2)若P A=2PB求x的值(3)若点P以每秒2个单位长度的速度从原点O向右运动同时点A以每秒1个单位长度的速度向左运动点B以每秒3个单位长度的速度向右运动设运动时间为t秒.请间在运动过程中3PB﹣P A的值是否随着时间t的变化而改变?若变化请说明理由若不变请求其值.【考点】数轴.【答案】(1)﹣1 3(2)x的值为53或7(3)3PB﹣P A的值为定值不随时间变化而变化.【分析】(1)根据OB=3OA且AB=4 求出OA和OB即可解答(2)分三种情况分析当P点在A点左侧时当P点位于A B两点之间时当P点位于B点右侧时依次令P A=2PB即可解答(3)表示出t秒后的各点再计算3PB﹣P A得出固定结果即可说明.【解答】(1)∵OB=3OA且AB=4∴OA=1 OB=3∴a=﹣1 b=3故答案为:﹣1 3(2)①当P点在A点左侧时P A<PB不合题意舍去.②当P点位于A B两点之间时因为P A=2PB所以x+1=2(3﹣x)所以x=5 3.③当P点位于B点右侧时因为P A=2PB所以x+1=2(x﹣3)所以x=7.故x的值为53或7.(3)t秒后A点的值为(﹣1﹣t)P点的值为2t B点的值为(3+3t)所以3PB﹣P A=3(3+3t﹣2t)﹣[2t﹣(﹣1﹣t)]=9+3t﹣(2t+1+t)=9+3t﹣3t﹣1=8.所以3PB﹣P A的值为定值不随时间变化而变化.【点评】本题考查了数轴线段的和差关系及动点的应用是解题关键.3.【定义】点M N Q是一条直线上从左到右的三个点若直线上点P满足PM+PN=PQ 则称点P是点M N Q的“和谐点”.【理解】(1)在数轴上(图1)点A B C P表示的数分别为﹣2 0 5 1 点P是否为点A B C 的“和谐点”?请通过计算作出判断.(2)点A B C 是一条直线上从左到右的三个点 且AB =2 BC =3 若点P 是点A B C 的“和谐点” 则AP 的长是 3或73 .【拓展】(3)在数轴上(图2) 点A B C 表示的数分别为a a +2 a +5(a 是整数) 点P 在点A 的左侧 且点P 是点A B C 的“和谐点” 点A B C P 表示的数之和是否能被4整除?请通过计算作出判断.【考点】数轴.【专题】数形结合 数感 推理能力.【答案】(1)是 (2)3或73 (3)能被4整除.【分析】(1)根据PM +PN =PQ 则称点P 是点M N Q 的“和谐点” 在﹣2 0 5 1选择合适的数据 确定出P 的位置.(2)由AB =2 BC =3 若点P 是点A B C 的“和谐点” 设P 表示的教为x 分情况讨论.(3)P 在A 左侧时 设AP =m 则PB =m +2 PC =m +5 化简即可. 【解答】解:(1)∵P A =3 PB =1 PC =4 ∴P A +PB =PC∴点P 是A B C 的“和谐点”(2)以A为原点建立数轴则A表示0 B表示2 C表示5设P表示的教为x①P在A左边时令P A+PB=PC即(0﹣x)+(2﹣x)=(5﹣x)x=﹣3此时AP=3.②P在AB之间时令P A+PB=PC即(x﹣o)+(2﹣x)=(5﹣x)x=3(舍去).③P在BC之间时令P A+PB=PC即(x﹣0)+(x﹣2)=(5﹣x)解得:x=7 3.此时AP=7 3.P在C点右侧时不可能P A+PB=PC.(3)P在A左侧时设AP=m则PB=m+2 PC=m+5且满足P A+PB=PC即m+m+2=m+5解得:m=3∴p表示的数为a﹣3.A B C P来示的数之和为:a﹣3+a+a+2+a+5=4a+4=4(a+1)(a为整数)∴能被4整除.故答案是:(1)是 (2)﹣3或73 (3)能被4整除.【点评】本题主要考查的是数轴 根据阅读内容进行转化 同时考查了线段的和差 列方程求解.4.已知数轴上A B C 三点对应的数分别为﹣1 3 5 点P 为数轴上任意一点 其对应的数为x .