竖曲线任意标高计算方法(实用型)
竖曲线任意一点的高程计算
竖曲线任意一点的高程计算竖曲线任意一点的高程计算竖曲线是公路设计中常见的一种曲线,其特点是沿竖直方向变化,可以有效地调节路段高度差。
在公路建设工程中,如果要进行竖曲线的施工,需要进行竖曲线任意一点的高程计算。
竖曲线任意一点的高程计算是公路设计的重要环节,其准确度直接关系到公路的安全性和通行效率。
本文将介绍竖曲线任意一点的高程计算方法,以及需要考虑的相关因素。
一、竖曲线高程计算方法竖曲线的高程计算是向下估算和向上估算的综合计算。
在竖曲线中,设置了一些控制点,可以通过这些控制点进行高程计算。
竖曲线任意一点的高程计算公式如下:①高程估算公式向下估算点的高程:H=Ha-S*S/(2L)+F+S/2向上估算点的高程:H=Hb-S*S/(2L)+F-S/2其中,H为估算点高程;Ha、Hb为起点和终点的高程;L为竖曲线长度;S为竖曲线下垂量;F为对应点的垂线距离。
②竖曲线长度L=S*360/ (2 π R)其中,R为竖曲线半径。
③竖曲线下垂量计算设置竖曲线的下垂量为1m时,竖曲线的半径R=(5730*(1000-1))/1.5^2≈33.633公里二、竖曲线应考虑的因素1. 竖曲线的长短在进行竖曲线高程计算时,需要根据竖曲线的长度进行计算。
竖曲线的长度对于高程计算有着重要的影响,长短不一的竖曲线需要采取不同的高程计算方法。
2. 竖曲线的变化竖曲线的变化对于高程计算的准确性有着严重影响。
在竖曲线变化过程中,需要对竖曲线进行多个控制点的设置,以实现高程计算的准确性。
3. 竖曲线的斜度竖曲线的斜度对高程计算也有着直接的影响。
斜度过大会导致竖曲线下垂量变小,从而使高程计算不准确。
因此,在进行竖曲线施工时,需要严格控制斜度的大小。
4. 竖曲线的半径竖曲线半径也是进行竖曲线高程计算的关键因素之一。
半径过大或过小都会对高程计算的准确性产生影响。
结论本文介绍了竖曲线任意一点的高程计算方法,以及需要考虑的相关因素。
在进行竖曲线设计时,需要综合考虑以上因素,以确保竖曲线的高程计算准确无误。
竖曲线计算公式及计算方法
⒈超高①超高方式:中央分隔带保持水平,超高将两侧行车道绕中央分隔带边缘点旋转(包括路肩点)。
②超高段横断面高程计算图11AA AAAAAA2-23-34-4-I%图12⒉横坡度计算外侧横坡度:ILLEIICXX-+=)(;(公式中的I、E均取正值,下同。
)公式 1内侧横坡度:ILIEILLIEILIEICCCXX+*+-*+--=22)((。
公式 2EBEB式中:2 I/(E+I)* L C—在L C段内横坡等于I%的长度,m。
X在区间0~2 I/(E+I)*LC时,横坡度为I;在区间2 I/(E+I)* L C~L C段内时,横坡度为I~E。
I—横坡度设计值,E—超高设计值,L C—缓和曲线长,m。
⒊竖曲线计算公式:W=I1-I2;当w>0时,为凸曲线;当w<0时,为凹曲线。
L=R*W;E=T2/2R;H=l2/2r;T=TA=TB=L/2=R*W/2。
式中:H—切线上任一点至竖曲线上的垂直距离;M.l—曲线上相应于H的P点至切点A或B点的距离,M.R—二次抛物线的参数。
(原点处的曲率半径)通常称竖曲率半径,M.I1、I2—切线的斜率,即纵坡度,%.纵坡度(%),从左向右上坡取“+”,下坡取“-”值.当α很小时,tanα1≈α1=I1, tan α2≈α2=I2。
T—切线长(M),ZH路线平面图L—竖曲线的曲线长(M)。
竖曲线高程计算公式推导过程及计算流程
竖曲线⾼程计算公式推导过程及计算流程竖曲线⾼程计算公式推导及计算流程1. 竖曲线介绍竖曲线是指在纵断⾯内,两个坡线之间为了延长⾏车视距或者减⼩⾏车的冲击⼒,⽽设计的⼀段曲线。
⼀般可以⽤圆曲线和抛物线来充当竖曲线。
由于圆曲线的计算量较⼤,所以,通常采⽤抛物线作为竖曲线,以减少计算量。
