语音信号的频域分析
语音信号处理实验报告2
实验二语音信号的频域特性一、实验目的(1)结合汉语语音信号的各类音素和复元音的特点分析其频域性质;(2)熟悉语音信号的各类音素和复元音的频域参数;(3)熟悉声音编辑软件PRAAT的简单使用和操作。
二、实验记录与思考题1. 观察语音信号的频域特点,总结其规律。
浊音段:其谱线结构是与浊音信号中的周期信号密切相关。
具有与基音及其谐波对应的谱线。
频谱包络中有几个凸起点,与声道的谐振频率相对应。
这些凸起点为共振峰。
清音段:清音的频谱无明显的规律,比较平坦。
2.总结清音/b/p/m/f/d/t/n/l/g/k/h/j/q/x/z/c/s/zh/ch/sh/r/共21个的语谱图的规律,给出辅音的能量集中区;语谱图中的花纹有横杠、乱纹和竖直条。
横杠是与时间轴平行的几条深黑色带纹,它们是共振峰。
从横杠对应的频率和宽度可以确定相应的共振峰频率和带宽。
在一个语音段的语谱图中,有没有横杠出现是判断它是否是浊音的重要标志。
竖直条是语谱图中出现于时间轴垂直的一条窄黑条。
每个竖直条相当于一个基音,条纹的起点相当于声门脉冲的起点,条纹之间的距离表示基音周期,条纹越密表示基音频率越高。
b,p……清音的语谱图为乱纹。
辅音的能量集中区为:高频区3. 总结浊音/a/o/e/i/u/ü/ao/ai/ei/ou/ie /an/en/in/ang/eng/ong/ing/共18个的语谱图的规律,提取这18个浊音的基频、前三个共振峰频率4./r/、/m/、/n/、/l/ 从这几个音素的的基频、共振峰频率5.分析宽带语谱图和窄带语谱图的不同之处,请解释原因;语谱图中的花纹有横杠、乱纹和竖直条等。
横杠是与时间轴平行的几条深黑色带纹,它们是共振峰。
从横杠对应的频率和宽度可以确定相应的共振峰频率和带宽。
在一个语音段的语谱图中,有没有横杠出现是判断它是否是浊音的重要标志。
竖直条(又叫冲直条)是语谱图中出现与时间轴垂直的一条窄黑条。
每个竖直条相当于一个基音,条纹的起点相当于声门脉冲的起点,条纹之间的距离表示基音周期。
语音信号的时域及频域特征
(12)
当短时谱为使用 DFT 计算时,可以证明窗函数和插值函数需要满足一下条件:
r
h(n r ) w(r n pN ) ( p)
(13)
例如,我们可以特别地选择 W ( n) 为窗长为 N 的三角窗,而 h[ n] 为矩形窗,
1 n [0, N 1] h[ n] 0 其它
第一章 语音信号的时域及频域特征
1. 语音信号的主要特点
1.1. 语音信号带宽
语音信号的带宽约为 5KHz , 主要能量集中在低频段。 上图为一段语音信号语谱图。
1
1.2. 语音信号是典型的随机信号
1)人的每次发音过程都是一个随机过程。很难得到两次完全相同的发音样本。 2)在信号处理中,通常假设语音信号是短时平稳的。例如,可以认为在语音的浊 音段部分,语音的二阶矩统计量是平稳的(在 5~10mS 内),即二阶矩平稳,或称为宽平 稳。
2
2. 语音信号的时域波形
图 1.
语音信号的波形(shi4)
3
图 2. 语音信号波形(shi4)的局部细节
4
2.1. 语音时域信号特征
2.1.1. 语音时域信号的特点
1)清音段:能量低,过零率高,波形特点有点像随机的噪声。这部分信号常与语 音的辅音段对应。 2)浊音段:能量高,过零率低,波形具有周期性特点。所谓的短时平稳性质就是 处于这个语音浊音(元音)段中。 3)过渡段:一般是指从辅音段向元音段信号变化之间的部分。信号变化快,是语 音信号处理中最复杂、困难的部分。
r 取值为周期时刻采样分析短时谱,间隔为
h(n)
w( n)
T N 2。
N
h( n )
w(n)
语音信号的采集与频谱分析(附代码)
《信号与系统》大作业语音信号的采集与频谱分析——基于Matlab的语音信号处理学生姓名:学号:专业班级:电子工程学院卓越班指导老师:2015年6月22日摘要本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进行时域分析。
接着利用傅里叶变换进行了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进行了对比分析,得出了我与歌星在频域上的差别。
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。
再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器AbstractThis design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.Through this design,I can deepen my comprehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally.Keywords: audio signal、TTT、noise、filter1 绪论1.1课题的研究意义语音信号处理属于信息科学的一个重要分支,它是研究用数字信号处理技术对语音信号进行处理的一门新兴学科,同时又是综合性的多学科领域和涉及面很广的交叉学科,因此我们进行语言信号处理具有时代的意义。
语音信号时域和频域通俗理解
语音信号时域和频域通俗理解语音信号是一种广泛使用的信号类型,它包含了人类声音的各种特征。
在理解语音信号时域和频域的表现时,首先需要理解这两个概念的基本含义。
时域:在时间域中,信号是按照时间顺序排列的一组值。
对于语音信号,每一帧或每个样本点都代表了声音在不同时刻的强度或幅度。
在语音信号处理中,时域分析通常涉及对这些样本点进行各种操作,如加权、过滤、卷积等。
时域分析可以揭示信号的瞬态特性,如声音的起始和结束,但其对频率成分的敏感性较低。
频域:在频域中,信号被转换成了频率成分的形式。
这意味着我们将信号分解为一系列不同频率的分量,每个分量都有其特定的幅度和相位。
在语音信号中,这些频率成分反映了声音的各个部分(如基频、谐波等)如何由不同的振动模式产生。
频域分析提供了对信号的全面理解,因为它能够揭示信号的能量如何分布在不同的频率上。
现在,让我们更深入地理解语音信号在时域和频域的表现:时域中的语音:当我们说话时,我们的声带会振动并产生声音。
这些振动会产生一系列的样本点,这些点在时间上按顺序排列。
如果我们观察这些样本点,我们可能会注意到声音的起始和结束,以及一些明显的变化。
但是,如果我们想了解更多关于声音的内容,比如它的基频或谐波结构,我们需要在频域中进行分析。