点A 与点P 之间的距离表示为AP 点B 与点P 之间的距离表示为BP . (1)若AP =BP 则x = 1 (2)若AP +BP =8 求x 的值(3)若点P 从点C 出发 以每秒3个单位的速度向右运动 点A 以每秒1个单位的速度向左运动 点B 以每秒2个单位的速度向右运动 三点同时出发.设运动时间为t 秒 试判断:4BP ﹣AP 的值是否会随着t 的变化而变化?请说明理由.【考点】数轴.【专题】数形结合 分类讨论 实数 数据分析观念 运算能力. 【答案】见试题解答内容【分析】(1)观察数轴 可得答案(2)根据点P 在点A 左侧或点P 在点A 右侧 分别列式求解即可(3)分别用含t的式子表示出BP和AP再计算4BP﹣AP即可得答案.【解答】解:(1)由数轴可得:若AP=BP则x=1故答案为:1(2)∵AP+BP=8∴若点P在点A左侧则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.【点评】本题考查了数轴在有理数加减运算中的简单应用数形结合及分类讨论是解题的关键.5.一年一度的“双十一”全球购物节完美收官来自全国各地的包裹陆续发到本地快递公司.一快递小哥骑三轮摩托车从公司P出发在一条东西走向的大街上来回投递包裹现在他一天中七次连续行驶的记录如表(我们约定向东为正向西为负单位:千米)第一次第二次第三次第四次第五次第六次第七次﹣2+7﹣9+10+4﹣5﹣8(1)快递小哥最后一次投递包裹结束时他在公司P的哪个方向上?距离公司P多少千米?(2)在第五次记录时快递小哥距公司P地最远(3)如果每千米耗油0.08升每升汽油需7.2元那么快递小哥投递完所有包裹需要花汽油费多少元?【考点】数轴正数和负数.【专题】实数数感.【答案】(1)最后一次投递包裹结束时快递小哥在公司P的西边距离公司3千米(2)五(3)快递小哥工作一天需要花汽油费25.92元.【分析】(1)利用有理数的加减法求七个数的和得出的数是正数表示在公司东是负数就在公司西(2)从第一个数开始绝对值最大的就是最远距离(3)首先算出走过的路即各数的绝对值的和乘以每千米耗油量再乘以单价即可.【解答】解:(1)﹣2+7﹣9+10+4﹣5﹣8=﹣3(千米)答:最后一次投递包裹结束时快递小哥在公司P的西边距离公司3千米(2)|﹣2|=2(千米)|﹣2+7|=5(千米)|﹣2+7﹣9|=4(千米)|﹣2+7﹣9+10|=6(千米)|﹣2+7﹣9+10+4|=10(千米)|﹣2+7﹣9+10+4﹣5|=5(千米)|﹣2+7﹣9+10+4﹣5﹣8|=3(千米)∴第五次快递小哥距公司P最远.故答案为:五(3)|﹣2|+|+7|+|﹣9|+|+10|+|+4|+|﹣5|+|﹣8|=45(千米)∴0.08×45=3.6(升)7.2×3.6=25.92(元)答:快递小哥工作一天需要花汽油费25.92元.【点评】本题考查的是绝对值的性质有理数的加减和乘法大小比较等知识关键就是要求学生对有理数相关知识的要熟练掌握.6.对数轴上的点P进行如下操作:先把点P沿数轴向右平移m个单位长度得到点P1再把点P1表示的数乘以n所得数对应的点为P2.若mn=k(m n是正整数)则称点P2为点P的“k倍关联点”.已知数轴上点M表示的数为2 点N表示的数为﹣3.例如当m=1 n=2时若点A表示的数为﹣4 则它的“2倍关联点”对应点A2表示的数为﹣6.(1)当m=1 n=2时已知点B的“2倍关联点”是点B2若点B2表示的数是4 则点B表示的数为1(2)已知点C在点M右侧点C的“6倍关联点”C2表示的数为11 则点C表示的数为52或5(3)若点P从M点沿数轴正方向以每秒2个单位长度移动同时点Q从N点沿数轴正方向以每秒1个单位长度移动且在任何一个时刻点P始终为点Q的“k倍关联点”直接写出k的值.【考点】数轴.【专题】新定义分类讨论数与式应用意识.