2. 竖曲线⾼程计算流程竖曲线计算的⽬的是确定设计纵坡上指定桩号的路基设计标⾼,其计算步骤如下:a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距Eb. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-Tc. 计算竖曲线上任意点切线标⾼及改正值:切线标⾼=变坡点的标⾼±(x T -)?i 改正值:221x Ry =d. 计算竖曲线上任意点设计标⾼某桩号在凹形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼+ y 某桩号在凸形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼-y3. 竖曲线⾼程计算公式推导已知条件:第⼀条直线的坡度为1i ,下坡为负值,第⼀条直线的坡度为2i ,上坡为正值,变坡点的⾥程为K ,⾼程为H ,竖曲线的切线长为B A T T T ==, 待求点的⾥程为X K 曲线半径R竖曲线特点:抛物线的对称轴始终保持竖直,即:X 轴沿⽔平⽅向,Y 轴沿竖直⽅向,从⽽保证了X 代表平距,Y 代表⾼程。
抛物线与相邻两条坡度线相切,抛物线变坡点两侧⼀般不对称,但两切线长相等。
竖曲线⾼程改正数计算公式推导设抛物线⽅程为:()021≠++=a c bx ax y设直线⽅程为:()02≠+=k b kx y由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得:00==b c ;分别对21y y 、求导可得:b ax y +=2'1k y ='2当0=x 时,由图可得:b i y ==1'1k i y ==1'2当L x =时,由图可得:12'12i aL i y +==由上式可得:RL L i i a 212212==-=ω所以抛物线⽅程为:x i x Ry 12121+=直线⽅程为:x i y 12=对于竖曲线上任意⼀点P ,到其切线上Q 点处的竖直距离,即⾼程改正数y 为:21122121X RX i X i X R y y y P Q =-+=-= 竖曲线曲线元素推导竖曲线元素有切线长T 、外失距E 和竖曲线长L 三个元素,推导过程如下:由图可知:2tan ω=R T 由于转⾓ω很⼩,所以可近似认为22tan ωω=,因此可得:2ωR T = 由图易得:ωR L =将切线长T 带⼊到221x Ry =中可得外失距RT E 22=4. 曲线⾼程计算⽰例已知:某条道路变坡点桩号为K25+460.00,⾼程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。
竖曲线高程计算
其中: y——竖曲线上任一点竖距; 直坡段上,y=0。
x2 y
2R
x——竖曲线上任一点离开起(终)点距离;
以变坡点为分界计算: 上半支曲线 x = Lcz - QD 下半支曲线 x = ZD - Lcz 以竖曲线终点为分界计算: 全部曲线 x = Lcz - QD
[例4-3]:某山岭区一般二级公路,变坡点桩 号为k5+030.00,高程H1=427.68m, i1=+5%,i2=-4%,竖曲线半径R=2000m。
B
A
4.3.4 逐桩设计高程计算
(1)纵断面设计成果
变坡点桩号 BPD 变坡点设计高程 H 竖曲线半径 R
(2)竖曲线要素的计算公式
变坡角ω= i2- i1
曲线长:L=Rω
切线长:T=L/2= Rω/2
外距:
T2
E
2R
竖曲线上任意点:
y x2 2R
竖曲线起点桩号: QD=BPD - T 竖曲线终点桩号: ZD=BPD + T
竖曲线上任意点设计标高计算
计算切线高程:H1=H0-(T-X)i1 式中:H0----变坡点标高,m。 H1----- 计算点切线高程,m。 I1----纵坡度 利用该式子可以计算直坡段上任意点的设计标高。