频域中的语音:当我们观察语音信号的频谱时,我们会看到一系列的频率成分。
这些成分可以代表基频、谐波以及其他声音特征。
例如,如果一个声音的主要成分是基频,那么我们可能会看到一个明显的峰值在低频区域。
如果一个声音包含多个谐波,我们可能会看到一系列更高或更低的频率成分。
了解这些频率成分可以帮助我们更好地理解声音的特征,比如音调、音量等。
总之,理解语音信号时域和频域的表现对于语音处理和通信等领域非常重要。
在时域中,我们关注声音的瞬态特性;而在频域中,我们关注声音的频率成分。
通过将信号从一种表示转换到另一种表示,我们可以更全面地了解和处理语音信号。
语音信号的频域分析概述
第3页
2021年12月8日星期三
从广义上讲,语音信号的频域分析包括语音信号的 频谱、频谱包络、功率谱、倒频谱等。常用的频域分析 方法有带通滤波器组法、傅里叶变换法、线性预测法等 几种。本节介绍语音信号的傅里叶分析法。
短时傅里叶变换最重要的应用是语音分析与合成系 统,因为由短时博里叶变换可以精确地恢复语音波形。
第4页
2021年12月8日星期三语音信号及单片机处理语音信号及单片机处理
语音信号的频域分析概述
在语音信号处理中,傅里叶表示一直起主要作用。 其原因在于:一方面,稳态语音的生成模型由线性系统 组成,此系统由一个随时间周期变化或随机变化的源所 激励,因而系统输出频谱反映了激励与声道频率响应特 性;另一方面,语音信号的频谱具有非常明显的语言声 学意义,可以获得某些重要的语音特征(如共振峰频率 和带宽等)。
第2页
2021年12月8日星期三
语音信号是非平稳信号,其非平稳性是由发音器官 的物理运动过程而产生的。这个运动过程与声波振动 的速度比起来要缓慢得多,因此可以假定它在10~30 ms这样短的时间段内是平稳的。所以对语音信号处理 来说,短时分析的方法是有效的。短时分析应用于频 域分析就是短时傅里叶变换,相应的频谱称为“短时 谱”,即有限长度的傅里叶变换。
语音信号采集与时频域分析正文
第一章引言语音信号是一种非平稳的时变信号,它携带着各种信息。
在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。
语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。
语音信号分析可以分为时域和频域等处理方法。
语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。
任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。
时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。
频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。
主要分析的特征参数:短时谱、倒谱、语谱图等。
本文采集作者的声音信号为基本的原始信号。
对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。
整体设计框图如下图所示:图1.1时频域分析设计图图1.2加噪滤波分析流程图第二章 语音信号时域分析语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。
2.1窗口选择由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。
通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。
两种窗函数的时域波形如下图2.1所示:samplew (n )samplew (n )图2.1 矩形窗和Hamming 窗的时域波形矩形窗的定义:一个N 点的矩形窗函数定义为如下{1,00,()n Nw n ≤<=其他(2.1)哈明窗的定义:一个N 点的哈明窗函数定义为如下0.540.46cos(2),010,()n n NN w n π-≤<-⎧⎨⎩其他= (2.2)这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。
语音信号处理PPT_第三章_语音信号分析
3.2 数字化和预处理
➢ 语音信号的数字化一般包括放大及增益控制、反混叠滤波、
采样、A/D变换及编码(一般就是PCM码);如下图:
语音信号
带通滤 波器
自动增益控制 (AGC)
模/数转换 (A/D)
脉冲编码 调 制 ( PCM )
存入计算机
➢ 预处理一般包括预加重、加窗和分帧等。 ➢ 分析和处理之前必须把要分析的要分析的语音信号部分从输
② R n (是k )偶函数 ,即 Rn(k)Rn(k)
③ 当k=0时,自相关函数有最大值,即 Rn(0)Rn(k)
并且 等R于n (确0 ) 定性信号序列的能量或随机序列的平均功率。
短时相关分析
右图中:N=401, Fs=8kHz a、b是浊音信号,c位清 音信号,由图可以看出浊 音信号的自相关函数具有 一定得周期性,而清音信 号的自相关函数缺乏周期 性。
但是在一个短时间范围内(一般认为在10-30ms的短时间内), 其特性基本保持不变即相对稳定,因而可以将其看作是一个准稳 态过程,即语音信号具有短时平稳性。
不论是分析怎么样的参数以及采用什么分析方法,在按帧进 行语音分析,提取语音参数之前,有一些经常使用的、共同的短 时分析技术必须预先进行,如语音信号的数字化、语音信号的端 点检测、预加重、加窗和分帧等,这些也是不可忽视的语音信号 析的关键技术。
语音信号分析在语音信号处理中具有举足轻重的地位。
分类:
参数性质
时域分析 频域分析 倒谱域分析
分析方法
模型分析方法 非模型分析方法
简单、计算量小、 物理意义明确
感知特性 较好,更 为重要
依据语音信号 产生的数学模 型来分析和提 取表征这些模 型的特征参数
不进行模型化 分析
语音信号采样和频谱分析
