完整版平面向量综合试题含答案
平面向量练习题及答案
平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。
5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。
三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。
7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。
8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。
四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。
10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。
答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。
平面向量题目及详细答案.doc
A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。
,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。
=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。
=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。
= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。
一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。
平面向量专题练习(带答案详解)
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
(完整版)平面向量单元测试卷及答案
《平面向量》单元测试卷一、选择题:(本题共10小题,每小题4分,共40分) 1.下列命题中的假命题是( ) A 、→-→-BA AB 与的长度相等; B 、零向量与任何向量都共线; C 、只有零向量的模等于零;D 、共线的单位向量都相等。
2.;;④;③∥;②是单位向量;①是任一非零向量,若1|b |0|a |b a |b ||a |b a ±=>>→→→→→→→→),其中正确的有(⑤→→→=b a a|| A 、①④⑤B 、③C 、①②③⑤D 、②③⑤3.首尾相接能,,;命题乙:把命题甲:是任意三个平面向量,,,设→→→→→→→→→→=++c b a 0c b a c b a 围成一个三角形。
则命题甲是命题乙的( ) A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、非充分也非必要条件 4.)的是(下列四式中不能化简为→-AD A 、→-→-→-++BC CD AB )(B 、)()(→-→-→-→-+++CD BC MB AM C 、)()(→-→-→-→--++CB AD AB ACD 、→-→-→-+-CD OA OC5.),则(),(,),(设21b 42a -=-=→→A 、共线且方向相反与→→b a B 、共线且方向相同与→→b a C 、不平行与→→b aD 、是相反向量与→→b a6.如图1,△ABC 中,D 、E 、F 分别是边BC 、CA 和AB 的中点,G 是△ABC 中的重心,则下列各等式中不成立的是( )A 、→-→-=BE 32BG B 、→-→-=AG 21DG C 、→-→--=FG 2CGD 、→-→-→-=+BC 21FC 32DA 31图17.)(,则锐角∥,且),(,),(设=-+=--=→→→→θθθb a 41cos 1b cos 12aA 、4πB 、6πC 、3πD 、36ππ或 8.)所成的比是(分,则所成比为分若→-→--CB A 3AB C A 、23-B 、3C 、32-D 、-29.)的范围是(的夹角与,则若θ→→→→<⋅b a 0b a A 、)20[π,B 、)2[ππ,C 、)2(ππ,D 、]2(ππ,10.→→→→→→→→b a 4a b 3b a b a 的模与,则方向的投影为在,方向的投影为在都是非零向量,若与设 的模之比值为( ) A 、43B 、34 C 、73 D 、74二、填空题(本题共4小题,每题5分,共20分) 11.。
(完整版)高中数学平面向量习题及答案
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB =OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。
平面向量测试题及答案
平面向量测试题及答案 This model paper was revised by LINDA on December 15, 2012.平面向量测试题一.选择题1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .MD .3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .4 5.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a 6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 .14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________。
平面向量(含答案)