【答案】见试题解答内容【分析】(1)设B表示的数为x利用“k被关联点”的定义列出方程即可解决问题(2)由于没有给出具体m n的值m n为正整数所以“6被关联点”要分4种情况进行根据定义列出方程求出C表示的数然后根据已知得到满足条件的C值即可(3)分别用运动时间表示P Q对应的数根据“k被关联点”的定义列出方程列出方程再根据k的取值与t无关即可确定对应的m n的值进而确定k的值.【解答】解:(1)设B表示的数为x则有:2(x+1)=4∴x=1即B表示的数为1.故答案为:1.(2)设C表示的数为y C在M的右侧则y>2∵6的正因数有1 2 3 6∴①当m =1 n =6时 则有6(y +1)=11 解得:y =56<2 不符合题意 舍去②当m =2 n =3时 则有3(y +2)=11 解得:y =53<2 不符合题意 舍去 ③当m =3 n =2时 则有2(y +3)=11 解得:y =52>2 符合题意 ④当m =6 n =1时 则有y +6=11 解得:y =5>2 符合题意 综上所述 y 为52或5 即C 表示的数为52或5.故答案为:52或5.(3)设运动时间为t 秒 则P 表示的数为2+2t Q 点表示的数为﹣3+t ∵点P 始终为点Q 的“k 倍关联点” ∴n (﹣3+t +m )=2+2t∴(n ﹣2)t +(﹣3n +mn ﹣2)=0 对于任意t 都成立 ∴n =2 3n +mn ﹣2=0 解得:n =2 m =4 ∴k =8.【点评】此题的关键是根据已知理解新定义 同时能够灵活运用定义解决问题 同时要注意分情况进行讨论.7.阅读材料:我们知道|x |的几何意义是在数轴上的数x 对应的点与原点的距离 即|x |=|x ﹣0| 这个结论我们可以推广到数轴上任意两点之间的距离 如图 若数轴上两点A B 分别对应有理数a b 则A B 两点之间的距离为AB =|a ﹣b |. 根据阅读材料 回答下列问题:(1)数轴上表示2和﹣3的两点之间的距离是 5(2)数轴上表示x和﹣2的两点A B间的距离是|x+2|若AB=3 则x﹣5或1(3)求|x﹣6|﹣|x+2|的最大值并求出x的取值范围(4)互不相等的有理数a b c在数轴上的对应点分别为A B C.若|a﹣b|+|c﹣a|=|b ﹣c| 请分析判断在点A B C中哪个点居于另外两点之间.【考点】数轴绝对值.【专题】实数数感运算能力.【答案】(1)5(2)|x+2| ﹣5或1(3)x≤﹣2(4)点A位于点B C之间.【分析】(1)绝对值内相减即可解答(2)绝对值内相减再代入3即可解答(3)分析差最大时的点应在﹣2或﹣2的左侧即可解答(4)根据已知判断AB+AC=BC即可解答.【解答】解:(1)2﹣(﹣3)=5∴表示2和﹣3的两点之间的距离是5故答案为:5(2)|x﹣(﹣2)|=|x+2|∵|x+2|=3∴x=﹣5或1故答案为:|x+2| ﹣5或1(3)|x﹣6|﹣|x+2|表示的是x与6和x与﹣2的距离的差当x≤﹣2时6﹣(﹣2)=8∴x的取值范围为x≤﹣2(4)∵|a﹣b|+|c﹣a|=|b﹣c|∴AB+AC=BC∴点A位于点B C之间.【点评】本题考查了数轴绝对值的性质的应用是解题关键.8.如图1 已知数轴上点A表示的数为a点B表示的数是b并且a b满足|a+16|+(b ﹣4)2=0.(1)点A表示的数为﹣16点B表示的数为4(2)若点C是线段AB上一点点H为线段AC的中点图中所有的线段长度和是64 求点H表示的数(3)若点P开始从点A以每秒2个单位的速度向右移动同时点Q从点B开始以每秒1个单位的速度也向右移动设运动时间为t秒M是线段PB的中点N是线段BQ的中点.若线段MN= 2 求t.【考点】数轴非负数的性质:绝对值非负数的性质:偶次方.【专题】代数几何综合题数感几何直观模型思想.【答案】(1)﹣16 4 (2)﹣12 (3)16或24.【分析】(1)利用绝对值及偶次方的非负性可得到a+16=0 b﹣4=0 可得出a b 的值进而得出点A B的表示的数(2)从条件所有线段的和为64入手再由点A B表示的数及点H为线段AC的中点可得到3AB +CH =64 可得出点H 表示的数(3)当运动时间为t 时 点P 表示的数为﹣16+2t 点Q 表示的数为4+t 计算出M N 表示的数 结合MN =2 得出一个关于t 的一元一次方程 解方程即可. 