计算设计标高: H = H1 ± y
H---设计标高。
当为 凹曲线时取“+”,当为凸曲线时取“-”。
ω >0:凹型竖曲线
竖曲线的作用
(1)缓冲作用:以平缓曲线取代折线可消除汽车在变坡点的冲击。 (2)保证公路纵向的行车视距:
凸形:纵坡变化大时,盲区较大。 凹形:下穿式立体交叉的下线。 (3)将竖曲线与平曲线恰当的组合,有利于路面排水和改善行车的视 线诱导和舒适感。 凸形竖曲线主要控制因素:行车视距。 凹形竖曲线的主要控制因素:缓和冲击力。 竖曲线的线形:可采用圆曲线或二次抛物线。 《规范》规定采用二次抛物线作为竖曲线的线形。 特点:抛物线的纵轴保持直立,且与两相邻纵坡线相切。
竖曲线高程计算方法(一)
竖曲线高程计算方法(一)竖曲线高程计算在道路、桥梁、隧道等工程中,竖曲线是公路线形设计中的重要元素,而竖曲线高程计算则是道路设计过程中必不可少的一项工作。
本文将详细介绍竖曲线高程计算的各种方法。
直接法直接法是最简单的竖曲线高程计算方法,公式如下:H=R+L2 2R其中,H为竖曲线起点和终点高程差,R为竖曲线半径,L为竖曲线长度。
坡度法坡度法是一种常用的竖曲线高程计算方法,公式如下:H=∑(l i+l i+1)2d i24R ini=1其中,n为竖曲线段数,l i和l i+1分别为第i段和第i+1段的长度,d i为第i段的坡度,R i为第i段的半径。
求解法求解法是一种基于数值解的竖曲线高程计算方法,公式如下:H i=H i−1+l2(k i+k i−1)+l3240(k i−k i−1)2其中,H i为第i个点的高程,H i−1为第i−1个点的高程,l为第i个点和第i−1个点之间的水平距离,k i和k i−1分别为第i个点和第i−1个点的曲率。
分段求解法分段求解法是一种将竖曲线按照不同的半径等级分段求解的高程计算方法,公式如下:s iH i=H i−1+∫k(ρ(s))dss i−1其中,H i为第i个点的高程,H i−1为第i−1个点的高程,s i−1和s i分别为第i−1个点和第i个点之间的弧长,k(ρ(s))为曲率半径为ρ(s)时的曲率。
以上就是竖曲线高程计算的各种方法,根据不同的情况和要求,可以选择不同的方法进行计算。
混合法混合法是将直接法、坡度法、求解法和分段求解法结合起来的一种综合性高程计算方法,可以根据需要选择不同的计算方法进行竖曲线高程的计算。
混合法的具体过程如下:1.根据竖曲线长度和曲率要求选择直接法或坡度法计算竖曲线起点和终点的高程差。
2.确定分段长度和半径等级,使用分段求解法计算竖曲线半径变化较为平缓的区间的高程,并将计算结果与直接法或坡度法的计算结果进行校核。
3.使用求解法计算竖曲线半径变化较为显著的区间的高程,将计算结果与分段求解法和直接法或坡度法的计算结果进行校核。
竖曲线的计算方法
竖曲线铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。
两相邻坡段的连续点谓之变坡点。
相邻坡段的坡度差是两相邻坡段的坡度代数差。
当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。
允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。
一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。
竖曲线的计算一、圆曲线形竖曲线圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。
R α x T TyRCα/2 BAi1i21、竖曲线的切线长度TT=R·tan(α/2)=R/2·tanα=R/2·△i‰=R/2000·△i(m) (5-1)式中 R-竖曲线半径(m);α-竖曲线转角(度);△i-相邻坡段的坡度代数差(‰)。
