第七章 自然伽马测井

合集下载

测井教程第7章 自然伽马测井

测井教程第7章 自然伽马测井
第七章
自然伽马测井
自然伽马测井是放射性测井中的一种方法。放射性测井是以 物质原子核物理性质为基础的一组测井方法,统称为核测井,包 括自然伽马,自然伽马能谱、中子、密度测井等。 自然伽马测井测量的伽马射线,有较强的穿透能力,能在已经 下了套管的井中测量,因此,这种方法既可以在裸眼井中测量, 又可以在套管井中测井。 由于岩石的自然放射性与剖面上岩石的导电性无关,与井内所 充填的介质特性无关,因此,它能在任意岩层剖面,以及在井内 充满高矿化度泥浆、油基泥浆甚至空气的条件下使用。也正是由 于这些原因,这种方法已成为碳酸盐岩剖面和用盐水泥浆钻井的 地区进行测井的重要内容。 从应用的角度考虑,自然伽马测井同自然电位测井类似。定性 方面,可用以划分泥质和非泥质地层,确定渗透层。定量方面, 可以用它来计算地层的泥质含量,判断渗透层的物性好坏。
一、测量原理
进行自然伽马测井的简单原理如图所示,整个测量 装臵由井下仪器和地面仪器两大部分组成。
沉积岩的自然放射性,大体可分为高、中、低三种类型。
①高自然放射性的岩石:包括泥质砂岩、砂质泥岩、泥岩、 深海沉积的泥岩,以及钾盐层等,其自然伽马测井读数约 100API以上。特别是深海泥岩和钾盐层,自然伽马测井读数 在所述沉积岩中是最高的。 ②中等自然放射性的岩石,包括砂岩、石灰岩和白云岩。 其自然伽马测井读数介于50—100API之间。 ③低自然放射性的岩石:包括岩盐、煤层和硬石膏。自然
N0 2 N 0e
t
T

T和λ一样,也是不受任何外界作用的影响,而且和时间无关的常 量。不同放射性元素的T值也是不同的。 自然界中,各种放射性元素的半衰期相差很大,有的长达几十亿年 ,有的短到若干分之一秒。例如,铀的半衰期为4.51×109 年,镭 1590年,氡为3.825天等等。 一种放射性元素的半衰期可以精确估计,但是无法估计在一个短 时间内到底有多少个原子可能发生衰变。然而,对元素整体来讲,其 衰变具有统计性,即围绕某一平均值在一定范围内变化。

第七章自然伽马测井

第七章自然伽马测井
• γ射线:频率很高的电磁波或光子流,不带电,能量高, 穿透力强。能够穿透地层、套管以及仪器外壳,可以 在井中被探测到。
09:13:03
第七章 自然伽马测井和放射性同位素测井
9
第一节 伽马测井的核物理基础
二、伽马射线和物质的作用形式
– 1.光电效应 •γ射线能量较低时,穿过物质与原子中的电子相碰撞, 将其能量交给电子,使电子脱离原子运动,而γ整个被 吸收,释放出光电子。光电效应发生几率τ随原子序数 的增大而增大,随γ能量增大而减小。
0.0089
Z 4.1
A
n
09:13:03
第七章 自然伽马测井和放射性同位素测井
10
第一节 伽马测井的核物理基础
二、伽马射线和物质的作用形式
–1.光电效应
•τ——线性光电吸收系数, γ光子穿过1cm吸收物质时 产生光电子的几率;
•λ——γ光子的波长;
•n——指数常数,对不同的元素取不同的值,对C、O 来说取3.05,对Na到Fe的元素来说取2.85;
09:13:03 第七章 自然伽马测井和放射性同位素测井 26
第二节 自然伽马测井
一、岩石的自然放射性
– 煤中的有机质(由碳、氢、氧、氮等元素组成的有机 化合物)和无机质(矿物杂质和水分)都不是放射性 物质,因此在一般情况下,煤层的放射性均很弱。 – 煤层放射性的强弱与煤的灰分合量有很密切的关系。 灰分增高,煤层的放射性也随之增强,某些高灰分煤 层的放射性甚至比围岩还要高。
m
09:13:03 第七章 自然伽马测井和放射性同位素测井 16
第一节 伽马测井的核物理基础
三、伽马射线的探测
– 1.放电计数管
• 放电计数管是利用放射性射线使气体电离的性质来探测伽 马射线。