平面向量学校:___________姓名:___________班级:___________考号:___________1..若向量(1,2),(4,5)BA CA == ,则BC =A. (5,7)B. (3,3)--C. ()3,3D. ()5,7--2.已知向量2(1,1),(,2),x x ==+a b 若,a b 共线,则实数x 的值为( )A.1-B.2C.1或2-D.1-或23.已知向量(1,2),(2,)a b m ==- ,若//a b ,则|23|a b + 等于( )A B . C ..4.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB = ,13CD CA CB λ=+ ,则λ=( ) A.23 B.13 C.13- D.23- 5.在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( )A. 2-B. 12-C. 12D. 2 6.已知||6a = ,||3b = ,12a b ⋅=- ,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .27.已知向量(3,4)OA =- ,(6,3)OB =- ,(2,1)OC m m =+ ,若//AB OC ,则实数m 的值为( )A .15B .-3C .35-D .17- 8.平面向量a 与b 的夹角为60°,1||),0,2(==b a ,则|2|b a +等于( )A B .C .4D .129.已知(3,4)a = ,(1,2)b = ,则a b -= . 10.已知平面向量)1,3(=a ,)3,(-=x b ,且b a ⊥,则x 的值为 .11.已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,向量c =2a +b .则向量c 的模为 .12.已知向量()()cos45,sin30,2sin 45,4cos60,b c =︒︒=︒︒ 则b c ⋅= .13.向量a ,b 满足则a 与b 的夹角为 .14.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||c = //c a ,求:c 的坐标(2)若||b = 2a b + 与2a b - 垂直,求a 与b 的夹角 15.已知平面向量(cos ,sin )a ϕϕ= ,(cos ,sin )b x x = ,(sin ,cos )c ϕϕ=- ,其中0ϕπ<<,且函数()()cos ()sin f x a b x b c x =⋅+⋅ 的图象过点)1,6(π. (1)求ϕ的值;(2)将函数)(x f y =图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g y =在[0,]2π上的最大值和最小值.16.已知向量2(cos ,1),,cos )222x x x m n =-= ,设函数()f x m n = (1)求()f x 在区间[]0,π上的零点;(2)在ABC ∆中,角A B C 、、的对边分别是,,a b c ,且满足2b ac =,求()f B 的取值范围.17.向量)sin ,1(x m a +=→,))6cos(4,1(π+=→x b ,设函数→→⋅=b a x g )(,(R m ∈,且m 为常数)(1)若x 为任意实数,求)(x g 的最小正周期;(2)若)(x g 在⎪⎭⎫⎢⎣⎡3,0π上的最大值与最小值之和为7,求m 的值.18(1,)b y = ,已知//a b ,且有函数)(x f y =. (1)求函数)(x f y =的周期;(2)已知锐角ABC ∆的三个内角分别为C B A ,,,若有3)3(=-πA f ,边7=BC ,721sin =B ,求AC 的长及ABC ∆的面积. 19.已知向量x ),1,(sin -=)23,(cos x =,)()(x f ⋅+=(1)当[0,]2x π∈时,求函数)(x f 的值域:(2)锐角A B C ∆中,c b a ,,分别为角C B A ,,的对边,若1023)2(,27,245===B f b c a ,求边c a ,.参考答案1.B【解析】试题分析:()3,3BC BA AC =+=-- 考点:向量的坐标运算.2.D.【解析】试题分析:∵2(1,1),(,2)x x ==+a b ,,a b 共线,∴根据向量共线的充要条件知1×x 2-1×(x+2)=0,∴x=-1或2,选D.考点:平面向量共线(平行)的坐标表示.3.C【解析】试题分析:由//a b 可得()40221-=⇒=-⨯-⨯m m ,所以()54641628,432=+=+⇒--=+.考点:向量的坐标运算.4.A【解析】试题分析:2AD DB = ,即()2C D C A C B C D -=- ,解得1233CD CA CB =+ ,23λ∴=,故选A.考点:平面向量的线性表示5.C【解析】试题分析:因为,在平面直角坐标系xOy 中,点(0,0),(0,1),(1,2),(,0)O A B C m -,所以,(1,2),(,1)OB AC m =-=- ,又//OB AC ,所以,11,122m m -==-,选C. 考点:平面向量的概念,共线向量.6.A【解析】 试题分析:向量a 在向量b方向上的投影是θcos ⋅(θ是a ,b 的夹角),θcos ⋅=-4.考点:向量的数量积运算.7.B .【解析】试题分析:由题意知(3,1)AB OB OA =-= ,(2,1)OC m m =+ ,又//AB OC ,则3(1)120m m ⨯+-⨯=,即3m =-.考点:两向量平行的充要条件.8.B【解析】试题分析:因为,(2,0),a = 所以,||2a = ,2220|2|444421cos60412,|2|a b a a b b a b +=+⋅+=+⨯⨯⨯+=+= B. 考点:平面向量的数量积、夹角、模9.(2,2)【解析】试题分析:根据向量的减法等于横坐标、纵坐标分别对应相减,得到(31,42)(2,2).a b -=--= .向量的加减及数乘类似实数运算,一般不会出错,只需注意对应即可.考点:向量的减法运算10.1【解析】试题分析:b a ⊥10330=⇒=-⇒=⋅⇒x x b a .考点:平面向量数量积运算.11.