R=5000m时, T=2.5△i(m)R=10000m时,T=5.0△i(m)R=15000m时,T=7.5△i(m)R=20000m时,T=10.0△i(m)R=25000m时,T=12.5△i(m)2、竖曲线长度CC≈2T=R/1000·△i(m) (5-2)3、竖曲线纵距yy=x2/2R (m) (5-3)式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。
当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。
Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1)4、竖曲线上各点的设计标高H设h为计算点的坡度标高,则H=h±y (5-4)式中的y值,凹形取“+”,凸形取“-”。
【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。
线路竖曲线计算公式
竖曲线计算公式
一、公路施工中经常见到线路竖向曲线计算标高的问题,采用近似计算方法以外耻距(E)变化量代替标高增减量计算,设和用于半径(R)大于5000m时,误差为0.2mm。
1、凸曲线:H计算=H起坡点+i×△L起坡点至计算点的距离-(1/conα-1)×R
2、凹面线:H计算=H起坡点- i×△L起坡点至计算点的距离+(1/conα-1)×R
二、公路施工中经常见到线路竖向曲线计算标高的问题,采用近似计算方法以外变高差(h)变化量代替标高增减量计算,适合用于半径(R)小于5000m时,误差为0.2mm。
1、凸曲线:H计算=H起坡点+ i×△L起坡点至计算点的距离-(△L起坡点至计算点的距离)2/2R
2、凹面线:H计算=H起坡点- i×△L起坡点至计算点的距离+(△L起坡点至计算点的距离)2/2R
三、计算时考虑是正方计算方向来确定公式变换,如果凹面曲线从坡度终点返算时:坡度值为正值采用2公式时就应为+(- i×△L)。
竖曲线任意点高程计算例题
竖曲线任意点高程计算例题竖曲线是公路设计中非常重要的一部分,它涉及到道路的纵向变化和高程的计算。
在竖曲线设计中,计算任意点的高程是一个关键步骤。
本文将通过一个例题来演示竖曲线任意点高程的计算方法。
假设有一条公路,起点高程为100米,终点高程为200米,道路总长度为1000米。
现在我们需要计算出道路上每隔100米的点的高程。
首先,我们需要确定竖曲线的类型。
常见的竖曲线类型有:凸型、直线型和凹型。
我们会根据具体情况选择适合的竖曲线类型。
在本例中,我们选择凸型竖曲线。
接下来,我们需要确定竖曲线的参数。
竖曲线的参数包括:起点高程、终点高程、公路长度、曲线长度、曲率半径和过渡曲线长度等。
在这个例子中,起点高程为100米,终点高程为200米,公路长度为1000米。
我们需要计算出曲线长度、曲率半径和过渡曲线长度。
首先,我们来计算曲线长度。
曲线长度可以根据起点高程和终点高程的差值来计算。
在本例中,曲线长度为200米。
接下来,我们需要计算曲率半径。
曲率半径是曲线最高点的曲率半径,它影响曲线的陡峭程度。
在凸型曲线中,曲率半径的计算公式为:R = (L^2 + H^2) / (2H),其中R表示曲率半径,L表示曲线长度,H表示起点高程和终点高程的差值。
在本例中,曲率半径为200米。
最后,我们需要计算过渡曲线长度。
过渡曲线长度是指曲线从平缓过渡到陡峭的长度。
在凸型曲线中,过渡曲线长度的计算公式为:T = (L^2) / (24R),其中T表示过渡曲线长度,L表示曲线长度,R表示曲率半径。
在本例中,过渡曲线长度为16.67米。
现在我们已经计算出了曲线长度、曲率半径和过渡曲线长度,接下来我们可以计算出道路上每隔100米的点的高程。