自然伽马测井和放射性同位素测井性质和方法

自然伽马测井和放射性同位素测井性质和方法

0第4.七06章.202自0 然伽马测井和放射性同位素测井
13
第一节 伽马测井的核物理基础
•二、伽马射线和物质的作用形式
–2.康普顿效应
• 伽马射线与物质作用发生康普顿效应引起伽马射线强 度减弱,其减弱程度用康普顿系数Σ表示。
e
NAZb
A
• σe——每个电子的康普顿散射截面,当伽马光子的能
量在0.25~2.5MeV的范围内时,它可看成是常数;
0第4.七06章.202自0 然伽马测井和放射性同位素测井
9
第一节 伽马测井的核物理基础
•一、原子核的衰变及其放射性
–5.放射性射线
• α射线:是氦原子核2He4流,带有两个单位正电荷, 容易引起物质的电离或激发,极易被吸收,电离能力 强,在物质中穿透距离很小,在井中探测不到。
• β射线:高速运动的电子流,在物质中穿透距离较短。 • γ射线:频率很高的电磁波或光子流,不带电,能量
0第4.七06章.202自0 然伽马测井和放射性同位素测井
4
第一节 伽马测井的核物理基础
•一、原子核的衰变及其放射性
– 1、原子的结构
• 矿物、岩石、石油和地层水都是由分子组成的,分 子又是由原子组成的。原子的中心是原子核,离核 较远处核外电子按一定的轨道绕核运动。
0第4.七06章.202自0 然伽马测井和放射性同位素测井
• 放射性:不稳定的核素所具有的自发地改变自身结构, 衰变成其它核素并释放射线(α、β、γ) 的性质。
• 放射性同位素:具有放射性的同位素。
0第4.七06章.202自0 然伽马测井和放射性同位素测井
6
第一节 伽马测井的核物理基础
•一、原子核的衰变及其放射性
–3. 核衰变

自然伽马能谱测井

自然伽马能谱测井
器进行计数解谱得到相应的铀、钍、钾 的含量。
二、自然伽马能谱测井的 应用
• 一)研究储集层 • 1、储集层的分类 • 1)陆源碎屑岩储集层 • 包括砾岩、砂或砂岩、粉砂或粉砂岩 • 2)火山碎屑岩储集层 • 主要由火山碎屑构成,按颗粒大小可
• 分为集块岩和火山砂、凝灰或火山灰 • 3)碳酸盐岩碎屑储集层 • 主要是由贝壳碎片或碳酸盐岩碎屑堆
一、自然伽马能谱测井原 理
• 自然伽马能谱测井仪器的井下仪器与自 然伽马测井基本相同,将入射的伽马射 线能量的大小以脉冲的幅度大小输出, 不同的是地面仪器,自然伽马能谱测井 仪器地面部分有多道脉冲幅度分析器, 该分析器将能量分为五个能量窗。
• W1: 0.15~0.5MEV • : 0.5~1.1MEV • W3: 1.32~1.575MEV • W4: 1.65~2.39MEV • W5: 2.475~2.765MEV • 五个能量窗输出的信号分别进入5个计数
2、环境监测
• 用伽马能谱测井可对放射性矿物的开采、 加工、各类核工业和科研部门的环境进 行定期监测,主要防范铀对水体的污染。 其方法是定期在观察井中做自然伽马能 谱分析,配合取样分析,观察铀系和锕 系子体的扩散。
• 式中Th为目的层钍曲线值(ppm); Thmin为邻近不含泥质地层的钍读数 (ppm);Thmax为邻近泥岩层的钍读 数(ppm)。
• (2)用经验公式求出泥质含量的估值, 如用公式
二)研究生油层
• 这里主要讨论用自然 伽马能谱测井从粘土 岩中定性识别生油岩 和定量估算生油指标
1、定性识别生油岩
• 1)普遍泥岩的钾、铀、钍响应 • 普通粘土岩的钾、铀、钍含量都比较高,
其中钾和钍和粘土矿产的体积含量比铀 相关性好。