【解析】试题分析:|c |2=(2a +b )2=4a 2+4a·b+b 2=4+4×1×2×cos60°+4=12,即|c |=考点:平面向量数量积、向量的模.12.2.【解析】试题分析:由向量数量积的坐标运算公式得112sin 45cos454sin30cos6024222b c ⋅=︒︒+︒︒=⨯⨯= . 考点:1.向量数量积的坐标运算公式;2.三角函数式求值.13.23π. 【解析】试题分析:由题意解得1a b ⋅=- ,则1cos ,2a b =- ,即a 与b 的夹角为23π. 考点:1.平面向量数量积运算;2.向量夹角公式.14.(1)(2,4)或(2,4)--;(2)π.【解析】试题分析:(1)设(,)c x y = ,利用两个已知条件||c = //c a 列出关于,x y 的方程组,解出,x y 即可;(2)由2a b + 与2a b - 垂直得(2)(2)0a b a b +⋅-= ,对此式进行化简,可求出a b ⋅ ,又,a b 的模易知,利用向量数量积的定义则可求出a 与b 的夹角.试题解析:设(,)c x y = 由//||c a c =及 2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 7分(2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=- ∴cos 1||||a b a b θ⋅==- ,∵[0,]θπ∈∴θπ= 14分 考点:向量的数量积、向量的模、向量的平行与垂直.15.(1)3πϕ=;(2)最小值12,最大值1. 【解析】 试题分析:(1)根据向量的数量积的坐标运算,求出,a b b c ⋅⋅ 代入:()()c o s ()s f x a b x b c x=⋅+⋅ 整理便得()cos(2)f x x ϕ=-,再根据()f x 过点)1,6(π可得ϕ的值;(2)将函数)(x f y =图象上各点的横坐标变为原来的的2倍,纵坐标不变,便将函数)(x f y =中的x 换成12x 便得函数)(x g y =的解析式:()cos()3g x x π=-. 由02x π≤≤得033236x πππππ-≤-≤-=.结合cos y x =的图象可得()cos()3g x x π=-在[0,]2π上的最大值和最小值. 试题解析:(1) cos cos sin sin cos()a b x x x ϕϕϕ⋅=+=- 1分cos sin sin cos sin(b c x x x ϕϕϕ⋅=-=- ()x -ϕ 2分()()cos ()sin f x a b x b c x ∴=⋅+⋅cos()cos sin()sin x x x x ϕϕ=-+-cos()x x ϕ=--cos(2)x ϕ=-, 4分即()cos(2)f x x ϕ=- ∴()cos()163f ππϕ=-=,而0ϕπ<<, ∴3πϕ=. 6分(2)由(1)得,()cos(2)3f x x π=-, 于是1()cos(2())23g x x π=-, 即()cos()3g x x π=-. 9分 当[0,]2x π∈时,336x πππ-≤-≤, 所以1cos()123x π≤-≤, 11分 即当0x =时,()g x 取得最小值12, 当3x π=时,()g x 取得最大值1. 13分考点:1、向量的坐标运算;2、三角变换;3、三角函数的图象变换;4、三角函数的最值16.(1)3π、π;(2)(1,0]-. 【解析】试题分析:(1)先由平面向量数量积的坐标表示得到()f x ,然后由三角函数的倍角公式进行降次,再将函数()f x 的解析式化为()()sin f x A x b ωϕ=++的形式.令()0f x =,在区间[]0,π解得3x π=或π,即得到零点3π、π;(2)由条件及余弦定理,通过基本不等式可得1cos 2B ≥,又根据角B 是三角形内角,从而得到其范围,再代入即可得()f B 的取值范围.试题解析:因为向量2(cos ,1),,cos )222x x x m n =-= ,函数()f x m n = .所以21cos ()cos cos 2222x x x x f x x +=-=-111cos sin()22262x x x π=--=--3分 (1)由()0f x =,得1sin()62x π-=. =+266x k πππ-∴, 5=+266x k k Z πππ-∈或, =+23x k ππ∴, =+2x k k Z ππ∈或,又[]0,x π∈,3x π∴=或π.所以()f x 在区间[]0,π上的零点是3π、π. 6分 (2)在ABC ∆中,2b ac =,所以222221cos 2222a cb ac ac ac B ac ac ac +-+-==≥=. 由1cos 2B ≥且(0,)B π∈,得(0,],3B π∈--666B πππ⎛⎤∈ ⎥⎝⎦从而,10分 11sin()(,]622B π-∈-∴, 1()sin()(1,0]62f B B π=-+∈-∴ 12分 考点:1.数量积的坐标表示;2.余弦定理;3.三角函数的性质.17.(1)T π=;(2)2m =.【解析】试题分析:(1)借助向量数量积运算,利用两角和与差公式化为一角一函数()2sin(2)6g x x m π=++,可求函数周期;(2)由x 的范围求出26x π+的范围,借助函数图象求出函数最值.试题解析:(1)()14sin cos()14sin (cos cos sin sin )666g x a b m x x m x x x πππ=⋅=+++=++-2cos2x x m ++2sin(2)6x m π=++ 5分 所以T π=.(2)因为03x π≤<,所以52666x πππ≤+<, 9分 所以6x π=时,()2max g x m =+;0x =时,min ()1g x m =+ 12分所以217,2m m m +++==. 14分考点:1.函数的性质:周期、最值;2.三角函数的化简.18.(1)2π;(2)2AC =,S =. 