功能陶瓷材料概述
功能陶瓷
电子绝缘陶瓷
目前国内外常用的电子绝缘材料是Al2O3。近年来 随着科技不断发展,又出现了新型的电子绝缘材料,如 ALN陶瓷,具有高强度、高绝缘性、低介电常数、高的热 导率等优良的性能,且其热膨胀系数能够与单晶硅相匹配, 主要应用是作为大规模集成电路和电力模块电路的散热基 板。
照明绝缘陶瓷套管
绝缘装置陶瓷
常用的压电元件:传感器、气体点火器、报 警器、音响设备、医疗诊断设备及通讯等。通常 的压电材料是PZT,新型的压电陶瓷材料主要是: 高灵敏、高稳定压电陶瓷材料,电致伸缩陶瓷材 料,热释电陶瓷材料等。
气体点火器
音响设备
磁性陶瓷材料
磁性陶瓷材料可分为硬磁性和软磁性材料两 类,前者不易失去磁性。代表性硬磁性材料为铁 氧体磁铁和稀土磁铁,主要用于磁铁和磁存储元 件。软磁性材料易磁化及去磁,磁场方向可以改 变,主要用于交变磁场响应的电子部件。
抗菌陶瓷刀
抗杀菌陶瓷的生产工艺及效果
抗杀菌陶瓷由两部分组成:陶瓷基体、载体及抗杀菌 材料。基体的制备和一般陶瓷的制备方法一样,通过配料、 球磨、成型、烘干等工艺,有的还进行素烧;载体可以用 溶胶凝胶法(sol—ge1)或其它化学反应法制成薄膜 再把 抗杀菌材料涂复在其上,然后在较低的温度下进行烤制 (300~400℃)而成。 一 般载膜的厚度应小于0.0lmm,我们则直接制成 TiO2膜层 。抗杀菌功能材料的加入,有的是独立加人, 多数则是与陶瓷基础釉混合、球磨制成抗菌釉,然后在基 体上施釉、烘干并烧成。
电介质陶瓷
用于调谐电路、保护逻辑及记忆单元的陶瓷电容 器介质材料多数为BaTiO3基材料,此外还有高介的复合 钙钛矿材料,以研制出频率为105Hz时,介电常数高达 105的高介材料。目前晶界层电容器的出现,使常规瓷介 电容器的介电常数提高数倍甚至数十倍。
功能陶瓷名词解释
功能陶瓷名词解释陶瓷功能性主要包括:电子陶瓷、热释电陶瓷和红外线陶瓷等。
其中,电子陶瓷的研究主要集中在硅系半导体材料和其它化合物半导体材料上。
在电子陶瓷领域,研究主要是为了通过改变器件的组成,或者改变电路的结构和使用方法,使其具有新的性能。
1、电子陶瓷(有机—无机复合材料):以电子工业用的有机功能材料为基础,在一定条件下与无机功能材料复合,形成功能性有机材料。
主要用于微波和高频部分、磁学部分和光电探测器件等。
2、热释电陶瓷:又称为压电陶瓷,是一种在特殊条件下应力诱发下产生电致伸缩振动而使器件输出电信号的器件。
它广泛地应用于各种开关、继电器、温度传感器、隔离元件等。
3、红外线陶瓷:在工作波长范围内(约3— 1000nm)吸收或辐射红外线能量的陶瓷材料。
它是红外加热和红外线遥控等技术的重要材料。
4、压电陶瓷:又称为铁电陶瓷,它是一类在交变电场作用下,当外力去除后,电场消失时,仍保留在变化着的状态下的压电材料。
它是制造电子陶瓷的基础材料之一。
5、超硬陶瓷:可以抵抗相当于几百公斤至上千公斤拉力而不被破坏的陶瓷。
它的硬度大于任何金属,但是还没有达到完全绝对意义上的最硬,而且它也不能经受严格意义上的最高温度—— 2000摄氏度,所以常温下就不可能烧结,一般只有在1000摄氏度以上才有可能将它烧结。
6、记忆合金:通过周期性的热处理,形成永久记忆效应的合金,记忆效应具有可逆性。
7、导电陶瓷:在极低的温度下呈现超导电性,随温度升高,由超导电性又转入到普通导电状态的陶瓷。
8、压电陶瓷:在极低的温度下呈现超导电性,随温度升高,由超导电性又转入到普通导电状态的陶瓷。
9、超导陶瓷:在极低的温度下,也就是在接近绝对零度时,呈现零电阻的陶瓷。
10、生物陶瓷:利用生物原理和生物技术研制的医用、诊断、治疗、保健用生物陶瓷。
11、远红外陶瓷:具有红外放射性,它所释放的红外线能促进人体血液循环,调节生理机能,达到保健作用。
12、催化陶瓷:在适宜的温度下能够降解某些有毒气体的陶瓷。
功能陶瓷材料研究进展概述
功能陶瓷材料研究进展概述功能陶瓷材料指的是具有特殊功能的陶瓷材料,比如高温耐磨陶瓷、压电陶瓷、磁性陶瓷、热敏陶瓷等。
这些功能陶瓷材料广泛应用于电子、信息、通信、环保、医疗、军工等领域,其研究与应用已经成为一个重要的研究领域。
本文将从四个方面对功能陶瓷材料的研究进展进行概述。
一、高温耐磨陶瓷的研究进展高温耐磨陶瓷主要应用于高温、高压、高速等极端环境下的工作条件。
近年来,高温耐磨陶瓷的研究进展主要体现在以下三个方面:1、高温耐磨陶瓷的材料研究:传统的高温耐磨陶瓷材料一般为氧化铝、氮化硅、碳化硅、氧化锆等。
目前,研究人员在这些材料的制备、结构设计、织构控制等方面进行了深入研究,并开发出了一系列的新型高温耐磨陶瓷材料,比如碳化硼、碳化钨、氧化铈等,这些材料具有更好的高温、高热、高压性能。
2、高温耐磨陶瓷组件的设计与制备:高温耐磨陶瓷常用于制备涡轮叶片、燃烧室衬板、轴承等零部件。
对于这些零部件,研究人员需要进行适应性设计,以对抗不同的极端环境。
同时,在制备过程中,要求材料的制备工艺、成型方式、加工工艺等都达到高度精密化。
3、高温耐磨陶瓷的表面处理:高温耐磨陶瓷的表面处理一般包括化学处理、物理处理和机械处理。
通过这些表面处理手段,可以提高高温耐磨陶瓷的力学性能、抗氧化性能、抗腐蚀性能和防摩擦性能。
压电陶瓷是一种能将机械能转化为电能或电能转化为机械能的材料。
近年来,压电陶瓷的研究进展主要体现在以下两个方面:1、压电陶瓷材料的研究:常见的压电陶瓷材料有PZT陶瓷、BT陶瓷、PMN-PT陶瓷等。