自然伽马测井

自然伽马测井

钻井液和仪器外壳进入探测器,经过闪烁计数器,将伽马射线转化为电脉冲信
号,放大器把电脉冲放大后由电缆送到地面仪器,地面仪器把每分钟电脉冲数
转变成与其成正比例的电位差进行记录,井下仪器沿井身移动,就连续记录出
井剖面上自然伽马强度曲线,称为GR曲线,单位是脉冲/分,在仪器标准化后,
曲线单位是μR/h。现在使用API单位。
曲线上任何一点的计数率和真值间的偏差为:
绝对误差: 1 n1
2 2
(2)某段地层内测量的平均记数率的涨落误差σ2
即以某一深度上一次测量的测井读数代替应由多 次重复测量计算的平均值时所带来的误差
相对误差2
1 N
v hn
绝对误差 2 n 2
vn h
N-厚度为h的地层脉冲总数
5)、当岩层变薄时
当 h < 3d0 时 , 受 低 放 射 性 围 岩 的 影 响 , 自然伽马幅度值对厚度h减小而减小, 岩层界面的位置移向曲线的顶端。
d0-井径
理论曲线与实际情况的差异分析
自然伽马理论曲线
理想情况:探测器在井内是进行的点测,而且每一个点上的读数是较长时间内 (>3τ)所测脉冲数的平均值。
度变化超过上述范围,且超过(2.5~3)σ时,则 分层不正确,应重新分层。
高斯分布
3)、地层厚度的影响
◆当地层足够厚时,对应曲线的幅度平均值代 表地层的真实情况。当地层很薄时,曲线的平 均值达不到代表地层的真实性质。
测值围绕平均值的变化情况及其统 计分布规律示意图
◆在砂泥岩剖面,由于地层变薄会使得泥岩的 自然伽马测井曲线值下降,砂岩层的自然伽马 曲线值上升,并且地层越薄,这种上升和下降 的幅度越大。对于地层层厚小于3d0时,应考虑 层厚的影响。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理
自然伽马测井(Natural Gamma Ray Logging)是一种用于地质勘探和地层解释的测井方法。

其原理是通过测量地层中存在的天然伽马射线强度来获取地层的放射性元素含量,进而推断地层的成分和性质。

伽马射线是一种能够穿透物质的高能电磁辐射,常常与放射性同位素的衰变过程相关。

地层中的放射性元素如钾、铀和钍会以不同的比例存在,它们的核衰变会释放出伽马射线。

这些伽马射线的能量和强度与地层中的放射性元素含量有关。

在自然伽马测井中,测井仪器将伽马射线传感器降入井中,通过探测上下井段的伽马射线强度差异来识别地层。

伽马射线强度通常以计数率 (counts per second,cps) 的形式进行测量。


过观察伽马射线计数率的变化,可以确定地层中放射性元素的含量及其分布。

自然伽马测井可以提供许多地层信息。

例如,钾元素主要存在于黏土矿物中,可用于判断地层的砂岩和页岩含量。

铀和钍元素主要存在于砂岩中,可以用于识别砂岩体。

此外,自然伽马测井还可用于确定地层的厚度和边界、识别化石层、建立地质模型等。

需要注意的是,自然伽马测井的应用需要考虑伽马射线的穿透能力和侵入深度等因素。

不同元素对伽马射线的敏感度也不同,因此对于复杂地层,可能需要结合其他测井方法进行综合解释。

总之,自然伽马测井是一种重要的地质勘探工具,通过测量地层中的伽马射线强度,可以获取地层的放射性元素含量和地质信息,为勘探工作提供有价值的数据支持。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理自然伽马测井是一种常用的地球物理勘探技术,它通过测量地层中的自然伽马辐射来获取地层的物性参数,对地质构造和油气藏进行识别和评价。

自然伽马测井原理是基于地层中放射性元素的存在,这些元素会发出自然伽马辐射,通过测量这种辐射的强度和能量分布,可以了解地层的岩性、厚度、孔隙度等信息,为油气勘探和开发提供重要的地质信息。