语音信号采样和频谱分析一.实验目的1掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵;2了解MATLAB对声音信号的处理指令;3了解计算机存储信号的方式及语音信号的特点;4加深对采样定理的理解;5加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力;二.实验内容本实验利用MATLAB指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱;根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB对声音信号的处理指令,加深对采样定理的理解;关键词:傅里叶变换信号采样三、实验原理语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的A/D转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能送到计算机进行再编辑和存储;语音信号输出时,量化了的数字信号又通过D/A转换器,把保存起来的数字数据恢复成原来的模拟的语音信号;1应用MATLAB 进行声音的录制 2应用MATLAB 进行声音的播放 3语音信号的频谱分析 ;傅里叶变换建立了信号频谱的概念;所谓傅里叶分析即分析信号的频谱频率构成、频带宽度等;对语音信号的分析也不例外,也必须采用傅里叶变换这一工具; 对于连续时间信号)(t f ,其傅里叶变换)(ωF 为:⎰∞∞--=dt e t f F t j ωω)()( 四、实验任务1应用MATLAB 进行声音的录制在MATLAB 命令窗口中键入“y=wavrecord8000,8000,1”,并按回车键,此时刻以后的18000/8000秒时段内的声音信号将以y 为文件名,以数字声音信号.wav 格式存储在MATLAB 的工作空间里;纪录长度为80000,采样频率为8000Hz,声道数为1;图为录制的语音:“信号与系统”;2应用MATLAB 进行声音的播放在MATLAB 命令窗口中键入“soundy,Fs ”,按下回车键就能听到回放的声音;当Fs=8000时,听到的是原来未失真的声音;当Fs=6000时,听到的声音比较低沉;当Fs=10000时,听到的声音很尖锐;3语音信号的频谱分析在MATLAB 命令窗口中键入“p=ffty;plotabsp ”按下回车键后出现如图所示图形: 从图中可以看出该音频的上限频率为4000Hz;4采样定理一个频谱受限的信号ft,如果频谱只占据m m ωω+-~的范围,则信号)(t f 可以用等间隔的抽样值唯一地表示;而抽样间隔必须不大于mf 21其中m m f ⋅=πω2,或者说,最低抽样频率为m f 2;低抽样频率为m f 2;该实验中,音频的上限频率为4000Hz,所以采用的抽样信号的频率为该频率的两倍8000Hz;当采用小于8000Hz 的频率抽样时,回放声音低沉;当采用大于8000Hz的频率采样时,回放声音尖锐; 结论:本次试验是进行语音信号的采集和频谱分析,实验纪录了长度为80000,采样频率为8000Hz采样一段音频,并进行频谱分析,最终经过分析得只有以两倍上限频率回放音频时才会得到原音频信号,否则都会失真;本次试验不仅学习到了新知识,而且复习到了抽样定理的许多内容,加深了对这些内容的理解,受益很多。
语音信号的时域和频域特征
3.3.2. 浊音谱的共振峰结构
频谱包络中有几个凸起点,与声道的谐振频率相对应。这 些凸起点称为共振峰(Formant) 。其频率称为共振峰频率。按 频率由低到高依次为第一共振峰、第二共振峰…。相应频率用 F1、F2、F3…来表示。
14
浊音信号的傅立叶分析谱 15
3.3.3. 元音三角形图
所谓的元音三角形图就是指不同元音的 F1、F2 共振峰频 − m) ⋅ w(m) ⋅ e ω
∞
j m
w(n) ⋅ e jωn
X n (e jω )
e − jωn
12
3.2. 语谱图:
横轴表示时间,纵轴表示频率,用灰度表示对应频谱分量 的信号强度。
13
3.3. 浊音谱特征
3.3.1. 浊音谱的谱线结构
谱线结构是与浊音信号中的周期信号密切相关的。具有与 基音及其谐波相对应的谱线。
5
3. 语音信号的短时谱特征
3.1. 短时傅立叶谱分析
对于能量受限的时域信号 f (t ) , 它的傅立叶变换可以写成
∞
ˆ f (ω ) =
−∞
∫ f (t ) ⋅ e
− jωt
以上这个傅立叶变换, “宏观上” 在 给出信号 f (t ) 的频谱信息, 但是却无法确定某个“局部”时间段频谱的确切信息。或者也 可以说, 我们不能通过观测局部的时域信号来了解整个 f (t ) 的 频谱信息。为此我们引入了所谓的短时傅立叶谱分析技术。
在这里 S w(n) 是加窗截取的一段语音信号。 假设 T 为语音信号的基音周期,当 l = n ⋅ T , n = 1,2,L 时, γ (l ) 函数接近局部极小值。
20
AMDF 算法特点:只用到简单的加减法运算,没有使用乘 法运算。适合于早期普通的 CPU,因为这种 CPU 的乘法操作 要比加减法操作费时。 (2)自相关法 定义语音的自相关函数为:
语音信号处理频域处理
基于MATLAB 分析语音信号时域特征钱平(信号与信息处理 s101904010)一、频域特征实验原理1、短时傅立叶变换由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为:()()()ee Xmj m j nm n w m x ωω-∞-∞=∑-=其中w(n-m)是实窗口函数序列,n 表示某一语音信号帧。
令n-m=k',则得到()()()()ek k e Xk n j k j nn x w--∞-∞=∑-=ωω,,于是可以得到)()()eeeX kj k mj j nk n x k w ωωω-∞-∞=-∑-=假定()()()∑∞-∞=-=k kj j nee Xk n x k w ωω则可以得到()()e Xee Xj nnj j nωωω-=同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。
由上式可见,短时傅立叶变换有两个变量:n 和ω,所以它既是时序n 的离散函数,又是角频率ω的连续函数。
与离散傅立叶变换逼近傅立叶变换一样,如令ω=2πk/N ,则得离散的短时傅立叶吧如下:()()()()()10,/2/2-≤≤-==∑∞-∞=-N k m n w m x k m Nm j nNnk j ne XeXπ2、语谱图水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短时谱。
语谱图反映了语音信号的动态频率特性,在语音分析中具有重要的实用价值。
被成为可视语言。
语谱图的时间分辨率和频率分辨率是由窗函数的特性决定的。
时间分辨率高,可以看出时间波形的每个周期及共振峰随时间的变化,但频率分辨率低,不足以分辨由于激励所形成的细微结构,称为宽带语谱图;而窄带语谱图正好与之相反。