首先,我们计算出每个100米点的距离。
在本例中,道路总长度为1000米,所以我们需要计算出10个100米点的高程。
然后,我们根据距离和曲线参数来计算每个点的高程。
在本例中,起点高程为100米,曲线长度为200米,曲率半径为200米,过渡曲线长度为16.67米。
竖曲线各点标高计算
பைடு நூலகம் 计算:
复核:
红区为数据校核区判定竖曲线类型黄区为竖曲线各点标高计算所求桩号在转坡点之前平距lm竖距hm切线标高所求桩号1376013650136601367013680136901370013710137201373013740137501376011006057840设计标高84451004098459660948593209165902088858760864585408445所求桩号在转坡点之后平距lm竖距hm切线标高所求桩号13760137701378013790138001381013820138301384013850138601387011006057840设计标高844583208205810080057920784577807725768076457620备注黄区只输入转坡点桩号
竖曲线各点标高计算
所求桩号在转坡点之前 平距 l (m) 竖距 h (m) 切线标高 所求桩号 13760 13650 13660 13670 13680 13690 13700 13710 13720 13730 13740 13750 13760 110 0.605 7.840 设计标高 8.445 10.040 9.845 9.660 9.485 9.320 9.165 9.020 8.885 8.760 8.645 8.540 8.445 所求桩号在转坡点之后 平距 l (m) 竖距 h (m) 切线标高 所求桩号 13760 13770 13780 13790 13800 13810 13820 13830 13840 13850 13860 13870 110 0.605 7.840 设计标高 8.445 8.320 8.205 8.100 8.005 7.920 7.845 7.780 7.725 7.680 7.645 7.620 备 注 ① 黄区只 输入转坡点 桩号。 ② 红区只 输入前坡所 有的桩号。 ③ 绿区只 输入后坡所 有的桩号。
竖曲线计算公式步骤
竖曲线计算公式步骤嘿,朋友们!今天咱来聊聊竖曲线计算公式步骤。
你说这竖曲线啊,就像是道路上的小魔术,能让我们的行车变得更平稳、更安全呢!先来说说竖曲线是啥玩意儿。
它呀,其实就是在道路纵断面上,为了缓和行车时的颠簸,而设计的那一段曲线。
想象一下,要是没有它,那车子开起来得多颠啊,就跟坐过山车似的,那可受不了!那怎么计算竖曲线呢?别急,听我慢慢道来。
首先,得搞清楚竖曲线的几个关键参数,比如变坡点的高程啦,前后坡的坡度啦。
这就好比做菜得先准备好食材一样,这些参数就是我们计算的基础呢。
然后呢,根据这些参数,我们就能套用公式啦。
这公式啊,就像是一把神奇的钥匙,能打开竖曲线的秘密大门。
通过一系列的计算,我们就能得出竖曲线的各种数据,比如曲线的长度啦,切线的长度啦。
哎呀,你说这是不是很有意思?就像解开一道谜题一样,一步一步地找到答案。
不过可别小瞧了这些步骤哦,要是算错了一点点,那竖曲线可就不完美啦,到时候行车可就没那么舒服咯!比如说,在计算的时候,要是把坡度给弄错了,那后果不堪设想啊!就好比你走路的时候,本来以为是平路,结果一脚踩空,那多吓人呀!所以啊,我们得仔仔细细地算,不能有一丝马虎。
还有啊,在实际应用中,我们还得考虑很多其他的因素呢。
比如地形啦,车辆的行驶速度啦。
这就像是给竖曲线穿上一件合适的衣服,让它更合身,更能发挥作用。
你想想看,要是在一个陡峭的山坡上,竖曲线就得设计得更平缓一些,不然车子怎么能开得上去呢?要是在一条平坦的道路上,竖曲线就可以稍微简单一点啦。