自然伽马辐射是地球物理测井中常用的一种测井方法,它利用地层中含有的放射性元素(如钾、钍、铀等)所产生的自然伽马辐射进行测量。

这些放射性元素在地层中的含量和分布会影响自然伽马辐射的强度和能谱特征,因此可以通过测量自然伽马辐射来推断地层的性质。

自然伽马测井常用的测量工具是自然伽马测井仪,它能够实时测量地层中的自然伽马辐射,并将数据传输到地面进行分析和解释。

自然伽马测井原理的核心是利用地层中放射性元素的存在来获取地层的物性参数,通过测量自然伽马辐射的强度和能谱特征,可以获取地层的厚度、密度、孔隙度等信息。

在实际应用中,自然伽马测井可以用于识别地层的岩性,划分地层的界面,评价地层的孔隙度和渗透率,识别油气层和水层等。

因此,自然伽马测井在油气勘探和开发中具有重要的应用价值。

自然伽马测井原理的实现依赖于自然伽马辐射的测量和解释。

自然伽马辐射的测量需要使用自然伽马测井仪,它能够实时测量地层中的自然伽马辐射,并将数据传输到地面进行分析。

自然伽马辐射的解释则需要借助地质、物理和数学等知识,通过对自然伽马辐射数据的处理和解释,可以获取地层的物性参数,并进行地质分析和油气勘探评价。

总的来说,自然伽马测井原理是基于地层中放射性元素的存在,利用自然伽马辐射来获取地层的物性参数,为油气勘探和开发提供重要的地质信息。

通过自然伽马测井,可以实现对地层岩性、厚度、孔隙度等参数的快速获取,为油气勘探和开发提供重要的技术支持。

自然伽马测井原理的应用将进一步推动油气勘探和开发技术的进步,为油气田的发现和开发提供重要的技术手段和支持。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理自然伽马测井是一种测量地层中放射性元素含量的方法,通过测量地层中的自然伽马辐射强度,可以推断出地层的物性参数,如密度、孔隙度、渗透率等。

本文将介绍自然伽马测井的原理、仪器、应用及优缺点。

一、原理自然伽马辐射是指地球表面及地下物质中,由于天然放射性元素(如钾、铀、钍)的存在而产生的辐射。

这种辐射可以穿透物质,被探测器捕获后转化为电信号,再通过信号处理系统转化为伽马射线强度。

地层中的自然伽马辐射强度与地层中放射性元素的含量有关,因此可以通过测量自然伽马辐射强度来推断地层中放射性元素的含量,从而推断出地层的物性参数。

二、仪器自然伽马测井仪器主要由辐射源、探测器、信号处理系统和数据采集系统等部分组成。

辐射源通常是钚-铍源或铯-137源,探测器通常是锂离子探测器或硅探测器,信号处理系统通常是多道分析器或微机处理器,数据采集系统通常是电缆或无线传输系统。

三、应用自然伽马测井广泛应用于石油、天然气、地热、水文等领域,主要用于以下几个方面:1.测量地层中放射性元素的含量,推断地层的物性参数,如密度、孔隙度、渗透率等。