宽带语谱图可以获得较高的时间分辨率,反映频谱的快速时变过程;窄带语谱图可以获得较高的频率分辨率,反映频谱的精细结构。
两者相结合,可以提供带两与语音特性相关的信息。
语谱图上因其不同的灰度,形成不同的纹路,称之为“声纹”。
声学信号的频域分析方法研究
声学信号的频域分析方法研究声学信号的频域分析方法是一种重要的信号处理技术,它在声学领域中具有广泛的应用。
频域分析方法可以将声学信号转换为频谱图,从而更好地理解信号的特征和性质。
本文将介绍几种常见的声学信号频域分析方法,并探讨它们的应用和局限性。
一、傅里叶变换傅里叶变换是频域分析的基础,它可以将时域信号转换为频域信号。
通过傅里叶变换,我们可以得到声学信号的频谱信息,包括频率成分和幅度。
傅里叶变换广泛应用于音频处理、语音识别、音乐分析等领域。
然而,傅里叶变换存在一些问题,比如需要对整个信号进行变换,计算量大,且无法处理非平稳信号。
二、短时傅里叶变换为了克服傅里叶变换的局限性,短时傅里叶变换(STFT)被提出。
STFT将信号分割为多个小段,然后对每个小段进行傅里叶变换。
这样可以得到信号在不同时间段的频谱信息,从而更好地分析非平稳信号。
STFT广泛应用于语音信号处理、音乐合成等领域。
然而,STFT在时间和频率分辨率上存在一定的矛盾,无法同时获得高时间和高频率分辨率。
三、小波变换小波变换是一种时频分析方法,它可以在时间和频率上同时提供较好的分辨率。
小波变换通过使用一组基函数,将信号分解为不同频率的子信号。
小波变换在声音信号的压缩、去噪、特征提取等方面具有重要应用。
然而,小波变换的计算复杂度较高,选择合适的小波函数也是一个挑战。
四、自适应滤波自适应滤波是一种基于自适应算法的频域分析方法。
它通过不断调整滤波器的参数,使得输出信号与期望信号之间的误差最小化。
自适应滤波广泛应用于语音增强、噪声抑制等领域。
然而,自适应滤波对初始参数的选择较为敏感,且计算复杂度较高。
五、时频分析时频分析是一种将信号在时域和频域上同时分析的方法。
时频分析可以提供信号的瞬时频率、瞬时幅度等信息,对于非平稳信号的分析具有重要意义。
时频分析方法包括瞬时频率分析、瞬时幅度分析、瞬时相位分析等。
时频分析在声音信号的谱包络提取、乐器识别等方面具有广泛应用。
实验一语音信号的时域特性和频域特性
实验一、语音信号的时域特性和频域特性学院:信息与通信工程学院专业:通信工程班级:104学号:2010026410姓名:黄余芳指导教师:崔艳秋1.实验名称语音信号的时域特性和频域特性2.实验类型验证性实验3.实验目的观察并验证语音信号的时域特性和频域特性,理解并掌握典型的语音信号时域分析方法和频域分析方法,为深入学习数字语音信号处理的相关理论奠定基础。
4.实验设备安装有MATLAB的计算机5.实验内容1.输入并运行MATLAB代码。
2.观察语音信号的时域特性(1)发一个清音和一个浊音,由麦克风采集语音数据,参考实验内容1中的程序将这些数据分别存成两个“.wav”文件(例如[a]的语音存为“a.wav”,要求采样率为8000),存在本人的文件夹中。
(2)读取WA V文件,显示语音波形,观察清音和浊音波形的差异。
(3)读取WA V文件,计算并显示语音的短时能量(要求分帧加窗的帧长为256,帧移为128),观察并分析清音和浊音短时能量的差异。
(4)读取WA V文件,计算并显示语音的短时过零率(要求分帧加窗是的帧长为256,帧移为128),观察并分析清音和浊音短时过零率的差异。
3. 观察语音信号的频域特性(1)读取WA V文件,计算并显示一帧语音的原始信号、加窗信号、短时频谱(要求分帧加窗的窗函数为汉明窗、帧长为256,帧移为128),观察并分析清音和浊音短时频谱的差异。
(2)读取WA V文件,计算并显示不同窗函数情况下一帧语音的加窗信号、短时频谱(要求分帧加窗的窗函数分别为矩形窗和汉明窗、帧长为256,帧移为128),观察并分析不同的窗函数对短时谱分析的影响。
6.相关函数wavread、plot、fft7.MATLAB程序代码1. 输入并运行以下MATLAB代码。
(1) 短时能量clear;close all;Fs=11025;y=wavrecord(5*Fs,Fs,'double'); wavwrite(y,'f:\\a');soundview(y,Fs);x = wavread('f:\\a.wav');x = double(x);x = filter([1 -0.9375], 1, x); % 预加重FrameLen = 256;FrameInc = 128;s = enframe(x, FrameLen, FrameInc); energy = sum(abs(s), 2);figure;subplot(2,1,1);plot(x);title('语音信号时域波形');xlabel('样点数');ylabel('幅度');subplot(2,1,2);plot(energy);title('语音信号的短时能量');xlabel('帧数');ylabel('短时能量');legend('帧长FrameLen = 240');(2) 短时过零率clear;close all;x = wavread('f:\\a.wav');x = double(x);FrameLen = 256;FrameInc =128;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);figure;subplot(2,1,1);plot(x);title('语音信号时域波形');xlabel('样点数');ylabel('幅度');subplot(2,1,2);plot(zcr);xlabel('帧数');ylabel('短时过零率');title('语音信号的短时过零率');(3) 短时傅里叶变换clear;close all;x = wavread('f:\\a.wav');x = double(x);FrameLen =256;FrameInc =128;s = enframe(x, FrameLen, FrameInc);ss=s(50,:); %选取一帧语音信号(可以通过观察短时能量的分布来判断哪一帧是清音段还是浊音段)f=ss'.