经过不断研究,研究人员已经获得了一系列新型压电陶瓷材料,比如高温压电陶瓷、柔性陶瓷、波导陶瓷等。
这些材料具有更好的压电性能、机械性能以及抗疲劳性能。
2、压电陶瓷器件的研究:压电陶瓷器件一般包括声波器件、电场滤波器、电压传感器等。
针对不同的应用场景,研究人员需要对器件进行不同的设计,同时进行制备和测试。
磁性陶瓷是一类具有磁性的陶瓷材料,其广泛应用于电子、信息、通信、医疗等领域。
功能陶瓷的特点及应用
功能陶瓷的特点及应用功能陶瓷是指具有特定功能的陶瓷材料,它们通常具有特殊的物理、化学、电学和磁学性能,以及高温稳定性和耐腐蚀性。
以下将以电子陶瓷、磁性陶瓷、结构陶瓷和生物陶瓷为例,介绍功能陶瓷的特点及应用。
1. 电子陶瓷:电子陶瓷是一种应用于电子器件中的陶瓷材料,具有优异的电学特性和高温稳定性。
其特点包括高介电常数、低介电损耗、低热膨胀系数和优异的绝缘性能。
电子陶瓷主要应用于电容器、石英晶体谐振器、微波滤波器等电子元件中,广泛应用于通信、计算机和消费电子等领域。
2. 磁性陶瓷:磁性陶瓷是一种具有磁性的陶瓷材料,主要包括铁氧体陶瓷和硬质磁性材料。
磁性陶瓷具有优异的磁性能,如高磁导率、高剩磁和高矫顽力。
铁氧体陶瓷主要应用于电感器、传感器、磁记录材料等领域;硬质磁性材料则广泛应用于电机、发电机、转轴、磁磨粉等领域。
3. 结构陶瓷:结构陶瓷是一种具有优异力学性能的陶瓷材料,主要包括氧化铝、氮化硅和碳化硅等。
结构陶瓷具有高硬度、高强度、耐磨性和耐腐蚀性等特点,广泛应用于机械、航空航天、汽车和能源等领域。
例如,氧化铝陶瓷可用于制造切割工具、机械密封件和电子陶瓷等;氮化硅和碳化硅陶瓷则常用于制造高温热工装备和轴承等。
4. 生物陶瓷:生物陶瓷是一类用于医疗和生物工程的陶瓷材料,主要包括氧化锆、羟基磷灰石和氧化铝等。
生物陶瓷具有良好的生物相容性、化学稳定性和力学性能,可用于制造人工骨骼、牙科修复材料、植入器件等。
例如,氧化锆陶瓷可用于制作人工关节和牙科修复材料,羟基磷灰石陶瓷则可用于骨修复和植骨。
总结起来,功能陶瓷具有特定的物理、化学和电学性能,以及高温稳定性和耐腐蚀性。
它们在电子、磁性、结构和生物领域都具有重要的应用价值,广泛用于电子器件、磁性材料、机械装备、医疗器械等各个领域。
随着科技的发展,功能陶瓷的研究和应用将进一步得到拓展,为各行各业的发展提供新的可能性。
功能陶瓷材料
功能陶瓷材料
功能陶瓷材料是一种特种陶瓷材料,具有特殊的功能和性能,被广泛应用于各个领域。
以下是关于功能陶瓷材料的介绍。
功能陶瓷材料是通过合理的成分配比和特殊的工艺制造而成的,具有优异的物理、化学和机械性能。
功能陶瓷材料主要包括氧化铝陶瓷、氮化硅陶瓷、硼化硅陶瓷、钛酸锆陶瓷等。
首先,功能陶瓷材料具有优异的耐高温性能。
它们能在高温环境下保持稳定的性能,不易受到氧化、腐蚀和磨损。
因此,功能陶瓷材料被广泛应用于航空航天、化工、电子等高温领域,例如发动机喷嘴、高温炉膛衬里等。
其次,功能陶瓷材料具有优异的耐磨性和硬度。
它们的硬度往往比金属材料高出几倍甚至几十倍,耐磨性能也远远超过传统的金属材料。
这使得功能陶瓷材料在机械制造、汽车、电子等领域中被广泛应用,例如轴承、刀具等。
此外,功能陶瓷材料还具有良好的绝缘性能和导热性能。
其绝缘性能优于金属材料,能够有效隔离电流和热量,因此广泛应用于电子设备和高压设备中。
另外,它们的导热性能也非常好,可以作为散热器和热交换器的材料,具有较低的热阻。
除此之外,功能陶瓷材料还具有其他一些特殊的功能,如透明陶瓷具有良好的光学性能,被广泛应用于激光器、光纤通信等领域。
另外,功能陶瓷材料还具有较好的化学稳定性和生物学相容性,可以用于医疗器械、人工关节等领域。
总之,功能陶瓷材料是一类具有特殊功能和性能的材料,具有耐高温、耐磨、绝缘、导热等优良性能,被广泛应用于各个领域。
随着科学技术的不断发展,功能陶瓷材料将在更多的领域展现它们的优势和潜力。
《功能陶瓷材料》PPT课件
精选ppt
24
• 在制备工艺上,突破了传统陶瓷以炉窑为主 要生产手段的界限,广泛采用真空烧结,保 护气氛烧结、热压、热静压等手段。
• 在性能上,特种陶瓷具有不同的特殊性质和 功能,如高强度、高硬度、耐腐蚀、导电、 绝缘以及在磁、电、光、声、生物工程各方 面具有的特殊功能,从而使其在高温、机械、 电子、宇航、医学工程各方面得到广泛的应 用。
• 陶瓷器即使在高温下仍保持坚硬、不燃、不生 锈,能承受光照或加压和通电,具有许多优良
性能
• 广义陶瓷定义为无机原料经过热处理后的“陶
瓷器”制品的总称
精选ppt
22
1.1 精细陶瓷定义与分类
• 相对这种用天然无机物烧结的传统陶瓷
➢精细陶瓷 (Fine Ceramics)又称先进陶瓷(Advan ced Ceramics): 以精制的高纯天然无机物或人工合成的 无机化合物为原料,采用精密控制的制 造加工工艺烧结,具有远胜过以往独特 性能的优异特性的陶瓷
(定义、分类、特性、制备方法、应用)
• 功能陶瓷材料
(电介质陶瓷、敏感陶瓷、磁性陶瓷、 超导陶瓷、生物陶瓷)
精选ppt
21
第一节 精细陶瓷
• 精细陶瓷作为仅次于金属、塑料的“第三类材 料”,正在越来越多地在结构材料方面崭露头
脚,成为现代工程材料的三大支柱之一
• 陶瓷原大多数指料
郑伟宏
精选ppt
1
1、陶瓷材料的发展概况