总之呢,竖曲线计算公式步骤虽然看起来有点复杂,但只要我们认真去学,去理解,就一定能掌握它。
就像学骑自行车一样,一开始可能会摔倒,但多练几次,不就会了嘛!所以啊,朋友们,别害怕这些公式和步骤,它们可是我们道路设计的好帮手呢!让我们一起把竖曲线算得妥妥的,让道路变得更美好吧!哈哈!。
竖曲线设计原理及高程计算(新人必看)
竖曲线设计原理及高程计算(新人必看)竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。
当 i1- i2为正值时,则为凸形竖曲线。
当 i1 - i2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。
其基本方程为:若取抛物线参数P为竖曲线的半径 R,则有:(二)竖曲线要素计算公式1、切线上任意点与竖曲线间的竖距h通过推导可得:2、竖曲线曲线长: L = Rω3、竖曲线切线长:4、竖曲线的外距:5、竖曲线上任意点至相应切线的距离:式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R—为竖曲线的半径,m。
二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。
(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。
为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。
2.凹形竖曲线极限最小半径确定考虑因素(1)缓和冲击:在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。
竖曲线的形式及高程计算
一、设置竖曲线的要求铁路线路所包含的坡度除平坡外,有上坡、下坡。
所谓坡度,即铁路线路的高程变化率,用千分率表示,就是每1000m水平距离高程上升或下降的数值,通常用符号“+、-、0”依次表示上坡、下坡或平坡。
在进行纵断面设计时,相邻两坡段的交点叫变坡点,两变坡点之间的水平距离叫坡段长度。
《铁路线路设计规范》规定:工、Ⅱ级铁路相邻坡段坡度的代数差大于3%0和Ⅲ级铁路相邻坡段坡度的代数差大于4‰时,需用竖曲线连接。
竖曲线的形状主要分为圆曲线形和抛物线形两种。
《新建客货共线铁路设计暂行规定》规定:纵断面宜设计为较长的坡段,相邻坡段的连接宜设计为较小的坡度差。
旅客列车设计行车速度为200 km/h的路段,最小坡段长度不宜小于600m,困难条件下最小坡段长度不应小于400m,且最小坡段长度不得连续使用2个以上。
旅客列车设计行车速度为160km/h的路段,最小坡段长度不宜小于400m,且最小坡段长度不宜连续使用2个以上。
竖曲线不得与缓和曲线、相邻竖曲线重叠设置,也不得设在明桥面和正线道岔内。
二、竖曲线的计算方法1.圆曲线形竖曲线计算《铁路线路设计规范》规定:Ⅰ、Ⅱ级铁路竖曲线半径为10000m Tv=5 X △i ,Ⅲ级铁路竖曲线半径为5000m。
Tv=2.5 X △i(1)竖曲线的切线长Tv=Rv ×tan a/2 = Rv/2 ×tan a= Rv/2000 × △i △i=△i2-△i1 的绝对值Tv-竖曲线的切线长(m);Rv--竖曲线半径,a----竖曲线转角,△i-相邻坡段坡度的代数差(‰)。
(2)竖曲线的曲线长C≈2T。
(3)竖曲线的纵距竖曲线的纵距即竖曲线上任意点与切线上相邻点的标高差,用y表示,即y=x2/2Rv式中Y-竖曲线的纵距(m);x-竖曲线上任意点距竖曲线始点或终点的距离(m);(4)竖曲线标高H=Hp±y 式中H-竖曲线标高(m);Hp-计算点坡度线标高,【例题】某一级铁路,有一圆曲线形竖曲线(如图3-20所示),竖曲线中点里程为K24+400,标高为65.7 m,上坡i1=+2‰,下坡i2=-4‰,试计算竖曲线上每20 m点的标高。