2.判断地层中矿物成分的类型和含量,如石英、长石、云母、方解石等。

3.判断地层中的岩性类型,如砂岩、泥岩、灰岩、页岩等。

4.判断地层中的构造类型,如断层、褶皱、岩浆侵入等。

5.判断地下水的分布和含量,预测水文地质条件。

四、优缺点自然伽马测井具有以下优点:1.测量范围广,可以测量地层中放射性元素的含量,推断地层的物性参数,如密度、孔隙度、渗透率等。

2.测量速度快,可以在钻井过程中进行实时测量,提高钻井效率。

3.测量精度高,可以达到0.1%的测量精度。

4.测量成本低,仪器价格相对较低,使用成本也较低。

但自然伽马测井也存在以下缺点:1.受地层中其他元素的影响,如矿物质、水等,容易受到干扰。

2.无法直接测量地层中的水含量和流速,需要通过其他方法进行补充。

3.无法测量地层中的化学元素含量,如碳、氢、氧等。

第7章自然伽马测井

第7章自然伽马测井
身放射性附加(附泥浆含强被射性,一般 不含) 井径、泥浆、套管 (3)放射性统计起伏:统计规律—各次测 的平均值
(4)测速v和仪器积分常数τ对曲线影响
四、地质应用
1.划分岩性,确定渗透层
主要是根据地层中泥质含量的变化引起 自然伽马曲线幅度变化来区分不同的岩性, 右图是自然伽马测井曲线对不同地层响应:
需要注意的是:对某一地区来说,应该根据岩心 分析结果与自然伽马曲线进行对比分析,找出地区性 的规律,再应用于自然伽马曲线的解释。
2.进行地层对比,优点: (1)与岩石流体性质无关(油、水、地层矿化度等) (2)与泥浆性质无关(盐、水泥浆) (3)易找到标准层。
在油气水边界地带进行地层对比,因为岩石中含流体性质 变化大,使R、SP曲线形状变化不益于进行对比。另外 膏盐地区尤为重要。
β射线:高速中子流,射程小,电离程度中等。
γ射线:频率高的电磁波或光子流,不带电,能量高,穿透力强。
5.伽马射线与物质作用
自然伽马射线→穿过物质与原子相互作用,将发生不同形式的作用, 其中主要形式为:光电效应、 康普顿一吴有训效应、 形成电子 对
(1)光电效应:当伽马射线能量较低(低于0.25Mev)时,它与组 成物质元素原子中的电子相碰撞之后,把能量全部转交电子,使 电子获得能量后脱离其电子壳层而飞出,同时伽马射线被吸收而 消失。这一过程称为光电效应,被释放出来的电子叫光电子。产 生光电效应的几率,与入射伽马射线能量和组成物质原子序数有 关
(3)电子对的形成 能量高于1.02Mev伽马射线与物质作用时,在原子核力场作用下,
可转变成正、负电子对,即一个正电子和一个负电子。伽马射线 在形成电子对后,本身被吸收。 (4)伽马射线的吸收 伽马射线能量衰减,强度减小过程称为伽马射线被吸收。 (5)电子密度与体积密度 产生康普顿一吴有训效应几率与单位体积中电子数(电子密度)有 关,电子密度ρe

自然伽马测井

自然伽马测井

自然伽马测井-以研究岩层或矿体天然放射性为基础,进而研究岩层性质和有关地质问题的一种测井方法。

§ 7- 1 原子核的基本知识和天然放射性1 .原子核的基本知识原子核组成—中子,质子核系—具有相同质子数 Z 和中子数 N 的一类原子核表示方法(或)同位素—质子数相同,中子数不同的核素。

2 .天然放射性核素分为稳定与不稳定的两种,不稳定核素的原子核能自发地放射某种射线,这种现象称为放射性,不稳定核素也称为放射性核素。

原子核衰变—原子核由于放出射线而发生的转变。

放射性核素放出的射线有三种:α、β、γ。

放射性核素的衰变遵从统计规律,在某一时间的衰变率和当时存在的可以衰变的原子核数 N 成正比。

即:式中λ为衰变系数放射性活度—放射性核素的衰变率(单位时间的衰变数),通常通过测定放射性衰变过程中单位时间放出的射线数,即射线强度来了解放射性活度。

半衰期 T —原了核数衰减一半所需的时间,平均寿命τ—放射性原子核平均生存的时间3 .放射性单位1 )活度单位-具可勒尔( Bq ),一具可等于每秒一次核衰变1Bg = 1S -1活度旧单位为居里( C i )1 C i = 3.7 × 10 10 Bq2 )剂量单位:吸收剂量:戈端( Gray ),一戈端表示一千克物质吸收一热耳的辐射能量时的吸收剂量。

1Gy = 1J/ kg照射剂量:库仑每千克, C/kg ,它是指单位质量的物体(空气),在 x 或 r 辐射后产生电离的电量。

旧单位为仑琴( R )1R = 2.578 × 10 -4 C/kg3 )克镭当量:用于衡量γ放射性强弱,凡放出γ射线的物质和 1 克镭在同样条件下所引起的电离作用相等时,这一物质的放射量为 1 克镭当量。