陶瓷在人类生活和社会建设中是不 可缺少的材料,它和金属材料、高分子 材料并列为当代三大固体材料。
精选ppt
2
我国的陶瓷研究历史悠久、成就辉煌, 它是中华文明的伟大象征之一,在我国 的文化和发展史上占有极其重要的地位。
功能性陶瓷材料的制备与应用
功能性陶瓷材料的制备与应用功能性陶瓷材料是一种具有特殊功能或性能的陶瓷材料,具有着广泛的应用领域。
本文将从功能性陶瓷材料的定义、制备方法以及应用方面进行论述。
1. 功能性陶瓷材料的定义功能性陶瓷材料是一种通过特定的制备方法和工艺,在陶瓷材料的基础上获得特殊性能的材料。
与传统的陶瓷材料相比,功能性陶瓷材料通常具有一定的电气、磁性、光学、声学、导热等特殊性能,并且能够通过改变材料的组成和微结构来调控其性能。
2. 功能性陶瓷材料的制备方法2.1 成分控制法功能性陶瓷材料的制备方法中,成分控制法是最普遍的一种。
通过控制材料的成分,可以调节材料的结构和性能。
例如,通过添加适量的掺杂元素,可以改变陶瓷材料的导电性能。
2.2 添加控制法添加控制法是指在制备功能性陶瓷材料的过程中,添加特殊的添加剂来改变其性能。
例如,在制备磁性陶瓷材料时,可以添加适量的磁性粉末,以增强材料的磁导率。
2.3 界面控制法界面控制法是指通过调控材料的界面结构来改变其性能。
例如,在制备光学陶瓷材料时,可以通过控制材料的晶界、孔隙结构以及晶体取向来调节材料的光学性能。
3. 功能性陶瓷材料的应用3.1 传感器领域功能性陶瓷材料在传感器领域中有着广泛的应用。
通过利用陶瓷材料的特殊性能,可以制造出高灵敏度、高稳定性的传感器。
例如,压阻陶瓷材料可用于制备应变传感器,进一步应用于压力、力量和形变的测量领域。
3.2 功能陶瓷材料的能源应用功能性陶瓷材料在能源领域中也有着重要的应用。
例如,固体氧化物燃料电池(SOFC)中的电解质材料采用氧化锆等功能性陶瓷材料,其高离子电导率和化学稳定性使其成为高效能源转化设备的核心材料。
3.3 光电子领域在光电子领域中,功能性陶瓷材料也发挥着重要的作用。
例如,钠钪酸铌陶瓷材料可用于制备高效的光学器件,如非线性光学晶体、光波导器件等,具有广泛的应用前景。
4. 功能性陶瓷材料的前景与挑战随着科技的不断发展,功能性陶瓷材料在各个领域中的应用不断扩展。
功能陶瓷及应用知识点总结
功能陶瓷及应用知识点总结一、功能陶瓷的概念及分类功能陶瓷是指具有特定功能的陶瓷材料,主要包括结构陶瓷、功能陶瓷、生物陶瓷、环境陶瓷和陶瓷复合材料等。
根据功能的不同,功能陶瓷可以分为:1. 结构陶瓷:主要用于承受结构应力和外力作用的陶瓷材料,包括砖瓦、建筑陶瓷、化工陶瓷等。
其特点是硬度高,抗压、抗弯和抗冲击性能好。
2. 功能陶瓷:主要指具有特定功能的陶瓷材料,如氧化铝陶瓷、氮化硅陶瓷、氧化锆陶瓷等。
其特点是具有一定的电、磁、热、光、声等功能。
3. 生物陶瓷:主要用于医疗领域,如氧化锆陶瓷、生物活性玻璃陶瓷等。
其特点是无毒、无刺激、无放射性,能与生物体组织相容。
4. 环境陶瓷:主要用于环境保护和治理,如陶瓷过滤器、陶瓷填料等。
其特点是耐高温、耐腐蚀,具有吸附、过滤、分离等功能。
5. 陶瓷复合材料:由两种或两种以上的材料经过一定的工艺加工成的复合陶瓷材料,如陶瓷金属复合材料、陶瓷陶瓷复合材料等。
其特点是具有两种或两种以上材料的优点,具有良好的综合性能。
二、功能陶瓷的制备工艺及应用1. 制备工艺(1)粉体制备:包括干法制备和湿法制备两种方式。
干法制备通过研磨、干燥、筛分等步骤获得所需的粉末。
湿法制备则是通过溶胶-凝胶法、水热法、水热合成法等将所需的原料转化成溶液、凝胶状物质,再通过干燥、热处理等步骤制备成粉末。
(2)成型工艺:包括模压成型、注射成型、挤压成型、等静压成型等方式。
(3)烧结工艺:包括氧化烧结、还原烧结、热处理等方式。
2. 应用(1)氧化铝陶瓷:主要用于电气绝缘、耐磨、耐腐蚀、高温、高压等领域,如磨具、瓦楞板、电阻片、耐火材料等。
(2)氮化硅陶瓷:主要用于磨具、轴承、喷嘴、耐火材料等领域,具有高硬度、高耐磨、高耐腐蚀、高温稳定性好的特点。
(3)氧化锆陶瓷:主要用于生物医学领域,如牙科修复、人工关节、医疗器械等,具有生物相容性好、抗摩擦、抗磨损、抗腐蚀等特点。
(4)生物活性陶瓷:主要用于骨科和牙科领域,如骨修复材料、牙科种植体、骨接合材料等,具有促进骨组织生长、良好的生物相容性、无毒、无刺激等特点。
功能陶瓷的简介
功能陶瓷的简单介绍功能陶瓷是具有电、磁、声、光、热、化学及生物体特性,具有相互转化功能的陶瓷。
它主要是利用纳米技术使陶瓷的性能发生改变的。
热学功能陶瓷、生物功能陶瓷、化学功能陶瓷、电磁功能陶瓷、光学功能陶瓷,还是在涂层/薄膜和复合材料死当今比较主要的几种功能陶瓷。
生物功能陶瓷在生物功能陶瓷方面:利用纳米技术生产的纳米抗菌材料有三类:一类Ag+系抗菌材料(当高价银离子与细菌接触时使细菌体内的蛋白质变性。
);第二类是是ZnO,Tio2:等光触媒型纳米抗菌材料(通过催化反应,将细菌的尸体分解得一干二净,一般还有除臭,自洁,防霉,防锈,高效防老化,全能净化空气,自造“负离子雨林”气候等功能);第三类是C-18A纳米蒙脱土等无机材料。
将前两类加人陶瓷中可制成对病菌、细菌有强的杀菌和抑菌作用的陶瓷产品。
北京陶瓷厂和日本东陶机器株式会社合资生产的高档卫生洁具“TOTO”产品,即是应用这一技术生产的具有抗菌性能的卫生洁具。