【解析】 试题分析:(1)利用//的充要条件得出)(x f y =,再化简成sin()y A x B ωϕ=++类型求周期;(2)先由条件3)3(=-πA f 求出角A ,再由正弦定理B AC A BC sin sin =求AC ,然后只需求出AB 或sin C 即可求ABC ∆的面积.试题解析:解:由//得0)cos 23sin 21(21=+-x x y 3分 即 )3sin(2)(π+==x x f y 5分 (1)函数)(x f 的周期为π2=T 6分(2)由3)3(=-πA f 得3)33sin(2=+-ππA 即23sin =A ∵ABC ∆是锐角三角形∴3π=A 8分由正弦定理:BAC A BC sin sin =及条件7=BC ,721sin =B 得2237217sin sin =⋅=⋅=A B BC AC , 10分又∵A AC AB AC AB BC cos 2222⋅⋅-+=即2122472⨯⨯⋅-+=AB AB 解得3=AB 11分 ∴ABC ∆的面积233sin 21=⋅⋅=A AC AB S 12分 考点:1、平面向量与三角函数结合,2、正弦定理与余弦定理综合运用,3、三角形面积公式.19.(1)1[22-;(2)8c a ==. 【解析】试题分析:(1)先利用倍角公式、两角差的正弦公式将解析式化简,将已知x 代入,求值域;本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。
(完整版)平面向量测试题(含答案)一
必修 4 第二章平面向量教学质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A .7B.10C.13D. 45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则下列关系式中正确的是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)任意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)12(B) 21(C) 2 3(D) 32r r(2 x 3, x) 互相平行,其中r r)11、若平面向量a(1, x) 和 b x R .则a b (A.2或0;B.25;C.2或2 5;D. 2或10.12、下面给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分 ):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3, 4), b (2,3) ,则 2 | a | 3a b.15、已知向量 a 3, b (1,2) ,且a b ,则a的坐标是_________________。
平面向量的运算 练习(含答案)
6.2平面向量的运算练习一、单选题1.化简OP PS QS +-的结果等于( ). A .QPB .OQC .SPD .SQ2.如图,M 在四面体OABC 的棱BC 的中点,点N 在线段OM 上,且13MN OM =,设OA a =,OB b =,OC c =,则下列向量与AN 相等的向量是( )A .1133a b c -++B .1133a b c ++C .1166a b c -++D .1166a b c ++3.如图,在四边形ABCD 中,AC 与BD 交于点O ,若AD BC =,则下面互为相反向量的是( )A .AC 与CBB .OB 与ODC .AB 与DCD .AO 与OC4.已知平行四边形ABCD 中,E 为边AD 的中点,AC 与BE 相交于点F ,若EF xAB y AD =+,则( )A .11,36x y ==-B .11,24x y ==-C .11,33x y ==-D .11,23x y ==-5.()()32a b a b a +---=( ) A .5aB .5bC .5a -D .5b -6.已知向量a ,b 不共线,若2AB a b =+,37BC a b =-+,45CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线7.已知向量a 、b 满足2a =,5b =,且a 与b 夹角的余弦值为15,则()()23a b a b +⋅-=( ) A .30-B .28-C .12D .728.如图,在ABC 中,12AN NC =,P 是BN 上的一点,若1139AP m AB AC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .29C .23D .13二、多选题9.如图,在平行四边形ABCD 中,下列计算正确的是A .AB AD AC += B .AC CD DO OA ++= C .++=AB AC CD ADD .0AC BA DA ++=10.如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则AF DB -等于( )A .FDB .EC C .BED .DF11.在ABC 中,12,33AE AB AD AC ==,记,BC a CA b ==,则下列结论中正确的是( ) A .()13AE a b =-- B .AD b =-C .()13DE b a =- D .AB a b =+12.设a ,b ,c 是三个非零向量,且相互不共线,则下列说法正确的是( ) A .若a b a b +=-,则a b ⊥ B .若a b =,则()()a b a b +⊥- C .若a c b c ⋅=⋅,则a b -不与c 垂直D .()()b c a a c b ⋅-⋅不与c 垂直三、填空题13.在ABC 中,,,D E F 分别是,,AB BC CA 的中点,则AE DB -=___________. 14.下列四个等式:①a +b =b +a ;①-(-a )=a ;①AB +BC +CA =0;①a +(-a )=0. 其中正确的是______(填序号).15.已知a ,b 是不共线的向量,OA a b λμ=+,32OB a b =-,23OC a b =+,若A ,B ,C 三点共线,则实数λ,μ满足__________.16.