4 ) API 单位:休斯敦美国石油研究所的γ射线刻度井中低放射性层和高放射性层放射性差值的 1/200 ,定义为 1API 。

4 .岩石的天然放射性1 )岩浆岩—放射性物质含量高,全土全油比大。

自然伽马测井原理

自然伽马测井原理

自然伽马测井原理
自然伽马测井是一种常用的测井方法,它利用地层中天然放射性元素的辐射来获取地层信息。

自然伽马测井原理是基于地层中放射性元素的特性,通过测量地层中放射性元素的辐射强度来推断地层的性质。

本文将介绍自然伽马测井的原理及其在油田勘探中的应用。

地层中的放射性元素主要包括钍、钾和铀等,它们的放射性衰变会产生伽马射线。

当伽马射线穿过地层时,会与地层中的原子核发生相互作用,导致伽马射线的能量发生变化。

通过测量伽马射线的能量变化,可以推断地层中的放射性元素含量,从而得知地层的性质。

自然伽马测井的原理是基于伽马射线在地层中的衰减规律。

地层中的不同岩石对伽马射线的吸收能力不同,因此伽马射线在地层中的传播会受到地层岩石成分的影响。

通过测量伽马射线的衰减情况,可以推断地层的厚度、密度和岩性。

自然伽马测井在油田勘探中有着重要的应用价值。

首先,通过自然伽马测井可以获取地层的放射性元素含量,从而判断地层的含
油气性。

含油气层通常具有较高的放射性元素含量,因此可以通过自然伽马测井来识别潜在的油气层。

其次,自然伽马测井可以提供地层的密度和岩性信息,有助于评价地层的储集性能和渗透性。

最后,自然伽马测井还可以用于识别地层中的放射性矿物,对于矿产勘探具有重要意义。

总之,自然伽马测井原理是基于地层中的放射性元素的辐射特性,通过测量伽马射线的能量变化和衰减规律来推断地层的性质。

在油田勘探中,自然伽马测井具有重要的应用价值,可以帮助地质工作者更好地理解地下地层的情况,为油气勘探和开发提供重要的地质信息。

第7章 自然伽马和放射性同位素测井(4课时)

第7章 自然伽马和放射性同位素测井(4课时)

7.2 伽马测井的核物理基础
二、伽马射线与物质的作用
由于伽马射线能量不同,与物质的作用不同,一般有光电效应,康普顿效应和 电子对效应。
1、光电效应
当伽马射线能量较小时它与原子中的电子碰撞,并将能量传给电子,使电子脱
离原子而运动,伽马射线被吸收并释放出光电子。 发生光电效应几率与伽马射线能量以及吸收物质的原子序数有密切关系.随
62
28
7.3 自然伽马测井
2、地层对比
用自然伽马曲线进行地层对比有如下几个优点:(1)一般与孔隙流体无关。储 层含油、含水或含气对曲线影响不大,或根本没什么影响,用自然电位和电阻率进 行对比,同一储层由于和流体性质不同差别很大。含水时自然电位异常幅度大,电 阻率低。含油气时异常幅度小,电阻率高。(2)与地层水和钻井液的矿化度关系不 大。(3)很容易识别风化壳,薄的页岩等,曲线特征明显。(4)在膏盐剖面及盐水钻 井液条件下,自然电位和电阻率曲线变化较小,就显示出了GR曲线对比的优越性。 (5)套管井也可以地层对比。
K
NA
A
Z 2 ( Er 1.022 )
K : 常数
4、伽马射线的吸收
当伽马射线穿过物质时它与物质发生作用, 伽马射线强度减弱,其规律为:
I I 0e l
m
62

10
7.2 伽马测井的核物理基础
三、伽马射线的探测
1、放电计数管
利用放射性辐射使气体电离的特性来探测
原子序数增加而迅速增加,但随伽马射线能量增加而迅速减小.一般发生光电效
应的几率为:
0.0089
Z 4.1
A : 光电吸收系数(cm)
n
:光子波长
62