生物陶瓷材料亦可作为作为无机生物医学材料,且没有毒副作用,与生物组织有良好的生物相容性、耐腐蚀性等优点,已越来越爱人们的重视。
主要有以下几种活性材料;(1)羟基磷灰石生物活性材料。
人工听小骨羟基磷灰石听小骨临床应用效果优于其它各种听小,具有优良的声学性质,平均提高病人的听力20-30db。
在特定语言频率范围提高45-60db。
微晶与人体及生物关系密切,在生物和医学中已有成功应用,利用ha 微晶能使细胞内部结构发生变化,抑制癌细胞生长和增殖,可望成为治疗癌症的“新药”。
(2)磷酸钙生物活性材料。
磷酸钙又称生物无机骨水泥,是一种广泛用于骨修补和固定关节的新型材料。
有望部分取代传统的pm-ma有机骨水泥。
国内研究抗压强度已达到60mpa以上;磷酸钙陶瓷纤维:磷酸钙陶瓷纤维具有一定机械强度和生物活性,可用于无机骨水泥的补强及制务有机与无机复合型植入材料。
(3)磁性材料。
生物磁性陶瓷材料主要为治疗癌症用磁性材料,植入肿瘤灶内,在外部交变磁场的作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。
功能陶瓷
功能陶瓷Z09015911 赵婷婷1、引言1、1功能陶瓷是对电、磁、光、热、化学、生物等现象或物理量有很强反应,或能使上述某些现象或量值发生相互转化的陶瓷材料。
功能陶瓷是一类颇具灵性的材料,它们或能感知光线,或能区分气味,或能储存信息……因此,说它们多才多能一点都不过分.它们在电、磁、声、光、热等方面具备的许多优异性能令其他材料难以企及,有的功能陶瓷材料还是一材多能呢!而这些性质的实现往往取决于其内部的电子状态或原子核结构,又称电子陶瓷。
1、1与传统陶瓷的区别(1)原料许多是经过人工合成或者精制,不受天然条件的限制;(2)突破传统陶瓷的化学成分限制,用多种金属氧化物、氮化物、碳化物、磷化物等,有时直接用金属原素和碳、硅等非金属原素。
与传统陶瓷相比,功能陶瓷具备了一些特殊性能(热、机械、化学、电磁、光)。
其功能的实现主要来自于它所具有的特定的电绝缘性、半导体性、导电性、压电性、铁电性、磁性、生物适应性等。
1、2功能陶瓷的分类按电学性质:绝缘体陶瓷、介电陶瓷、半导体陶瓷、和导电陶瓷;按热学性质:耐高温陶瓷、电热陶瓷。
此外,还有半导体陶瓷、绝缘陶瓷、介电陶瓷、发光陶瓷、感光陶瓷、吸波陶瓷、激光用陶瓷、核燃料陶瓷、推进剂陶瓷、太阳能光转换陶瓷、贮能陶瓷、陶瓷固体电池、阻尼陶瓷、生物技术陶瓷、催化陶瓷、特种功能薄膜等,2、功能陶瓷的性质(1). 机械材料:耐磨损、高比强度、高硬度、抗冲击、高精度尺寸、自润滑性等。
(2)热学材料:耐热、导热、隔热、蓄热与散热、热膨胀等。
(3). 化学材料:耐腐蚀性、耐气候性、催化性、离子交换性、反应性、化学敏感性等。
(4). 光学材料:发光性、光变换性、分光性、光敏感性等。
(5). 电器材料:磁性、接电性、压电性、绝缘性、导电性、存储性、半导性、热电性等。
(6). 生物医学材料:生物化学反应性、胀器代用功能性、感觉功能脏器性、生物形态性等。
陶瓷的功能性与其组成、工艺、自身性能和结构密切相关,功能陶瓷的工艺技术和性能检测关系可用下图表示。
功能陶瓷材料研究进展概述
功能陶瓷材料研究进展概述1. 引言1.1 研究背景功能陶瓷材料在科学技术领域中具有重要的应用价值,其研究始于20世纪初期。
随着科技的发展和人们对高性能材料需求的提高,功能陶瓷材料的研究逐渐受到重视。
功能陶瓷材料具有高强度、高硬度、高耐磨、耐高温、绝缘性能优异等特点,已经广泛应用于电子、生物医学、能源等领域。
随着科学技术的不断进步,人们对功能陶瓷材料的要求也越来越高,因此相关研究也不断深入。
研究背景的重要性在于为功能陶瓷材料的研究提供了必要的背景资料,有助于读者更好地理解功能陶瓷材料的定义、分类以及其在各个领域的应用情况。
【2000字】1.2 研究意义功能陶瓷材料是一种具有特殊功能或性能的陶瓷材料,具有广泛的应用前景。
功能陶瓷材料的研究意义在于其在电子、生物医学和能源领域等多个领域的重要应用。
通过对功能陶瓷材料的深入研究,可以开发出更加高效、耐用、环保的材料,推动相关领域的科技发展和产业进步。
功能陶瓷材料的研究还可以为解决环境污染、提高能源利用效率等问题提供新的解决方案。
功能陶瓷材料的研究具有重要的实际意义和社会意义,对于推动科技创新、促进经济发展、改善人类生活水平都具有积极的影响。
在未来的研究中,需要不断深化对功能陶瓷材料的认识,探索其更广泛的应用领域,为人类社会的可持续发展作出贡献。
2. 正文2.1 功能陶瓷材料的定义与分类功能陶瓷材料是一种具有特定功能的陶瓷材料,广泛应用于电子、生物医学和能源领域。
根据其功能和特性的不同,功能陶瓷材料可以分为多种不同的类别。
1. 结构陶瓷:主要用于机械结构和支撑组件,具有高硬度、高强度和良好的耐磨性。
2. 电子陶瓷:用于制造电子元器件的陶瓷材料,具有优良的绝缘性能和电磁性能。
3. 磁性陶瓷:具有较高的磁性能,可以用于制造电磁器件和储能器件。
4. 光学陶瓷:具有优良的透光性和光学性能,广泛应用于光学器件和激光器件制造领域。
5. 生物陶瓷:用于生物医学领域的陶瓷材料,具有良好的生物相容性和生物活性。
功能陶瓷材料
功能陶瓷材料功能陶瓷材料是一类具有特殊功能的陶瓷材料,它们在各种工业领域和日常生活中发挥着重要作用。