已知m 、n 是夹角为120°的两个单位向量,向量()1a tm t n =+-,若n a ⊥,则实数t =______.四、解答题17.如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA 的中点,化简下列各式:(1)DG EA CB ++; (2)EG CG DA EB +++.18.化简:(1)BA BC-;(2)AB BC AD+-;(3)AB DA BD BC CA++--.19.已知△OBC中,点A是线段BC的中点,点D是线段OB的一个三等分点(靠近点B),设AB=a→,AO=b→.(1)用向量a→与b→表示向量OC;(2)若35OE OA=,判断C,D,E是否共线,并说明理由.20.已知2,3,,a b a b ==的夹角为60︒,53,3c a b d a kb =+=+,当实数k 为何值时, (1)→→d//c(2)c d ⊥21.已知向量a 与b 的夹角3π4θ=,且3a =,22b =. (1)求a b ⋅,()(2)a b a b +⋅-; (2)求a b +;(3)a 与a b +的夹角的余弦值.22.已知向量,,a b c 满足:2a =,()R c a tb t =-∈,,3a b π=.(1)若1a b ⋅=,求b 在a 方向上的投影向量; (2)求||c 的最小值.答案1.B 2.A 3.B 4.A 5.B 6.B 7.B 8.D 9.AD 10.BCD 11.AC 12.AB 13.AF 14.①①①① 15.513λμ+=. 16.2317.(1)DG EA CB GC BE CB GB BE GE +++++===; (2)0EG CG DA EB EG GD DA AE ED DE ==+=++++++. 18.(1)BA BC CA -=.(2)AB BC AD AC AD DC +-=-=.(3)AB DA BD BC CA AB BD AD AC CB AD AD AB AB ++--=+-++=-+=. 19.解(1)①AB =a →,AO =b →,点A 是BC 的中点,∴AC =-a →.①OC OA AC =+=-a →-b →. (2)假设存在实数λ,使CE =λCD .①CE CO OE =+=a →+b →+35(-b →)=a →+25b →,11(33CD CB BD CB BO CB BA AO =+=+=++)=2a →+13(-a →+b →)=53a →+13b →,①a →+25b →=λ5133a b →→⎛⎫+ ⎪⎝⎭,①5131235λλ⎧=⎪⎪⎨⎪=⎪⎩,,此方程组无解, ①不存在实数λ,满足CE =λCD . ①C ,D ,E 三点不共线. 20.(1)若→→d//c ,得c d λ=,即53(3)a b a kb λ+=+,即35,3,k λλ=⎧⎨=⎩解得53λ=,95k =.(2)若c d ⊥,则0c d ⋅=,即53)(3)0(a b a kb +⋅+=,得()22159530k k ++⋅+=a a b b , ()115495233902k k ⨯++⨯⨯⨯+⋅=,解得2914k =-. 21.(1)已知向量a 与b 的夹角3π4θ=,且3a =,22b =,则3πcos364a b a b ⎛⋅=⋅⋅=⨯=- ⎝⎭, 所以()22()(2)296281a b a b a a b b +⋅-=-⋅-=---⨯=-;(2)()(222292a b a b a ab b +=+=+⋅+=+⨯-(3)a 与a b +的夹角的余弦值为()296cos ,535a a baa ba ab a a ba a b⋅++⋅-+====⨯⋅+⋅+ 22.(1)由数量积的定义可知:cos ,a bb a b a⋅=,所以b 在a 方向上的投影向量为: 11||cos ,||||||224a ab a a b a b a a a a ⋅<>=⋅=⋅=; (2)()()2222c a tb a tb a ta b tb =-=-=-⋅+又2a =,,3a b π=,所以()224c t bt b =-+令R x t b =∈所以22c x =-=所以当1x t b ==时,c 取到最小值为。
平面向量练习题(附答案)
平面向量练习题一.填空题。
1.AC DB CD BA 等于________.2.若向量a=( 3, 2),b=( 0,- 1),则向量 2 b-a的坐标是 ________.3.平面上有三个点 A(1,3),B(2,2),C( 7, x),若∠ ABC =90°,则x 的值为 ________.4.向量a、b满足 |a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________.5.已知向量a=(1,2),b=( 3,1),那么向量 2 a-1b的坐标是 _________.26.已知 A(- 1, 2),B(2,4),C(4,- 3),D(x ,1),若AB与CD共线,则| BD |的值等于 ________.7.将点 A(2,4)按向量a=(- 5,- 2)平移后,所得到的对应点A′的坐标是______.8.已知 a=(1,-2),b=(1,x),若 a⊥b,则 x 等于 ______9.已知向量 a,b 的夹角为120,且 |a|=2,|b|=5,则( 2a-b)· a=______10.设 a=(2,-3),b=(x,2x), 且 3a· b=4,则 x 等于 _____11.已知AB( 6,1), BC( x, y ), CD( 2 , 3), 且 BC ∥ DA ,则 x+2y 的值为_____12.已知向量 a+3b,a-4b 分别与 7a-5b,7a-2b 垂直,且 |a|≠0,|b|≠ 0,则 a 与 b 的夹角为____ 13.在△ ABC中, O 为中线 AM 上的一个动点,若AM=2 ,则O A O B OC的最小值是.22按向量 v=( 2,1)平移后,与直线x y0 相切,则λ的值为. 14.将圆xy2二.解答题。