放射性测井

放射性测井
【问题2】核测 井利用这些过程怎 样来确定储集层岩 性和孔隙度呢?
储层岩性分析
储层孔隙度计算
主要作用方式 伽马源
电子对效应 康普顿效应 光电效应
地层物质
(2)、光电效应
入射光子
原子核
核外电子 光电子
1.γ光子与靶物质原子发生电磁相互作用; 2.γ光子被吸收,能量全部交给内层束缚电子; 3.束缚电子摆脱原子发射出来成为光电子。
图3-6注入放射性活化液找窜槽管柱图
图3-7 放射性同位素找窜测井曲线 1、参考曲线 2、放射性同位素测井曲线
检查封堵效果
检查压裂效果
放射性同位素吸水剖面测井图
思考题
• 1、伽马射线与物质相互作用时,可能产生 的三种效应为_____________、________ 和_______________。
4、自然伽马测井曲线的应用 • (1)划分岩性和地层对比 • 主要依据:岩层中Vsh不同,GR读数不同。
• 砂泥岩剖面:砂岩显示最低值,粘土(泥岩 和页岩)最高值,粉砂岩泥质砂岩介于中间, 随泥质含量增加曲线幅度变大;
• (2)划分储集层 • 砂泥岩剖面:低自然伽马异常就是砂岩储
集层,异常半幅点确定储集层界面;
• 一、放射性同位素测井方法 • 1、测井过程 • 井内注入被放射性同位素活化的溶液或固
体悬浮物质 ;压入套管外 ;测量注入示踪 剂前后的伽马射线强度 ;对比评价。 • 2、放射性同位素的选择和配制
• 二、放射性同位素测井的应用
• 1、放射性同位素测井找窜槽位置 • 2、检查封堵效果 • 3、检查压裂效果 • 4、测定吸水剖面,计算相对吸水量
变成另外一种原子核的放射性现象称为放射 性衰变。
• 衰变方式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