*hamming(length(ss));r=fft(f,512);r1=abs(r);r1=r1/max(r1);yuanlai=20*log10(r1);signal(1:256)=yuanlai(1:256);pinlv=(0:1:255)*11025/512;figure;subplot(3,1,1);plot(ss);axis([0,256,-1,1])title('截取的语音段');xlabel('样点数');ylabel('幅度');subplot(3,1,2);plot(f);axis([0,256,-1,1])title('窗选语音信号');xlabel('样点数');ylabel('幅度');subplot(3,1,3);plot(pinlv,signal);xlabel('频率/Hz');ylabel('对数幅度/dB');title ('加Hamming窗时语音频谱');(4) 显示清音短时过零率clear;close all;x = wavread('f:\\k.wav');x = double(x);FrameLen = 256;FrameInc =128;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc); tmp2 = enframe(x(2:end) , FrameLen, FrameInc); signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);figure;subplot(2,1,1);plot(x);title('语音信号时域波形');xlabel('样点数');ylabel('幅度');subplot(2,1,2);plot(zcr);xlabel('帧数');ylabel('短时过零率');title('语音信号的短时过零率');2:语音信号的频域分析1.加汉明窗的浊音clear;close all;x = wavread('f:\\a.wav');x = double(x);FrameLen =256;FrameInc =128;s = enframe(x, FrameLen, FrameInc);ss=s(125,:); %选取一帧语音信号(可以通过观察短时能量的分布来判断哪一帧是清音段还是浊音段)f=ss'.*hamming(length(ss));r=fft(f,512);r1=abs(r);r1=r1/max(r1);yuanlai=20*log10(r1);signal(1:256)=yuanlai(1:256);pinlv=(0:1:255)*11025/512;figure;subplot(3,1,1);plot(ss);axis([0,256,-1,1])title('截取的语音段');xlabel('样点数');ylabel('幅度');subplot(3,1,2);plot(f);axis([0,256,-1,1])title('窗选语音信号');xlabel('样点数');ylabel('幅度');subplot(3,1,3);plot(pinlv,signal);xlabel('频率/Hz');ylabel('对数幅度/dB');title ('加Hamming窗时语音频谱2.加汉明窗的清音clear;close all;x = wavread('f:\\k.wav');x = double(x);FrameLen =256;FrameInc =128;s = enframe(x, FrameLen, FrameInc);ss=s(90,:); %选取一帧语音信号(可以通过观察短时能量的分布来判断哪一帧是清音段还是浊音段)f=ss'.*hamming(length(ss));r=fft(f,512);r1=abs(r);r1=r1/max(r1);yuanlai=20*log10(r1);signal(1:256)=yuanlai(1:256);pinlv=(0:1:255)*11025/512;figure;subplot(3,1,1);plot(ss);axis([0,256,-1,1])title('截取的语音段');xlabel('样点数');ylabel('幅度');subplot(3,1,2);plot(f);axis([0,256,-1,1])title('窗选语音信号');xlabel('样点数');ylabel('幅度');subplot(3,1,3);plot(pinlv,signal);xlabel('频率/Hz');ylabel('对数幅度/dB');title ('加Hamming窗时语音频谱3.加矩形窗的浊音clear;close all;x = wavread('f:\\a.wav');x = double(x);FrameLen =256;FrameInc =128;s = enframe(x, FrameLen, FrameInc);ss=s(125,:); %选取一帧语音信号(可以通过观察短时能量的分布来判断哪一帧是清音段还是浊音段)f=ss'.*rectwin(length(ss));r=fft(f,512);r1=abs(r);r1=r1/max(r1);yuanlai=20*log10(r1);signal(1:256)=yuanlai(1:256);pinlv=(0:1:255)*11025/512;figure;subplot(3,1,1);plot(ss);axis([0,256,-1,1])title('截取的语音段');xlabel('样点数');ylabel('幅度');subplot(3,1,2);plot(f);axis([0,256,-1,1])title('窗选语音信号');xlabel('样点数');ylabel('幅度');subplot(3,1,3);plot(pinlv,signal);xlabel('频率/Hz');ylabel('对数幅度/dB');title ('加矩形窗时语音频谱)8.