1.设平面三点 A(1,0),B(0,1), C( 2, 5).( 1)试求向量 2 AB+AC的模;(2)试求向量AB与AC的夹角;( 3)试求与BC垂直的单位向量的坐标.2.已知向量a=(sin, cos)(R ),b=( 3 ,3 )(1)当为何值时,向量a、b不能作为平面向量的一组基底(2)求 |a-b|的取值范围3.已知向量a、 b 是两个非零向量,当a+t b(t∈R)的模取最小值时,(1)求 t 的值(2)已知a、b共线同向时,求证 b 与 a+t b 垂直4.设向量OA(3,1), OB( 1,2) ,向量OC垂直于向量OB,向量BC平行于OA,试求OD OA OC 时, OD的坐标 .5.将函数2进行平移,使得到的图形与函数2- x- 2的图象的两个交点关于原点y= - x y=x对称 .(如图 )求平移向量 a 及平移后的函数解析式.6.已知平面向量 a (13k 和 t, 使3 , 1), b ( ,). 若存在不同时为零的实数222k a t b, 且 x y.x a (t3) b, y(1)试求函数关系式 k=f (t)(2)求使 f( t)>0 的 t 的取值范围 .参考答案1.2.(- 3,- 4)3.74.90°11(2,32).6.73.7. (- 3,2).8. -2 9.1210.11.01312. 90 ° 13. 214. 1或 5( 1)∵ AB =( 0-1,1- 0)=(- 1,1), AC =( 2- 1,5- 0)=( 1,5).∴2 AB + AC= 2(- 1,1)+( 1, 5)=(- 1,7).∴ |2AB + AC2 2= 50.=(1)7|222.|AC = 1252 =26,(2)∵ |AB =( 1)1 =||ABAC=(- 1)× 1+1×5=4.·AB AC 42 13∴ cos =| AB||AC|= 226=13.( 3)设所求向量为 m=( x ,y ),则x 2+ y 2 =1. ①又BC =( 2- 0, 5- 1)=( 2,4),由 BC ⊥ m,得 2 x +4 y =0.②x2 5 x -2555y55 . 2 552 55.y由①、②,得 5 或5∴ ( 5 ,- 5 )或(- 5, 5 )即为所求.13.【解】( 1)要使向量 a 、 b 不能作为平面向量的一组基底,则向量a 、b 共线3 sin 33 cos0tan∴3k( k Z )k( k Z )故6,即当6时,向量 a 、 b 不能作为平面向量的一组基底(2) | a22b | (sin 3 )(cos 3)13 2( 3 sin3 cos )而2 33 sin3 cos2 3∴ 2 3 1 | ab | 2 3 12 2 2 214.【解】( 1)由 ( a tb )| b | t2a bt | a |t 2 a b| a | ( 是 a 与 b 的夹角)2cos 当2 | b || b |时 a+tb(t ∈R)的模取最小值t| a || b |(2 )当 a 、 b 共线同向时,则,此时∴ b (a tb ) b a tb2 b a | a || b | | b || a | | a || b | 0∴b⊥( a+t b)18.解:设OC( x , y ),OC OB OC OB0 2 y x0①又 BC // OA ,BC( x1, y2)3( y2) ( x1) 0即:3 yx7 ②x14 ,联立①、②得y7⋯⋯⋯ 10分OC(14 ,7), 于是 OD OC OA(11,6) .19.解法一:设平移公式为x x hy y k 代入y x 2,得到y k( x h ) 2 .即 y x 2 2 hx h 2k,把它与y2 2联立,x xy22hx2k x h2得yx x2设图形的交点为(x1, y1),( x2, y2),由已知它们关于原点对称,x1x 2y1y2由方程组消去 y得:2x22即有:(1 2 h ) x 2 hk0 .x11 2 h0 得 h1 x 2且 x1 x2.由22又将(x1, y1),( x2, y2)分别代入①②两式并相加,得:y1222y 2 x 1 x 2 2 hx 1 x 2h k 2 . 0( x 2 x 1 )( x 2x 1 )( x 1 x 2 )1 k2 9 .a 1 94k(, ). 解得42 4 .xx12y y 9224 代入 y2 .平移公式为:x 得:yx x22交点关于原点对称,可知该图形上所有点 解法二:由题意和平移后的图形与 y x x都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可 .1 91 922的顶点为( ,),y xx24 ,它关于原点的对称点为 (2 4 ),即是新图形的顶点 .h11 9 9yx2, k4 以下同由于新图形由 平移得到, 所以平移向量为224解法一 .20.解:( 1)xy ,x y 0 .即 [( at 23)b ] ( k at b )0.1t (t2a b 0 , a24 , b1,4 k t ( t 23) 0, 即 k3 ).241t (t 20 ,即 t (t 3 ) ( t 3)0,则 3 t 0或 t 3 .3)( 2)由 f(t)>0, 得4。
(完整版)《平面向量》测试题及答案
(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。
高三数学平面向量试题答案及解析