?
?
K
N
A ?Z
A
2
(E?
? 1.022)
(7-5)
图7-2 伽马射线与物质的作用与伽马射线的能量的关系
4、伽马射线的吸收 由于伽马射线与物质产生上述三种效应,因此,
伽马射线的强度会随射线通过物质距离的增加而减弱, 实验表明,其强度的减弱与通过的距离存在下述关系:
I ? I0e??L
(7-6)
其中: Io、I--- 分别为未经吸收物质和经过吸收物
原子核内的质子数与核外电子数相同,为原子 序数,用 Z表示;质子数与中子数之和为元素的质量 数,用A表示;原子核内的中子数为 A-Z。X代表元素 符号。 2、同位素和放射性核素
核素:原子核中具有一定数量的质子和中子,并 在同一能态上的同类原子。
同位素:原子核中的质子数相同而中子数不同的 核素,它们具有相同的化学性质,在元素周期表中 占有同一位置。
和两个中子组成,与氦原子的核相同,质量大, 穿透能力差,其连一张纸都穿不透。
β射线是电子束 ,β粒子带有一个正电荷或负电 荷,其穿透能力低,只能穿透几层厚纸。
γ射线是高频的电磁波或光子流,能量大, 穿透能力强,测井能够测量得到 。
二、伽马射线与物质的作用 放射性核素产生的γ射线,能量一般在
0.5MeV 到5.3MeV 之间,在这一能量范围内, 伽马光子与物质的作用主要有光电效应、康 普顿效应和电子对效应。
100 分钟 5.27 年
4、放射性活度和放射性比度 放射性活度: 一定量的放射性核素,在单位时间
内发生衰变的核数。 单位为居里。
1居里=3.7 ? 1010 / s
放射性比度: 放射性活度与其质量之比。 单位为Ci/g。纯镭的放射性比度为 1Ci/g。
5、放射性射线的性质 α射线由α粒子流组成 ,α粒子由两个质子
不同岩石所含的放射性核素的种类和数 量不同,与 岩石岩性和沉积环境有关 。
火成岩、变质岩、沉积岩的放射性依次减弱。 还原环境下形成的沉积岩,放射性强; 氧化环境下形成沉积岩,放射性弱。
二、自然伽马测井的测量原理 自然伽马测井的测量过程如图 7-5所示。测量
装置由井下仪和地面仪组成。仪器在井内自下而 上移动测量,连续记录井剖面岩层的自然伽马强 度曲线(自然伽马测井曲线 GR),其单位为计数 率或标准单位 API。测井值越大,说明岩层的放射 性越强。图 7-6为砂泥岩剖面的自然伽马测井曲线。
第七章 自然伽马测井和放射性同位素测井
伽马测井的核物理基础 自然伽马测井 自然伽马能谱测井 放射性同位素测井
? 放射性测井是根据岩石及其孔隙流体和井内 介质的核物理性质,研究钻井地质剖面,寻找油 气等矿藏,研究油田开发及油井工程的一类测井 方法。
? 它是唯一能够确定岩石及其孔隙流体化学元 素含量的测井方法 ;既可在裸眼井又可在套管井 内进行测量;测量结果不受井内介质的限制。
半衰期 T:指从 t=0 时的N0个原子核开始,到 N0/2个原子核发生了衰变所经历的时间。半 衰期T与衰变常数λ的关系为:
T=0.693/λ
(7-2)
常见放射性核素半衰期
放射性核素 钾 铯 钡
铟 钴
符号 K 40
19
55 Cs137
Ba131 In113
Co60
半衰期 T
1.3? 109 年
3.3 年 11.8 天
质L时伽马射线强度;
μ---物质的吸收系数,μ=τ+Σ+η。
此外,还可以用质量吸收系数反映伽马射线通过物
质时的强度减弱程度。? m ? ? ?
(7-7)
三、伽马射线的探测 1、 放电计数管 如图7-3所示,它利用放射性辐射使气体电离的特
性来探测伽马射线。此计数管的计数效率低。 2、闪烁计数管
由光电倍增管和碘化钠晶体组成,如图 7-4所示。利 用被伽马射线激发的物质的发光现象来探测射线。 其计数效率高、分辨时间短,广泛应用到放射性测 井中。
Pb 82
206* →82 Pb 206 +γ (0.89MeV)
核衰变规律:放射性核素的数量随时间按指 数递减的规律发生变化。其变化与任何外界 作用无关,仅与放射性核素本身的性质有关。 用公式表示为
N ? N0e??t
(7 -1 )
其中:λ ---- 衰变常数。与放射性核素有关。
N0 、N---分别为t=0和t时刻的放射性核 素个数。
第一节 伽马测井的核物理基础
一、核衰变及其放射性
1、原子结构 原子的性质:原子是由原子核和核外电子层组成的
一种很微小的粒子,直径约为 10?8 cm,质量小。
原子核由中子和质子组成,直径为 10 ? 14~10 ? 13cm。
质子是氢的原子核,带有一个单位的正电荷 . 中子不带电,其质量几乎与质子相同。
图7-3 放电计数管工作原理
图7-4 闪烁计数管工作原理
第二节 自然伽马测井 一、岩石的自然放射性
岩石的自然放射性取决于岩石所含放射性核 素的种类和数量。岩石所含放射性核素主要为:
铀(
U 238
92
)及其衰变物;
钍( 90Th232 )、锕( 80 Ac227 )及其衰变物;
钾的放射性同位素 19 K 40 。
图7-1(b)康普顿效应 康普顿效应。
?
?
?
e
ZN A ?
A
(7-4)
3、电子对效应 当入射伽马光子的
能量大于 1子对 ,其本身被吸收。如图 7-1(c)所示。通常用 吸收系数η表示由于产 生电子对效应而导致的 伽马射线强度的减小。
图7-1(c)电子对效应 产生几率:
1、光电效应
γ射线与物质原子
中的电子相碰撞,并
将其能量传给电子,
使电子脱离原子而运
动,γ光子本身则被
图7-1(a) 光电效应
吸收,释放出的电子
产生几率:
叫光电子,如图 7-1(a)
所示。这种效应称为 ?
?
0.0089
? Z ? 4.1
n
(7-3)
A
光电效应。
2、康普顿效应 中等能量的伽马射线
穿过物质时,伽马射线与 原子的外层电子发生作用 ,部分能量传给电子,使 电子从某一方向射出,此 电子为康普顿电子,损失 了部分能量的射线向另一 方向散射出去叫散射伽马 射线,如图 7-1(b)所示 。这种效应称为康普顿效 应。
放射性核素:能自发地改变其结构,衰变为其它核 素,并放射出射线的核素。 3、核衰变
放射性核素的原子核自发地释放出一种带电粒子 (α或β),蜕变成另外某种原子核,同时放射出 γ射线的过程叫核衰变。核能自发地释放α、β、 γ射线的性质叫放射性。
Po 84
210 →82 Pb 206* +2 He 4 (α)
相关文档
最新文档