实验结果及其分析浊音(1) 短时能量0.51 1.52 2.53 3.54x 104-1012语音信号时域波形样点数幅度050100语音信号的短时能量帧数短时能量(2) 短时过零率0.511.52 2.533.54x 104-1-0.500.51语音信号时域波形样点数幅度102030帧数短时过零率语音信号的短时过零率(3) 短时傅里叶变换01截取的语音段样点数幅度5010015020025001窗选语音信号样点数幅度-1000频率/Hz对数幅度/d B加Hamming 窗时语音频谱清音(1) 短时能量x 104012语音信号时域波形样点数幅度0204060语音信号的短时能量帧数短时能量(2) 短时过零率x 104-1-0.500.51语音信号时域波形样点数幅度5010015020025030035005101520帧数短时过零率语音信号的短时过零率(3) 短时傅里叶变换01截取的语音段样点数幅度01窗选语音信号样点数幅度5001000150020002500300035004000-1000频率/Hz对数幅度/d B加Hamming 窗时语音频谱(4) 显示清音短时过零率x 10401语音信号时域波形样点数幅度05101520帧数短时过零率语音信号的短时过零率加窗(1)加汉明窗的浊音50100150200250-101截取的语音段样点数幅度50100150200250-101窗选语音信号样点数幅度100020003000400050006000-100-500频率/Hz对数幅度/d B加Hamming 窗时语音频谱(2)加汉明窗的清音-101截取的语音段样点数幅度50100150200250-101窗选语音信号样点数幅度-100-500频率/Hz对数幅度/d B加Hamming 窗时语音频谱(3)加矩形窗的浊音50100150200250-101截取的语音段样点数幅度-101窗选语音信号样点数幅度-100-500频率/Hz对数幅度/d B加矩形窗时语音频谱分析:(1)对于浊音与清音,浊音的幅值比较明显,有一个的波动,能清楚的看清楚它的周期;而清音类似于白噪声,没有明显的幅值,很平缓。
语音信号的频域特性
实验二语音信号的频域特性1.观察语音信号的频域特点,总结其规律。
答:不同的浊音,其共振峰的数值都不一样。
清音的频谱比较平坦。
2. 总结清音/b/p/m/f/d/t/n/l/g/k/h/j/q/x/z/c/s/zh/ch/sh/r/共21个的语谱图的规律,给出辅音的能量集中区;答:清音段幅度小,其能量集中于高频段,语谱图没有明显的周期规律,波动变化较小。
浊音段幅度较大,其能量集中于低频段。
3.总结浊音/a/o/e/i/u/ü/ao/ai/ei/ou/ie /an/en/in/ang/eng/ong/ing/共18个的语谱图的规律,提取这18个浊音的基频、前三个共振峰频率和共振峰处的功率(dB);a 基频(Hz)共振峰(Hz) 757.2 1388 3108124.6 功率(dB) 74.3 72.1 54.9o 基频(Hz)共振峰(Hz) 581.8 1038 3108120.9 功率(dB) 77.0 78.2 31.3e 基频(Hz)共振峰(Hz) 476.6 1248 3000124 功率(dB) 74.2 71.2 44.1i 基频(Hz)共振峰(Hz) 371.3 2625 3494125.3 功率(dB) 75.8 71.3 36.5u 基频(Hz)共振峰(Hz) 687 2722 3494123.3 功率(dB) 75.3 70.2 45.2ü基频(Hz)共振峰(Hz) 231 2371 3283124.1 功率(dB) 76.8 66.7 54.1ao 基频(Hz)共振峰(Hz) 789 2637 3095125.1 功率(dB) 76.87 70.64 41.9ai 基频(Hz)共振峰(Hz) 810 2553 3464127.2 功率(dB) 75.7 70.9 36.0ei 基频(Hz)共振峰(Hz) 278.8 2487 3010123.1 功率(dB) 75.7 75.9 45.8ou 基频(Hz)共振峰(Hz) 336.0 1689 3093122.1 功率(dB) 75.7 66.8 46.9ie 基频(Hz)共振峰(Hz) 241.4 2228 3487120.1 功率(dB) 75.3 70.2 45.8an 基频(Hz)共振峰(Hz) 681.1 1765 3073128.3 功率(dB) 75.1 65.5 36.4en 基频(Hz)共振峰(Hz) 283.3 1817 3029128.3 功率(dB) 74.8 65.0 35.3in 基频(Hz)共振峰(Hz) 230.1 2580 3038130.1 功率(dB) 74.7 70.2 45.2ang 基频(Hz)共振峰(Hz) 821 2073 3383129.1 功率(dB) 76.3 75.7 47.0eng 基频(Hz)共振峰(Hz) 382.7 2011 3080130.1 功率(dB) 75.4 71.0 36.9ong 基频(Hz)共振峰(Hz) 444.6 2520 1019131.2 功率(dB) 76.3 66.6 36.6ing 基频(Hz)共振峰(Hz) 211.0 2711 3396135.1 功率(dB) 74.3 74.4 35.94./r/、/m/、/n/、/l/ 从这几个音素的的基频、共振峰频率和共振峰处的功率(dB);r 基频(Hz)共振峰(Hz) 734 1338 3114127.3 功率(dB) 74.1 64.0 44.1m 基频(Hz)共振峰(Hz) 450 980 3291130.2 功率(dB) 77.3 67.1 47.7n 基频(Hz)共振峰(Hz) 379.5 1161 3256130.5 功率(dB) 77.0 66.8 37.0l 基频(Hz)共振峰(Hz) 486 1303 3143127 功率(dB) 73.6 53.2 32.65. 分析宽带语谱图和窄带语谱图的不同之处,请解释原因;宽带语谱图的时域分辨率高、可以看见语谱图上的纵的线条;窄带语谱图的频域分辨率高、语谱图上横的线条明显。
浅析语音信号频谱分析方法
浅析语音信号频谱分析方法摘要:语音信号的频域分析就是分析语音信号的频域持征。
从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅里叶变换法、线件预测法等几种。
下面着重介绍前两种分析方法。
关键词:频谱分析、带通滤波器组法、傅里叶变换法傅里叶分析法因为语音波是一个非平稳过程,因此适用于周期、瞬变或平稳随机信号的标准傅里叶变换不能用来直接表示语音信号,而应该用短时傅里叶变换对语音信号的频谱进行分析,相应的频谱称为“短时谱”。
利用短时博里叶变换求语音的短时谱对第n 帧语音信号Xn(m)进行傅里叶变换(离散时域傅里叶变换,DTFT),可得到短时傅里叶变换,其定义如下:10()()N j w j w n n n m X e x m e --==∑(3-7)由定义可知,短时傅里叶变换实际就是窗选语音信号的标准傅里叶变换。
这里,窗w(n-m)是一个“滑动的”窗口,它随n 的变化而沿着序列X(n)滑动。
由于窗口是有限长度的,满足绝对可和条件,所以这个变换是存在的。
当然窗口函数不同,博里叶变换的结果也将不同。
设语音信号序列和窗口序列的标准傅早叶变换均存在。