高三数学平面向量试题答案及解析1.已知点为的外接圆的圆心,且,则的内角等于( ) A.B.C.D.【答案】A【解析】由得,所以四边形为菱形,因此,即.【考点】1.向量运算;2.三角形外心.2.已知是单位向量,.若向量满足()A.B.C.D.【答案】A;【解析】因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.3.已知向量,,则向量在上的正射影的数量为()A.B.C.D.【答案】D【解析】向量在上的正射影的数量为选D.【考点】向量正投影4.设向量,,则向量在向量上的投影为.【答案】-1【解析】由已知向量,,向量在向量上的投影为.【考点】向量的投影.5.已知向量,,若与垂直,则()A.B.C.2D.4【答案】C【解析】因为两向量垂直,所以,即,代入坐标运算:,解得:,所以.【考点】向量数量积的坐标运算6.已知向量满足,,.若对每一确定的,的最大值和最小值分别是,则对任意,的最小值是.【答案】【解析】设,则,设OA中点为D,则,因此四点A,D,B,C共圆,圆心为AB中点M,直径为AB,从而的最大值和最小值分别是因此【考点】向量几何意义7.已知向量满足,则在方向上的投影为.【答案】【解析】根据,求得,根据投影公式可得在方向上的投影为.【考点】向量在另一个向量方向上的投影.8.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC一定是A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】根据题意有,即,从而得到,所以三角形为直角三角形,故选B.【考点】向量的加减运算,向量垂直的条件,三角形形状的判断.9.已知、是不共线的向量,,那么三点共线的充要条件为()A.B.C.D.【答案】B【解析】因为三点共线,所以,所以,故选B.【考点】向量共线的充要条件.10.已知是内的一点,且,,若,和的面积分别为、、,则的最小值是()A.B.C.D.【答案】B【解析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把转化为利用基本不等式求得的最小值即可.因为,,所以故选B.【考点】平面向量;均值不等式11.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,则a 与b的数量积等于()A.-B.-C.D.【答案】D【解析】由已知可得,因为与平行,所以可得,解得.即..故D正确.【考点】1向量共线;2数量积公式.12.在中,已知,,分别是边上的三等分点,则的值是()A.B.C.D.【答案】C【解析】因为、分别是边上的三等分点所以,所以又所以得所以故答案选【考点】1.向量的线性关系;2.向量的数量积.13.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设,记,则函数的值域是;当面积最大时,.【答案】,【解析】如图,作,交延长线于,则,易证得,所以设,则所以所以由题知,所以故的值域是因为,所以当面积最大时,,即则在中,所以【考点】1.向量的数量积;2.二次函数的最值.14.边长为2的正三角形内(包括三边)有点,,求的取值范围.【答案】.【解析】如下图所示,建立平面直角坐标系,∴,,,,,∴,即点P的轨迹为圆夹在三角形ABC内及其边界的一段圆弧,在中,有,又∵,即的取值范围是.【考点】平面向量数量积.【思路点睛】平面向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,常利用数形结合思想将问题等价转化为利用几何图形中的不等关系将问题简化,一般会与函数,不等式等几个知识点交汇,或利用平面向量的数量积解决其他数学问题是今后考试命题的趋势.15.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若,其中的取值范围是.【答案】【解析】建立如下图所示直角坐标系,则,,,,,所以,,又因为点在以为圆心、为半径的圆上,且在第一象限,所以点的坐标为,,所以,所以.,,由三角函数的性质可知,函数的值域为,所以的取值范围为.【考点】1.向量的坐标运算;2.圆的参数方程;3.三角函数的性质.【方法点睛】本题主要考查向量的坐标运算、圆的参数方程的应用、三角函数的性质、数形结合思想,属难题.平面向量的坐标运算主要是利用向量加、减、数乘运算的法则进行求解的,若已知有向线段两端点的坐标,应先求出向量的坐标,解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)求解进行,并注意方程思想与转化思想的应用.16.已知向量,,若与平行,则的值是 _.【答案】【解析】由题意与平行,则可得到【考点】共线向量17.在中,,D是边BC上一点,(1)求的值;(2)求的值【答案】(1)(2)【解析】(1)在中,已知三边求一角,故应用余弦定理:,解得,(2)因为,而,因此只需求边AB,这可由正弦定理解得:试题解析:在中,由余弦定理得:.把,,代入上式得.因为,所以.在中,由正弦定理得:.故.所以.【考点】正余弦定理【名师】1.正弦定理可以处理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.余弦定理可以处理①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.18.已知向量,其中,则向量的夹角是()A.B.C.D.【答案】D【解析】由于,则,即,则,则有,所以向量的夹角是.【考点】平面向量的数量积的运算.19.(2015秋•上海月考)已知||=2,||=1,的夹角为,则= .【答案】1【解析】代入向量数量级定义式计算.解:=||•||cos=2×1×=1.故答案为:1.【考点】平面向量数量积的运算.20.(2015•河南模拟)已知向量=(2,1),=(0,﹣1).若(+λ)⊥,则实数λ=.【答案】5【解析】本题先将向量坐标化,利用两向量垂直得到它们的数量积为零,求出λ的值,得到本题答案.解:∵向量=(2,1),=(0,﹣1),∴.∵(+λ)⊥,∴2×2+1×(1﹣λ)=0,λ=5.故答案为:5.【考点】平面向量数量积的运算.21.已知两定点,,点P在椭圆上,且满足=2,则为()A.-12B.12C.一9D.9【答案】D【解析】由,可得点的轨迹是以两定点,为焦点的双曲线的上支,且∴的轨迹方程为:,由和联立可解得:,则.故选D.【考点】椭圆的简单性质.22.在边长为1的正三角形ABC中,设,则__________.【答案】.【解析】如图:由知点D是BC边的中点,点E是CA边上靠近点C的一个三等分点,.故答案应填:.【考点】向量的数量积.23.在中,则∠C的大小为()A.B.C.D.【答案】B【解析】,解得,所以,故选B.