功能陶瓷材料具有优异的耐高温、耐腐蚀、绝缘、导热、导电、磁性、光学透明等特性,因此被广泛应用于电子、光电、化工、航空航天、医疗器械等领域。
本文将介绍功能陶瓷材料的种类、特性及应用。
首先,功能陶瓷材料可分为结构陶瓷和功能陶瓷两大类。
结构陶瓷主要用于承受机械载荷的零部件,如陶瓷刀具、轴承、阀门、喷嘴等。
而功能陶瓷则是指具有特殊功能的陶瓷材料,如氧化铝、氮化硅、碳化硅、氧化锆等。
这些功能陶瓷材料具有高温、耐腐蚀、绝缘、导热、导电、磁性、光学透明等特性,被广泛应用于各个领域。
其次,氧化铝是一种常见的功能陶瓷材料,具有优异的绝缘性能、耐磨性和耐腐蚀性能。
氧化铝陶瓷常用于制作绝缘零件、耐磨零件、化工设备零件等。
氮化硅是一种耐高温、耐腐蚀的陶瓷材料,常用于制作高温炉具、化工容器、陶瓷刀具等。
碳化硅具有优异的导热性能和耐高温性能,常用于制作导热器件、陶瓷加热器、炉具等。
氧化锆具有优异的机械性能和耐磨性能,常用于制作轴承、阀门、喷嘴等。
最后,功能陶瓷材料在电子、光电、化工、航空航天、医疗器械等领域有着广泛的应用。
在电子领域,功能陶瓷材料常用于制作电子陶瓷电容器、压敏电阻、陶瓷介质滤波器等。
在光电领域,功能陶瓷材料常用于制作激光器件、光纤连接器、光学窗口等。
在化工领域,功能陶瓷材料常用于制作化工设备、化工管道、化工阀门等。
在航空航天领域,功能陶瓷材料常用于制作航空发动机零部件、航天器件、航空航天仪器等。
在医疗器械领域,功能陶瓷材料常用于制作人工关节、牙科修复材料、医疗器械陶瓷零件等。
综上所述,功能陶瓷材料具有优异的特性和广泛的应用领域,对于推动工业技术进步和提高产品性能起着重要作用。
随着科技的不断发展,功能陶瓷材料将会有更广阔的应用前景。
功能陶瓷材料的分类及发展前景
功能陶瓷材料的分类及发展前景功能陶瓷材料是一种具有特殊功能的陶瓷材料,通过改变其化学组成、微观结构和加工工艺,赋予其特定的物理、化学和机械性能。
功能陶瓷材料广泛应用于电子、能源、信息、环保、生物医学等领域,对于社会的可持续发展和高新技术的进步起到了重要作用。
本文将介绍功能陶瓷材料的分类和发展前景。
一、功能陶瓷材料的分类根据功能陶瓷材料的特性和应用领域的不同,可以将其分为以下几类:1.电子陶瓷材料:具有良好的电介质性能和导电性能,广泛应用于电子元器件中。
例如铝电解电容器用电介质陶瓷、钛酸锶铅陶瓷等。
2.动力陶瓷材料:具有高强度、耐高温、耐磨损等特点,用于航空航天、汽车制造等领域。
例如氧化锆陶瓷、硼化硅陶瓷等。
3.传感器陶瓷材料:利用其特殊的物理特性,例如压阻效应、介电效应等,制成传感器,广泛应用于测量、检测等领域。
例如氧气传感器用ZrO2陶瓷、热敏电阻用MnCr2O4陶瓷等。
4.生物陶瓷材料:具有良好的生物相容性和生物活性,可用于人工骨、人工牙根、人工关节等医疗器械。
例如氧化铝陶瓷、羟基磷灰石陶瓷等。
5.能源陶瓷材料:具有高温稳定性、低损耗性能、高效传输等特点,可用于燃料电池、太阳能电池等能源新技术。
例如固体氧化物燃料电池用YSZ陶瓷、太阳能电池用TiO2陶瓷等。
二、功能陶瓷材料的发展前景1.智能化:功能陶瓷材料将更加注重与计算机、通信技术等高新技术的结合,拥有智能化功能,可以感应、控制、传输和处理信息,实现更高级的功能。
2.多功能化:功能陶瓷材料将不仅仅具备单一的功能,而是通过多种方式来应对不同的需求和场景。
例如,一种陶瓷材料既可以用于传输电信号,又可以用于储存能量。
3.纳米化:纳米技术的发展将为功能陶瓷材料带来更多的机会和挑战。
通过纳米化技术,可以调控材料的微观结构和性能,提高陶瓷材料的强度、导电性、磁性等特性。
4.绿色化:随着环保意识的增强,功能陶瓷材料的绿色化发展成为一个重要的趋势。
绿色功能陶瓷材料将注重材料的可再生性、可降解性、低污染性等方面的改进,以减少对环境的影响。
功能性陶瓷材料在电子器件中的应用
功能性陶瓷材料在电子器件中的应用功能性陶瓷材料是一类具有特定物理、化学或电子性质的陶瓷材料,被广泛应用于电子器件中。
它们在电子行业中扮演着重要的角色,提供了多种功能和特性,如高温稳定性、低介电常数、压电效应等。
本文将重点讨论功能性陶瓷材料在电子器件中的应用。
一、压电陶瓷压电陶瓷是一种可以通过施加电场产生机械应变或者通过施加机械应力产生电荷分布不均的陶瓷材料。
它在电子器件中的应用广泛。
例如,压电陶瓷可以用于制作压电传感器,将机械振动转化为电信号,被广泛应用于加速度计、传感器等领域。
此外,压电陶瓷还可以制作压电换能器件,将电能转化为机械能,用于超声波发生器、压电致动器等电子器件中。
二、热敏陶瓷热敏陶瓷是一种可以根据温度变化发生电荷变化的陶瓷材料。
它具有温度灵敏度高、稳定性好等特点,被广泛应用于温度传感器和热敏电阻等器件中。
热敏陶瓷通过温度变化引起电阻值的变化,从而实现温度的测量和控制。
在电子器件中,热敏陶瓷常用于制作温度开关、恒温器等设备。
三、铁电陶瓷铁电陶瓷是一种具有独特的铁电性质的陶瓷材料。
它具有自发极化和反极化能力,在外加电场的作用下可以改变自身极化状态。
铁电陶瓷在电子器件中的应用非常广泛,特别是在存储器件和传感器方面。
例如,铁电陶瓷可以用于制作非易失性存储器,具有快速读写、长寿命等优点。
此外,铁电陶瓷还可以用于制作压电传感器、声波滤波器等电子器件。
四、介电陶瓷介电陶瓷是一种具有低介电常数和高介电常数的陶瓷材料。
它在电子行业中被广泛应用于微波器件和集成电路中。