当n 取固定值时,w(n-m)的傅里叶变换为:()()jw n jw n jw m w n m e e W e ∞---=-∞-=⋅∑(3-8)根据卷积定理,有:()()()jw jw jwn jw n X e X e e W e --⎡⎤=⋅⋅⎣⎦ (3-9) 因为上式右边两个卷积项均为关于角频率w 的以2π为周期的连续函数,所以也可将其写成以下的卷积积分形式:()-1()()()2jw j jn j w n X e W e e X e d θθθθ∏+∏⎡⎤⎡⎤=⋅⎣⎦⎣⎦∏⎰ (3-10) 即,假设x(m)的DTFT 是()jw X e ,且()w m 的DTFT 是()jw W e ,那么()jw n X e 是()jw X e 和()jw W e 的的周期卷积。
语音信号的频域分析
图5.2 同济大学电子与信息工程学院 - 5 用移动窗选取语音段示意图 赵晓群 教授
w(n m)
m
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
x(m)的短时 Fourier 变换(STFT)Xn(ejω)的定义:
X n (e ) m x(m) w(n m)e-jm
◆准确地恢复原信号的唯一约束条件是 w(0)≠0 。
同济大学电子与信息工程学院
- 7 -
赵晓群 教授
第5章
语音信号的频域分析
5.3
短时 Fourier 变换(STFT)的定义和性质
由STFT的谱 Xn(ejω) 求解 x(m) 的 Fourier 变换 X(ejω) 方法。 假设 x(m) 和 w(m) 的 Fourier 变换都存在,即:
j
式中, w(n)是窗函数。 ◆为位于 n 处的窗口观察到的窗选语音短段的 Fourier 变换; ◆ n 取不同值时,取出不同的语音短段;
◆ Xn(ejω) 是频率ω 和时间 n 的函数;有时-频性。
要求: STFT 存在,则对所有 n 值,一定绝对可和。 ◆因窗宽有限,或无限冲激响应窗函数,其有效宽度有限, 故满足绝对可和。
语音是非平稳信号,源于发声器官的物理运动过程。
◆在短时间段(如10 ~ 30 ms)内可认为是平稳的; ◆用时间依赖处理方法分析处理。
同济大学电子与信息工程学院 - 2 赵晓群 教授
第 5章
语音信号的频域分析
5.1
概述
短时 Fourier 分析(时间依赖 Fourier 变换):
用稳态分析处理非平稳信号的一种方法 语音的频域分析:包括语音信号的频谱、功率谱、倒频谱、 频谱包络等, 常用频域分析方法:带通滤波器组法、Fourier 变换法、
语音信号的分析与处理
语音信号的分析与处理在日常生活中,我们常常与语音信号打交道,如电话通讯、语音识别、音乐播放、影片配音等。
语音信号是人类声音的一种电信号表示形式,它的特性是非常复杂的,包括语音的声音频率、幅度大小、声音的拐角特征、信号的频率变化以及背景噪声等多方面因素。
因此,对语音信号正确分析和处理是现代通讯研究、智能语音识别和场景识别等领域的重要问题,也是一个迫切需要解决的问题。
一、语音信号的基本特征语音信号具有很多特征,如频率、能量、音色和韵律等。
频率是语音信号的基本特征之一,它是指语音信号中声音的高低频率。
音频信号的波形形状与频率息息相关。
一般组成语音的基元元音频率范围在250 Hz ~ 1000 Hz之间,辅音频率的范围在100 Hz ~ 4 kHz之间。
能量与音量相关,是指语音信号所含有的总能量。
音色是语音信号的另一个特征,它能够指示语音信号的来源。
最后,韵律则是指语音信号的节奏,其包含语音中音节、词语、句子和语气的信息。
二、语音信号的分析方法语音信号的分析方法可以分为时域分析和频域分析两种方式。
其中,时域分析是一种基于时间的分析,它通过观察信号的实时波形来分析语音信号的特征。
频域分析则是一种基于频率的分析,它通过观察信号的频谱特性来分析语音信号的频率、音量和音色。
1. 时域分析时域分析是一种非常基础的语音信号分析方法。
通常,时域分析方法通过分析语音信号的波形特征来判断语音信号的特点。
它能够检查信号在时间上的变化,比如分析语音信号中频率与振幅的变化。
这种方法主要通过时间和采样频率来确定语音信号的基本特征。
2. 频域分析频域分析则是一种付于注意的语音信号分析方法。
它主要通过傅里叶变换(Fourier transform)或小波变换(Wavelet transform)等频率分析方法来研究信号在不同频段上的特征。
通过频域分析可以获得信号在较高频段上的信息,该信息往往无法通过时域分析方法获得。
频域分析方法可以用于语音信号的分析、信号噪声抑制和语音信号质量改进等方面。
第4章 语音信号短时频域及倒谱分析
对 数 幅 度 /dB
对 数 幅 度 /dB
浊 音
0 -20 -40 -60 -80
0
1000
2000 3000 f/Hz 加 Hamming窗 时 语 音 谱
4000
0 -20 -40 -60 -80
清 音
0
1000
2000 3000 f/Hz 加 Hamming窗 时 语 音 谱
4000
对 数 幅 度 /dB
wn m xm
(-∞≤m≤+∞)
的傅里叶变换或离散傅里叶变换。 (2) 当 或k 固定时,它们是一个卷积,这相当于滤波 器的运算。因此,语音信号的短时频域分析可以解释为傅 里叶变换或滤波器。
5
第四章语音信号短时频域及倒谱分析
“十二五”普通高等教育本科国家级规划教材
4.1 傅里叶变换 的解释
第四章语音信号短时频域及倒谱分析
“十二五”普通高等教育本科国家级规划教材
第四章 语音信号短时频域及倒谱分析
1
第四章语音信号短时频域及倒谱分析
“十二五”普通高等教育本科国家级规划教材
目
1
1 2
录
傅里叶变换的解释 2 滤波器的解释 短时综合的滤波器组相加法 4 语音信号的复倒谱和倒谱分析及应用
3
5
2
“十二五”普通高等教育本科国家级规划教材
i
hi (n) wi (n)e jin
X n (e ji ) e jin
x(n m)h (m)
m
(4.22)
26
4.3 短时综合的滤波器组相加法
“十二五”普通高等教育本科国家级规划教材
式(4.25)的图形解释
x(n)
语音信号时域和频域通俗理解_概述及解释说明
语音信号时域和频域通俗理解概述及解释说明1. 引言1.1 概述语音是人类最基本、也是最常用的沟通方式之一。
人们通过声音来传递信息和表达情感。
对于语音信号的分析和处理,时域和频域是两个重要的角度。
时域分析主要关注声音信号在时间上的变化规律,而频域分析则关注声音信号在频率上的成分组成。
1.2 文章结构本文将以通俗易懂的方式,对语音信号的时域和频域进行解释和说明。