【解答】解:(1)由题意得:a +16=0 b ﹣4=0 解得:a =﹣16 b =4∴点A 表示的数为﹣16 点B 表示的数为4. 故答案为:﹣16 4.(2)∵点A 表示的数为﹣16 点B 表示的数为4 ∴AB =20∵所有线段的和为64∴AH +AC +AB +HC +HB +CB =2AC +2BC +AB +HC =3AB +HC =64 ∴HC =4 ∴AH =4∴点H 表示的数为:﹣16+4=﹣12.(3)当运动时间为t 时 点P 表示的数为:﹣16+2t 点Q 表示的数为:4+t 16÷2=8(秒) 当MN 的距离为2时 点P 在B 的右侧 则点M 表示的数为:−16+2t−42+4=t −6 则点N 表示的数为:4+t 2∴t −6−(t2+4)=±2 解得:t =16或t =24 答:t的值为16或24.【点评】本题考查了一元一次方程的应用数轴绝对值的非负性以及偶次方的非负性解题的关键是构建一元一次方程正确解方程.9.根据所学数轴知识解答下面的问题:(1)知识再现:在数轴上有三个点A B C如图1所示.①A点表示的数是﹣2AB之间的距离是4②将点B向左平移4个单位此时该点表示的数是﹣2(2)知识迁移:如图2 将一根木棒放在数轴(单位长度为1cm)上木棒左端与数轴上的点A重合右端与数轴上的点B重合.①若将木棒沿数轴向右水平移动则当它的左端移动到点B时它的右端在数轴上所应的数为30 若将木棒沿数轴向左水平移动则当它的右端移动到点A时它的左端在数轴上所对应的数为6 由此可得这根木棒的长为8cm?②图中点A所表示的数是14点B所表示的数是22(3)知识应用:如图3由(2)中①②的启发请借助“数轴”这个工具解决下列问题:一天妙妙去问奶奶的年龄奶奶说:“我若是你现在这么大你还要37年才出生你若是我现在这么大我就119岁啦!”请问奶奶现在多少岁了?琪琪的想法是:借助数轴把妙妙和奶奶的年龄差看作木棒AB奶奶像妙妙这样大时可看作点B移动到点A此时点A向左移动后所对应的点C所表示的数为﹣37根据琪琪的想法完成一下问题:①若把A移动到B时此时点B向右移动后所对应的点D表示的数为119②求奶奶现在多少岁了.【考点】数轴.【专题】实数数感运算能力.【答案】(1)①﹣2 4 ②﹣2(2)①8 ②14 22(3)①119 ②奶奶现在的年龄67岁.【分析】(1)①从图中数轴可直接得出答案②将点平移即可得出答案(2)①最大数减去最小数再除以3即可②依次加8即可解答(3)①由题得最大数为119 即为答案②最大数减去最小数再除以3 再用119减去AB即可.【解答】解:(1)①如图点A表示﹣2 点B表示2∴AB=4故答案为:﹣2 4②将点B向左平移4个单位该点表示的数是﹣2故答案为:﹣2(2)①30﹣6=24 24÷3=8∴这根木棒的长为8cm故答案为:8②6+8=14 30﹣8=22∴点A所表示的数是14 点B所表示的数是22故答案为:14 22(3)①若把A移动到B时此时点B向右移动后所对应的点D表示的数为119故答案为:119②妙妙和奶奶的年龄差为:[119﹣(﹣37)]÷3=52(岁)∴奶奶现在的年龄:119﹣52=67(岁).【点评】本题考查了数轴点的平移规律及合理的计算是解题关键.10.如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣7 b2.某同学将刻度尺按如图2所示的方式放置使刻度尺上的数字0对齐数轴上的点A发现点B对齐刻度2.1cm点C对齐刻度6.3cm.(1)求数轴上的一个单位长度对应刻度尺上的长度是多少cm?(2)求在数轴上点B所对应的数b(3)若Q是数轴上一点且满足A Q两点间的距离是A B两点间的距离的2倍求点Q在数䌷上所对应的数.【考点】数轴.【专题】实数运算能力.【答案】(1)0.7cm(2)﹣4(3)﹣1或﹣13.。