介电陶瓷具有低损耗和高频率特性,可以提供稳定的电绝缘性能和电容效应。
因此,介电陶瓷常被用于制作滤波器、耦合器等微波器件,以及集成电路中的衬底和隔离层。
五、陶瓷基板陶瓷基板是一种用于制作电子器件的基板材料,具有良好的导热性能和机械强度。
陶瓷基板广泛应用于集成电路、光电子器件等领域。
它通过提供良好的绝缘性能和机械支撑,保护电子器件的稳定运行。
功能陶瓷简介
功能陶瓷是指具有一定声、光、电、磁、热等物理、化学性能为特片的陶瓷材料。
陶瓷因其原材料、制备方法的多种多样而具有不同的功有,形成不同种类。
按照其化学组成可分为氧化物陶瓷和非氧化物陶瓷。
氧化物陶瓷是用不着高纯的天然原料经化学方法处理后制成,在集成电路基板和
封装等电子领域应用最多的首推氧化铝(Al
2O
3
),其次是氧化锆(ZrO
2
)、氧化
镁(MgO)、氧化铍(BeO)、氧化钍(ThO
2)、氧化铀(UO
3
)等。
它们的烧结性能好,
但热强性(蠕变抗力)较差。
非氧化物陶瓷是用产量少的天然原料或自然界没有的新的无机物人工合成的,其中多数能克服以往多陶瓷固有的脆性,作为超越金属功能界阶的新材料。
它们主要有碳化硅(SiC)、氮化硅(Si3N4)、碳化锆(ZrC)、硼化物等。
这些陶瓷具有良好的特性,例如,高温强度、高抗氧化、抗热腐蚀等。
因为功能陶瓷应用的范围广、场合多,按材料的功能可以把陶瓷分为许多类,它们是:光功能陶瓷(荧光、透光、反光、偏振光等功能陶瓷),电功能陶瓷(绝缘、导电、压电、超导等功能陶瓷);磁功能陶瓷(磁性、磁光等);敏感情陶瓷(热敏、气敏、湿敏、压敏、色敏等陶瓷);生物化学陶瓷(生物医学陶瓷、催化陶瓷、耐腐蚀性陶瓷、吸附陶瓷);核反应陶瓷(吸水中子陶瓷、中子减速陶瓷)等。
功能陶瓷材料
功能陶瓷材料功能陶瓷材料是指对电、磁、光、热、化学、生物等现象或物理量有很强反应,或能使上述某些现象或量值发生相互转化的陶瓷材料。
功能陶瓷是一类颇具灵性的材料,它们或能感知光线,或能区分气味,或能储存信息……因此,说它们多才多能一点都不过分.它们在电、磁、声、光、热等方面具备的许多优异性能令其他材料难以企及,有的功能陶瓷材料还是一材多能呢!而这些性质的实现往往取决于其内部的电子状态或原子核结构,又称电子陶瓷。
功能陶瓷材料是陶瓷材料的一种,与大多数陶瓷材料的制备工艺步骤基本相似,一般包括以下步骤:配料→混合→预烧→粉碎→成型→排塑→烧结→后处理(极化、磁化等)。
1、配料:根据配方(化学反应的配比)和生产需要的数量计算出各种原料所需的质量。
用天平称取各原料。
为使后面的化学反应顺利进行,原料的颗粒尽量小些(不要超过2 m,.最好为纳米粉),纯度要高。
对于配料中用量多的原料,最好先清除其中的有害杂质。
2、混合:通常使用转动球磨机或振动球磨机进行,有用干法的,也有用湿法的,所用的球大多是玛瑙球。
用球磨法不但可以混合,同时还可以使原料颗粒进一步被粉碎。
球磨要足够长时间以使各成分原料均匀混合,最大限度地彼此接触,以利于后面的化学反应。
当然,混合也可以采用其它方法,只要达到各原料的均匀混合就行。
3、预烧:混合好的料进行预烧,目的是让各成分间进行化学反应,生成目标化合物。
不同的化学反应有不同的条件(温度、压力、气氛等)要弄清这些条件。
4、粉碎、成型:将预烧后的材料粉碎是为了成型。
成型是按使用要求将材料做成某种特定形状的坯体。
成型根据不同要求可以采用模压、轧膜等方式。
为便于成型,成型前通常要在粉碎的料中加入某种粘合剂。
常用粘合剂的配方及重量比为:聚乙烯醇15%,甘油7%,酒精3%,蒸馏水75%;在90℃下搅拌溶化。
对模压、粘合剂一般是料粉重量的5%,而对轧膜,则粘合剂要达料粉重量的15~20%。
5、排塑:去除成型坯体中的水分、粘合剂的过程称排塑或排胶,一般采取加温办法。
功能陶瓷材料_磁功能陶瓷
功能陶瓷材料_磁功能陶瓷磁功能陶瓷可以分为软磁性陶瓷和硬磁性陶瓷两类。
软磁性陶瓷是指具有高磁导率、低磁阻和低磁化消散的特性。
它广泛应用于电子设备中,如变压器、感应器、电磁线圈等。
软磁性陶瓷具有良好的磁导率和低磁化损耗,能够有效地承受高频信号的传导和传输,同时具有优良的电气绝缘性能,能够阻止电流泄漏和高频信号的干扰。
此外,软磁性陶瓷还具有良好的耐温性能,能够在高温环境下长时间稳定工作。
目前,软磁性陶瓷的主要材料有氧化锌、氧化镍、氧化镉等。
硬磁性陶瓷是指具有较高的磁化强度和矫顽力的特性。
它在电子设备、汽车、医疗器械等领域具有广泛的应用。
硬磁性陶瓷具有高矫顽力和良好的稳定磁性能,能够在外加磁场的作用下保持稳定的磁性,并能够承受较高的磁场强度。
此外,硬磁性陶瓷还具有优良的耐腐蚀性、抗磨损性和耐高温性能,能够在恶劣的工作环境中长时间稳定工作。
硬磁性陶瓷的常见材料有氧化铝、氧化体钨、氧化硅等。
除了软磁性陶瓷和硬磁性陶瓷外,磁功能陶瓷还具有其他一些特殊的功能和特性。
例如,压敏陶瓷具有压力敏感特性,能够随外界压力的变化而改变电阻值,广泛应用于传感器、开关和控制系统中。
热敏陶瓷具有随温度的变化而改变电阻值的特性,用于温度传感器、控温设备等。
超导陶瓷具有无电阻和完全排斥磁场的特性,广泛应用于磁共振成像、超导电力设备等领域。
总之,功能陶瓷材料的不断发展和应用使得陶瓷材料具备了更多的特殊功能和特性,为不同领域的应用提供了更多的选择。