首先,我们将介绍时域和频域分析的基本概念及其重要性,然后详细讨论时域与频域分析中涉及到的关键点和方法。
最后,我们将总结观点并给出读者一些启示和建议。
1.3 目的本文旨在帮助读者理解语音信号时域与频域这两个概念,并且能够清晰明了地认识到它们在语音信号处理中所起到的作用。
通过对时域与频域分析方法的说明,读者可以更好地理解并应用这些知识于实际问题中。
同时,本文也希望能够引发读者对语音信号处理的更深层次的思考和探索。
2. 语音信号时域与频域通俗理解:2.1 语音信号时域分析:语音信号的时域分析是对声音在时间上的变化进行研究和处理。
时域分析主要关注声音的振幅和时间之间的关系。
在时域中,我们可以观察到声音振动的波形图。
当我们录制一段语音时,在录制过程中,麦克风会将声音转换为电信号,并按照一定的采样率记录下来。
这些记录的电信号就是我们所说的波形图。
波形图横坐标表示时间,纵坐标表示振幅。
通过观察波形图,我们可以获得很多有用的信息。
例如,振幅可以告诉我们声音的强度或者说响度,而波形图上不同部分振幅大小和模式的变化可以揭示出不同语音特征(如元音、辅音等)以及语速、语调等信息。
2.2 语音信号频域分析:语音信号的频域分析是对声音中各种频率成分进行研究和处理。
频域分析更注重声音中各个频率成分之间的关系以及它们在声谱上呈现出来的特征。
通过傅里叶变换的方法,我们可以将时域中记录的波形图转换为频谱图。
频谱图显示了声音中不同频率成分在整个录制时间内的存在情况。
横坐标表示频率,纵坐标表示声音强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二:语音信号的频域分析
实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。
实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。
要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。
实验内容:
1、 语音信号的频谱分析
1.1加载“ma1_1”语音数据。
基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。
load ma1_1;
x = ma1_1 (4161:4460); plot (x)
N = 1024; k = - N/2:N/2-1;
X = fftshift (fft (x.*hann (length (x)),N));
plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ])
已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。
问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别?
问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期?
问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度?
1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱:
∏
==R r r X HPSx 1)()(ωω
式中,R 一般取为5。
在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。
1.3加载“vowels.mat”语音数据,分别画出一帧/i/和一帧/u/(采样频率为10kHz,帧长为30ms,每帧有300个样点)的基于DFT的对数幅度谱。
其Matlab代码如下:
load vowels
x = vowels.i_1(2001:2300);
N = 1024; k= -N/2:N/2-1;
X = fftshift (fft (x.*hann (length(x)),N));
plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])
x = vowels.u_1(2001:2300);
N= 1024; k = -N/2:N/2-1;
X = fftshift (fft (x.*hann(length(x)),N));
plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])
1.4画出一帧清音语音的基于DFT的对数幅度谱。
语音数据为ma1_1中的第15701-15860个样点(采样频率为8kHz,帧长为20ms,每帧有160个样点)。
load ma1_1;
x = ma1_1 (4161:4460); plot (x)
N = 1024; k = -N/2:N/2-1;
X = fftshift (fft (x.*hann (length (x)),N));
plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ])
问题5:清音帧的幅度谱有何特点?
2、语音信号的语谱图分析
2.1加载“timit1”语音数据。
利用函数specgram,画出该句语音的语谱图。
其Matlab代码如下:
load timit1;
NFFT = 256 ; Fs = 16000; Win = 256; Noverlap = 128;
specgram(timit1, NFFT, Fs, Win, Noverlap);
问题6:该句语音的共振峰结构如何?
2.2加载“gliss”语音数据。
画出该句语音的语谱图。
load gliss;
NFFT = 256 ; Fs = 10000; Win = 256; Noverlap = 128;
specgram(gliss.i_2, NFFT, Fs, Win, Noverlap);
问题7:如何识别出滑音/i/的共振峰结构及其基音频率?
问题8:基于浊音/清音分类函数voiunvoi.m和谐波乘积谱函数hpspectrum.m,编写一个用以计算浊音短时基音周期的函数“stpitch.m”。
问题9:利用函数stpitch.m,分别求出两句语音“timit1”和“timit2”的基音周期,各句语音的基音周期是如何变化的?
注:男声基音周期的范围通常在50-250Hz之间;女声基音周期的范围通常在120-500Hz 之间。