数轴练习题及答案
数轴练习题及答案数轴是一种数学工具,用于表示实数和它们的顺序。
在数轴上,每个点都对应一个实数,数轴上的点按照从小到大的顺序排列。
数轴通常有一个原点(0点),正方向和负方向。
以下是一些数轴的练习题以及它们的答案。
练习题1:在数轴上表示以下数:-3, 0, 5, -1, 3。
答案:在数轴上,-3位于原点左侧3个单位,0位于原点,5位于原点右侧5个单位,-1位于原点左侧1个单位,3位于原点右侧3个单位。
练习题2:如果点A在数轴上表示数-2,点B表示数4,求AB之间的距离。
答案:AB之间的距离等于点B表示的数减去点A表示的数,即4 - (-2) = 6。
练习题3:在数轴上,点P表示数x,如果点P到原点的距离是5,求x的值。
答案:点P到原点的距离是5,所以x可以是5或-5。
练习题4:如果数轴上的点Q表示数y,且点Q到原点的距离是3,求y的值。
答案:点Q到原点的距离是3,所以y可以是3或-3。
练习题5:在数轴上,点R表示数z,点S表示数w。
已知点R到原点的距离是7,点S到原点的距离是2,求RS之间的距离。
答案:如果点R和点S在原点的同一侧,RS之间的距离是7 - 2 = 5。
如果点R和点S在原点的两侧,RS之间的距离是7 + 2 = 9。
练习题6:在数轴上,点A表示数-5,点B表示数10,如果点C表示数a,并且点C恰好位于点A和点B的中点,求a的值。
答案:点C位于点A和点B的中点,所以a = (-5 + 10) / 2 = 5 / 2 = 2.5。
练习题7:如果数轴上的点D表示数d,点E表示数e,且d和e的和为0,求d和e的关系。
答案:如果d和e的和为0,那么d和e互为相反数,即d = -e。
练习题8:在数轴上,点F表示数f,点G表示数g。
如果点F和点G的距离是6,且f > g,求f和g的可能值。
答案:如果f > g,且它们之间的距离是6,那么f和g的可能值是无数对,例如(7, 1),(8, 2),(9, 3)等等。
关于数轴测试题及答案
关于数轴测试题及答案一、选择题1. 数轴上,点A表示的数是-3,点B表示的数是5,那么AB之间的距离是:A. 2B. 8C. 5D. 3答案:B2. 如果数轴上点P表示的数是x,点Q表示的数是y,且PQ之间的距离是10,那么x和y的关系是:A. x + y = 10B. x - y = 10C. |x - y| = 10D. x * y = 10答案:C二、填空题1. 在数轴上,如果点M表示的数是-2,点N表示的数是3,那么MN之间的距离是______。
答案:52. 如果数轴上点A表示的数是1,点B表示的数是-1,那么AB之间的距离是______。
答案:2三、解答题1. 某数轴上有两个点C和D,点C表示的数是4,点D表示的数是-6。
求CD之间的距离。
答案:CD之间的距离是10。
2. 已知数轴上点E表示的数是-5,点F表示的数是7,求EF之间的距离,并说明EF之间的中点G表示的数是多少。
答案:EF之间的距离是12,中点G表示的数是1.5。
四、计算题1. 在数轴上,点A表示的数是-3,点B表示的数是5。
如果点C表示的数是点A和点B的中点,求点C表示的数。
答案:点C表示的数是1。
2. 已知数轴上点X表示的数是2,点Y表示的数是-4。
如果点Z表示的数是点X和点Y的中点,求点Z表示的数。
答案:点Z表示的数是-1。
五、应用题1. 某商店在数轴上的位置是3,如果顾客从商店出发,向西走5个单位,再向东走10个单位,最终顾客的位置在数轴上的哪个位置?答案:顾客最终的位置在数轴上的8。
2. 某工厂在数轴上的位置是-8,如果工人从工厂出发,向东走15个单位,再向西走3个单位,最终工人的位置在数轴上的哪个位置?答案:工人最终的位置在数轴上的4。
数轴测试题及答案
数轴测试题及答案
1. 数轴上,点A表示的数是-3,点B表示的数是5,那么AB的长度是多少?