特别是磁功能陶瓷作为一种重要的功能陶瓷材料,不仅具有磁导率、磁阻、磁化消散等优良的磁性能,还具备压力敏感、温度敏感、超导等特殊功能,为电子、汽车、医疗等领域的发展提供了重要支持。
功能陶瓷材料研究进展概述
功能陶瓷材料研究进展概述功能陶瓷材料在当今科技发展中发挥着重要作用,它具有优良的高温、高强度、耐磨、绝缘、耐腐蚀等性能,被广泛应用于电子、化工、航空航天、医疗等领域。
随着科技的不断进步,功能陶瓷材料的研究也在不断深化,其应用范围也在不断拓展。
本文将对功能陶瓷材料研究的进展进行概述,以帮助读者了解功能陶瓷材料的发展动态及未来发展趋势。
一、功能陶瓷材料的分类功能陶瓷材料是指在一定条件下具有特定功能的陶瓷材料,主要包括结构陶瓷、功能复合陶瓷、功能复合涂层等。
根据其应用领域和功能特点的不同,功能陶瓷材料可分为结构陶瓷和功能性陶瓷。
结构陶瓷主要包括氧化铝陶瓷、氮化硅陶瓷、氧化锆陶瓷等;功能性陶瓷主要包括氧化铝基高温陶瓷、氮化硅陶瓷、氧化锆陶瓷、玻璃陶瓷、碳化硅陶瓷等。
二、功能陶瓷材料的研究进展1. 高性能功能陶瓷材料的研究高性能功能陶瓷材料是指具有高温、高强度、耐磨、绝缘、耐腐蚀等性能的陶瓷材料,主要应用于航空航天、电子、化工等领域。
目前,高性能功能陶瓷材料的研究重点主要包括材料的组成设计与优化、制备工艺和性能测试等方面。
采用先进的制备工艺,改善材料的微观结构和性能,提高其高温强度和耐磨性能,已成为当前高性能功能陶瓷材料研究的重要方向。
2. 新型功能陶瓷材料的研究随着科技的不断进步,新型功能陶瓷材料的研究也在不断深化。
目前,研究人员正在致力于开发一系列新型功能陶瓷材料,如氧化钛陶瓷、氧化铝基陶瓷、氮化硅陶瓷等。
这些新型功能陶瓷材料具有更高的强度、更好的耐磨性能和更广泛的应用范围,将成为未来功能陶瓷材料研究的重要方向。
三、功能陶瓷材料的应用展望功能陶瓷材料具有优良的性能和广泛的应用前景,将在电子、化工、航空航天、医疗等领域发挥重要作用。
未来,功能陶瓷材料的应用领域将进一步拓展,其应用范围将涉及到更多的高端领域,如核能、新能源等。
随着新材料、新工艺的不断研究和应用,功能陶瓷材料的性能将得到进一步提升,满足更多领域的需求,为人类社会的发展做出更大贡献。
功能陶瓷材料-电功能陶瓷ppt课件
缺陷对陶瓷导电的影响
晶体缺陷对陶瓷导电行为的影响比较复杂。陶瓷中点缺陷对材 料电性能影响较大,一般都是使陶瓷材料的电导有所增加。
例如立方ZrO2,其结构中的正离子作立方密堆积,负离子占据全部 四面体间隙,而全部八面体间隙空着,这就便于其他离子在其间移动。 如果在立方ZrO2中加入8at%的Y2O3,Y3+部分替代Zr4+后在晶格中形成部 分氧离子空位,使ZrO2的导电性增强。
功能陶瓷
❖ 功能陶瓷主要是指利用除机械性能外的陶瓷的其它 物理性能,包括导电和半导体性能、绝缘性和介电性、 磁性和热学性能、各种敏感特性,机、电、磁、光、 热等物理性能之间的耦合和转换效应,以及化学和生 物效应制成的一大类材料。
1
电功能陶瓷:
绝缘陶瓷、介电陶瓷、 铁电陶瓷、压电陶瓷、 半导体陶瓷、快离子导 体陶瓷、高温超导陶瓷
和点缺陷不同,位错、层错、晶界等晶体缺陷一般会降低陶瓷 材料的导电性。
12
掺杂可能改变陶瓷材料的导电性。
例如在ZnO中掺杂Al3+ 可以增加材料的导电性,原因是当三价的铝 替代了二价的锌后,原先二价锌的位置上变成了三价的离子。为了保持 电中性,使得Al3+附近的锌变成了一价,而一价锌是不稳定的,又会变成 二价的锌,同时放出一个电子,增加了材料的导电性。
3Leabharlann ❖ 对于传统陶瓷,人们利用陶瓷材料的电性能主要是其绝缘 性能;而对于先进陶瓷材料,除了其绝缘性能外,人们更关 心的是陶瓷材料的导电能力。目前高温超导氧化物的导电能 力已超过金属,得到应用的先进陶瓷材料的电导率覆盖了从 良导体到绝缘体的范围。
❖ 陶瓷材料的导电机制比较复杂,其导电性能与材料组成、 掺杂、微结构、晶体缺陷、制备工艺及后处理过程等密切相 关。
功能材料-功能陶瓷
由功能陶瓷材料制作的电容器、压电元 件、磁性元件、热敏电阻、压敏电阻、 气敏电阻、湿敏电阻、光敏电阻等已在 能源开发、空间技术、电子技术、传感 技术、激光技术、光电子技术、红外技 术、生物技术、环境科学等领域得到广 泛的应用。
因为功能陶瓷 应用的范围广、 场合多,按材 料的功能可以 把陶瓷分为许 多类。
气敏陶瓷
— 利用气氛变化引起电阻和电流变化的特 异性能制备的陶瓷
左:汽车尾气检测氧传感器 右:装载去除尾气催化剂的蜂窝陶瓷
生体组织器官的一类陶瓷材料
陶瓷牙齿
生物陶瓷关节
透明陶瓷
一般来说,陶瓷都是不透明的,可是今天 人们确实得到了和玻璃一样透明的陶瓷。那末 陶瓷是怎样变成透明的呢 ? 这还得从陶瓷材料 的内部结构讲起,无论是我们日常生活中使用 的陶瓷器皿,还是新技术中应用的各种特种陶 瓷如氧化物、碳化物、氮化物等陶瓷材料,尽 管它们的化学成份各不相同,以及制品的外形 千差万别,可是如果把它们切磨成很薄的片子 放在显微镜下进行观察的话,发现它们都有一 个共同的特征,即含有无数个很细小的晶粒, 在晶粒与晶粒之间是一些玻璃状的物质和气孔, 如下图所示。
(a) 极化处理前
但当陶瓷片加上电场以后,这些电畴就会在电场 的作用下发生极化 (图 b) ,极化后的电畴排列比
较规矩(图c) 。
直流电场E 剩余极化强度
电场作用下的伸长 (a) 极化处理前 (b) 极化处理中
剩余伸长 (c) 极化处理后