竖曲线公式(实用的工程计算方法)
二、路基边桩的测设
路基边桩测设就是在地面上将每一个横断面的 路基边坡线与地面的交点用本桩标定出来。边 桩的位置由两侧边桩至中桩的距离来确定。常 用的边桩测设方法如下: 1. 图解法 直接在横断面图上量取中桩至边桩的距离,然 后在实地用皮尺沿横断面方向测定其位置。当 填挖方不很大时,采用此法简便。
3、测设已知高程的点
测设点的高程是根据附近的水准点,用水 准测量的方法进行的。如道路工程中路中 心设计标高的测设;建筑工程中室内地坪 的设计高程(假定为±0)的测设等均属此 项工作。
二、点的平面位置测设
1.直角坐标法 当建筑物已设有主轴线或在施 工场地上已布置了建筑方格网时,可用直角坐标 法来测设点位。 2.极坐标法 根据一个极角和一段极距测设点 的平面位置,称为极坐标法。 3.角度交会法 根据两个或两个以上的已知角度 的方向交出点的平面位置,称为角度交会法。 4.距离交会法 根据两段已知距离交会出点的平 面位置,称为距离交会法。
2、横坡度的测量 横坡度的测量不同于宽度 的测量,横坡度是通过间接法测量,而宽度是 通过直接法测量。所谓间接法测量,是指通过 检测高程,计算两点高差,再计算两点横坡, 用设计值与测量值之差不超过有关规定。 3、路基边坡的测量 抽查每200米测4处,可用 边坡样板或坡度尺沿横断面方向进行检查。 4、排水设施、防护工程等几何尺寸及外观测 量 排水、支挡、防护等工程的几何尺寸是指 断面尺寸的长、宽、高等,另外还包括竖直角 或坡度。
下)
斜坡下侧
B D下= +S+m (h中-h 2
§11-4
竖曲线的测设
在路线纵坡变更处,为了行车的平稳和 视距的要求,在竖直面内应以曲线衔接, 这种曲线称为竖曲线。竖曲线有凸形和 凹形两种,如图所示。
竖曲线任意点标高计算方法
一、曲线要素的计算1、转坡角ω=(i1-i2)(上坡取正、下坡取负)2、竖曲线曲线长L = ω×R ( R为曲线半径)3、切线长T = L ÷24、外矢距 E = T2÷2R二、任意点起始桩号、切线标高、改正值的计算1、竖曲线起点桩号 = 变坡点里程-切线长竖曲线终点桩号 = 变坡点里程+切线长2、切线标高 = 变坡点标高(不考虑竖曲线标高)-(变坡点里程-待求点里程)× i1(所求点位于变坡点后乘i2)3、改正值 = (待求点里程-起点里程)2÷(2R)(所求点位于变坡点前)= (待求点里程-终点里程)2÷(2R)(所求点位于变坡点后)4、待求点设计标高 = (切线点标高-改正值)三、例:某高速公路变坡点里程为DK555+550,高程为,前为上坡i1=‰,后为上坡i2=‰,设计曲线半径R=30000m,试算竖曲线曲线要素及桩号为DK555+450及DK555+680处的设计标高1、计算曲线要素转坡角ω=(i1-i2)=(-)‰=竖曲线曲线长L = ω×R = ×30000 =(m)切线长 T = L ÷2 = ÷2 =(m)外矢距 E = T2÷ 2R = ÷(2×30000)=(m)2、竖曲线起、始桩号计算起点桩号:(DK555+550)- = DK555+终点桩号:(DK555+550)+ = DK555+3、DK555+450、DK555+680的切线标高和改正值计算DK555+450切线标高 = (DK555+550-DK555+450)׉=(m)DK555+450改正值 =(DK555+450-DK555+2÷(30000×2)=(m)DK555+680切线标高 = (DK555+680-DK555+550)׉=(m)DK555+680改正值 =(DK555+680-DK555+2÷(30000×2)=(m)4、DK555+450、DK555+680设计标高计算DK555+450设计标高 = - =(m)DK555+680设计标高 = =(m)。