答案:AB的长度是8。
2. 在数轴上,点C表示的数是-2,点D表示的数是3,求CD的长度。
答案:CD的长度是5。
3. 如果在数轴上,点E表示的数是-4,点F表示的数是2,那么EF的长度是多少?
答案:EF的长度是6。
4. 已知数轴上点G表示的数是-1,点H表示的数是4,求GH的长度。
答案:GH的长度是5。
5. 在数轴上,点I表示的数是-5,点J表示的数是7,那么IJ的长度是多少?
答案:IJ的长度是12。
6. 若数轴上点K表示的数是-3,点L表示的数是6,求KL的长度。
答案:KL的长度是9。
7. 在数轴上,点M表示的数是-2,点N表示的数是-8,求MN的长度。
答案:MN的长度是6。
8. 已知数轴上点O表示的数是3,点P表示的数是-3,求OP的长度。
答案:OP的长度是6。
9. 在数轴上,点Q表示的数是-6,点R表示的数是0,那么QR的长度是多少?
答案:QR的长度是6。
10. 若数轴上点S表示的数是1,点T表示的数是-1,求ST的长度。
答案:ST的长度是2。
数轴测试题及答案
数轴测试题及答案一、选择题1. 数轴上表示的数是负数的点位于原点的哪一侧?A. 左侧B. 右侧C. 上侧D. 下侧答案:A2. 在数轴上,绝对值较大的负数表示的点位于原点的哪一侧?A. 左侧B. 右侧C. 左侧更远处D. 右侧更远处答案:C3. 如果点A在数轴上表示的数是-3,点B表示的数是5,那么AB两点之间的距离是多少?A. 2B. 4C. 8D. 无法确定答案:C二、填空题1. 数轴上,点P表示的数是-2,点Q表示的数是3,那么PQ两点之间的距离是_________。
答案:52. 如果数轴上点M表示的数是-1,点N表示的数是2,那么MN两点之间的距离是_________。
答案:3三、解答题1. 画出数轴,并在数轴上标出-3,0,3三个点,然后求出-3和3两点之间的距离。
答案:首先画出数轴,然后在数轴上标出-3和3的位置。
由于数轴上每相邻两个整数单位长度为1,所以-3和3两点之间的距离为3 - (-3) = 6。
2. 如果数轴上点A表示的数是-4,点B表示的数是6,求出A和B两点之间的距离,并说明点A位于原点的哪一侧。
答案:点A表示的数是-4,点B表示的数是6,所以A和B两点之间的距离为6 - (-4) = 10。
点A位于原点的左侧。
四、判断题1. 数轴上,点的顺序与数的大小顺序是一致的。
()答案:正确2. 在数轴上,正数总是位于0的右侧。
()答案:正确3. 数轴上,两个负数之间的距离总是比它们到0的距离要小。
()答案:错误五、简答题1. 请简述数轴的基本概念和特点。
答案:数轴是一种数学工具,用于表示实数。
它通常水平排列,有一个起点称为原点,表示数0。
原点的右侧为正数,左侧为负数。
数轴上的每个点都对应一个实数,相邻两点之间的距离表示数的差值。
数轴的特点包括有序性,即点的顺序与数的大小顺序一致;以及连续性,即任意两个不同的点之间都有无数个点。
数轴练习题(含答案)
数轴练习题1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4、数轴上表示的两个数,________边的数总比________边的数大.5、轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.二、选择题1、是2.5个单位长度的点所表示的数是()A.2.5 B.-2.5 C.±2.5 D.这个数无法确定2、于- 2这个数在数轴上点的位置的描述,正确的是()A.在-3的右边 B.在3的右边 C.在原点与-1之间 D.在-1的左边3、点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 C.+3 D.-9填空题6.用“>”、“<”或“=”填空.(1)-10______0;(2) 1_______-4;(3)-5_______-6;(4)-1.26________1 ;(5) 4________- 4(6)- _5_____3.14;(7)-0.25______-0.3 (8)-1________ 37.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.3.一个点从数轴上表示-2的点开始,按下列条件移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.。