这样,陶瓷片就和某种晶体一样了,能使射入陶 瓷片的一束光通过陶瓷片后变成两束光,在光学上 这种现象叫做双折射效应,由于它是加了电场以后 才产生的。电场去掉后,双折射效应又没有了,所 以这种双折射效应又叫做电控双折射效应。 如果再在陶瓷片的前后以一定方式放上一对偏振 方向互相垂直的偏振片的话,当陶瓷片上不加电场 时,这陶瓷片就是各向同性的,由了两个偏振片互 相垂直,因此从第一个偏振片 ( 起偏镜 ) 射出的偏振 光经过陶瓷片后就被第二个偏振片 ( 检偏镜 ) 挡住, 光强变得最弱,这时系统处于关态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功能陶瓷材料概述
功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。
主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。
标签:
功能陶瓷;性质;应用
1 前言
功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。
它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。
功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。
2 功能陶瓷基本性质
功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。
其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。
功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。
功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。
光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。
表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。
材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。
3 功能陶瓷种类及其应用
功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。
目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。
3.1 绝缘陶瓷
直到20世纪以前,陶瓷一直是指以粘土为代表的硅酸盐矿物烧制而成的器具,由于这些制品本身是绝缘的,故称为绝缘陶瓷。
广泛应用于汽车、电力、计算机等领域,主要器件有绝缘子、火花塞、电阻器基体材料和集成电路基片等。
3.2 介电陶瓷
介电陶瓷是通过控制介电性质,使之符合高比介电常数、低的高频损耗、适当的介电常数温度变化值等要求的一种陶瓷。
包括铁电介质陶瓷、半导体介质陶瓷、高频介质陶瓷和微波介质陶瓷等陶瓷介质材料,其主要用于电容器和微波电路元件的应用。
3.3 压电陶瓷
压电陶瓷在晶体结构上没有对称中心,具有压电效应,也就是具有机械能与电能之间的转换与逆转换的功能。
压电陶瓷具有成本低、能量转换效率高、加工成型方便等优点,主要用于制作压电器材、变压器、滤波器和谐振器等。
3.4 半导体陶瓷
半导体陶瓷是技术密集型的高技术材料,其重点是开发敏感陶瓷。
这类陶瓷的半导性是指将陶瓷的晶相转变成n型或p半导体,晶界要适当绝缘。
主要包括半导体陶瓷电容器、热敏电阻、压敏电阻、湿度传感器和气体传感器等。
4 功能陶瓷发展趋势
自出现以来,功能陶瓷获得越来越深入的发展,其性能更加多样、品种更加繁多、使用更加广泛。
当前功能陶瓷发展趋势可归纳为以下几点:复合化,多功能化,智能化,低维化和材料、设计、工艺一体化。
单一材料的功能和特性往往难以满足新技术新发展对材料综合性能的要求,复合材料可以综合单一材料很多优异的性能。
智能材料是功能陶瓷发展和应用的更高阶段,是现代科学技术发展和人类社会需求的必然结果。
当材料的特征尺寸足够小,尤其是到了纳米级时,量子效应和表面效应将十分显著,可产生独特的电、磁、光、热、力等物理和化学特性,纳米功能陶瓷技术是研究的热点之一,是一种新型的功能陶瓷材料。
材料、设计、工艺的一体化,有助于开发更优异特征和更新功能的功能陶瓷。
5 结语
陶瓷的发展有着悠久的历史,功能陶瓷的研究应用也越来越广泛。
本文着重阐述了功能陶瓷的基本性质,并介绍了功能陶瓷的种类和应用以及发展趋势。
随着科学技术的发展和工业生产技术的进步,新材料的需求越来越广泛,要求也越来越高,近年来对于具有各种特殊功能的新陶瓷给予了极大重视。
新形势下,研究开发新型功能陶瓷材料,对于国家经济、军事、航空航天等发展,人民生活水平提高都显得尤为重要。
参考文献
[1]林志伟.功能陶瓷材料研究进展综述[J].广东科技,2010,241:36.
[2]曲远方.功能陶瓷材料[M].北京:化学工业出版社,2003.
[3]董显林.功能陶瓷研究进展与发展趋势[J].中国科学院院刊,2003,6:407-412.
[4]小西良弘,迁俊朗.电子陶瓷基础和应用[M].北京:机械工业出版社,1983.。