数轴检测试题(含答案)
数轴检测试题(含答案)
数轴检测试题(含答案)
以下是查字典数学网为您推荐的数轴检测试题(含答案),希望本篇文章对您学习有所帮助。
数轴检测试题(含答案)
1、在同一个数轴上表示出下列有理数:
2、下列数轴的画法正确的是( )
3、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度.
4、比较大小,在横线上填入、或= .
1 0;0 ﹣1;﹣1 ﹣2;﹣5 ﹣3;﹣2.5 2.5.
◆典例分析
(1) 与原点距离等于4的点有几个?其表示的数是什么?
(2) 在数轴上点A表示的数是3,与点A相距两个单位的点表示的数是什么?
分析:对于初学者,我们可以画出数轴,从数轴上观察,与原点距离等于4的点有两个,它们分别位于原点的两侧,它们所表示的数是+4和4.千万不要忽略了原点左边的点即表示4的点.这样第(2)问迎刃而解.
解:(1)与原点距离等于4的点有两个,它们表示的数是+4和-4.
(2)在数轴上点A表示的数是3,与点A相距两个单位的点表示的数是-1和-5.
A、ab C、a=b D、无法确定
(注:原题是实数a,b,现改为有理数a,b) 参考答案随堂检测(本节练习需要画数轴帮助分析) 1、画数轴时,数轴的三要素要包括完整。
图略。
2、 C,考察数轴的三要素。
3、左,4
4、拓展提高 1、两个,5 2、 -2,-1,0,1,2,3 3、 7 4、 -3,-1
5、 1
6、左,2 体验中考 1、A 2、B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴练习题(含答案)
:
篇一:《数轴、相反数、绝对值》专题练习(含答案)
《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)
1.-5的绝对值为 ( )
A.-5B.5C.-1 5 D.1 5
2.-的相反数是 ( )
A.-8B. 181
8 C.0.8D.8
3.在下面所画的数轴中,你认为正确的数轴是 (
)
4.下列说法正确的是 ( )
A.正数与负数互为相反数
B.符号不同的两个数互为相反数
C.数轴上原点两旁的两个点所表示的数互为相反数
D.任何一个有理数都有它的相反数
5.数轴上的点A,B位置如图所示,则线段AB的长度为 (
)
A.-3B.5C.6D.7
6.若a=7,b=5,则a-b的值为 ( )
A.2
C.2或12 B.12 D.2或12或-12或-2
7.实数a,b在数轴上的位置如图所示,以下说法正确的是()
8.下列式子不正确的是 ( )
A.?4?4B.11? 22
C.0?0 D.?1.5??1.5
9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒
数等于它本身的数,那么式子a-b+c2-d的值是 ( )
A.-2B.-1C.0D.1
10.如果abcd 0,a+b=0,cd 0,那么这四个数中的负因数至少有( )
A.4个B.3个C.2个D.1个
二、填空题(每小题3分,共24分)
11.数轴上最靠近-2且比-2大的负整数是______.
12.-111的相反数是______;-2是______的相反数;_______与互为倒数. 210
13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.
14.绝对值小于π的非负整数是_______.
15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.
16.写出一个x的值,使x?1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x y,那么x_______y.
18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a b c,则该数轴的原点O的位置应该在______.。