【考点】平面向量数量积的应用.24.已知点P是内一点,且,则()A.B.C.D.【答案】C【解析】设点M是中点,则点P是一个三等分点,,选C.【考点】向量表示25.知△ABC和点M满足+=-,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】由,得,知点是的重心,由,由于是的重心,所以,,故选C.【考点】平面向量.26.已知向量,设.(1)求函数的解析式及单调增区间;(2)在中,分别为内角的对边,且,求的面积.【答案】(1),;(2)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得,由,可解得函数的单调增区间.(Ⅱ)由,可得,结合范围,可得,从而求得,由余弦定理可解得的值,利用三角形面积公式即可得解.试题解析:解:(Ⅰ)由可得所以函数的单调递增区间为,(Ⅱ)由可得【考点】1.余弦定理;2.三角函数中的恒等变换应用.27.在中,,点是线段上的动点,则的最大值为_______.【答案】.【解析】,所以当M,N重合时,,最大,为,又设所以,显然当时,最大为,故的最大值为3.【考点】数量积的应用.28.已知向量若则()A.B.C.2D.4【答案】C【解析】由已知,因为,所以,,所以.故选C.【考点】向量垂直的坐标运算,向量的模.29.已知||=,||=2,若(+)⊥,则与的夹角是.【答案】150°.【解析】根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.【考点】平面向量数量积的运算.30.已知点为内一点,且则________.【答案】【解析】如图,即,又,所以有,则.【考点】向量的运算.【思路点睛】因为有相同的底边,所以只要分别求得顶点的距离或者其比值便可求得面积之比,显然求比值较容易,由三角形相似的性质可知顶点的距离之比等于的比值,所以要结合利用向量的运算求得的比值.31.若非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】,因为,所以有,其中为与的夹角,将代入前式中,可求得,故本题的正确选项为D.【考点】向量的运算.32.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2B.3C.4D.5【答案】B【解析】解题时应注意到,则M为△ABC的重心.解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【考点】向量的加法及其几何意义.33.等腰直角三角形中,是斜边上一点,且,则.【答案】4【解析】因为,而,.所以答案应填:4.【考点】平面向量数量积的运算.【方法点睛】欲求的值的关键是选为一组基底,用表述出,代入数量积进行运算.另一种方法:以为原点,分别以为轴,建立直角坐标系,则,所以,由知,所以.本题考查平面向量的数量积的运算,属于基础题.34.在中,是上的点,若,则实数的值为___________.【答案】【解析】因为,所以,即,所以,又因为三点共线,所以.【考点】1.向量的线性运算;2.向量共线定理.35.如图,在中,为的中点,为上任一点,且,则的最小值为.【答案】9【解析】因为是中点,所以,又在线段上,所以,且,所以,当且仅当,即时等号成立,所以的最小值为9.【考点】平面向量的基本定理,基本不等式.【名师】设点是直线外任一点,,则是三点共线的充要条件.36.在平面直角坐标系中有不共线三点,,.实数满足,则以为起点的向量的终点连线一定过点()A.B.C.D.【答案】C【解析】由题意得,,所以.设点在向量的中点连线上,则,所以一点过点,故选C.【考点】向量的坐标运算.【方法点晴】本题主要考查了平面向量的坐标运算及平面向量的共线定理的应用,属于中档试题,着重考查了学生的推理、运算能力和转化与化归的思想方法,本题的解答中,根据,设点在向量的中点连线上,利用平面向量的共线定理和平面向量的坐标运算,得到向量的表示,即可到结论.37.四边形中,且,则的最小值为【答案】【解析】通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),当时,取得最小值.【考点】平面向量的坐标运算【方法点睛】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.38.已知是两个互相垂直的单位向量,且,则对任意实数,的最小值为____________.【答案】【解析】,建立如图所示的直角坐标系, 取,设.,当且仅当时取等号. 故答案为.【考点】1、向量的几何性质、平面向量的数量积公式;2、利用基本不等式求最值.【易错点晴】本题主要考查向量的几何性质、平面向量的数量积公式以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用“或”时等号能否同时成立).39.已知曲线上的任意点到点的距离比它到直线的距离小1,(1)求曲线的方程;(2)点的坐标为,若为曲线上的动点,求的最小值(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论【答案】(1);(2)的最小值为2;(3)线段的长度为定值【解析】(1)根据抛物线的定义得出轨迹方程;(2)设,将表示为(或)的函数,根据函数性质求出最小值;(3)设坐标和直线的斜率,根据相切得出的关系,求出坐标得出圆的圆心和半径,利用切线的性质得出的长.试题解析:(1)设为曲线上的任意一点,依题意,点到点的距离与它到直线的距离相等,所以曲线是以为焦点,直线为准线的抛物线,所以曲线的方程为(2)设,则因为,所以当时,有最小值2(3)当点在轴上运动(与原点不重合)时,线段的长度不变,证明如下:依题意,直线的斜率存在且不为0,设,代入得,由得将代入直线的方程得,又,故圆心所以圆的半径为当点在轴上运动(点与原点不重合)时,线段的长度不变,为定值【考点】抛物线的定义及其标准方程,向量的数量积运算,直线与圆锥曲线的关系40.平面向量与的夹角为60°,,则等于()A.B.4C.12D.16【解析】,因此,选A.【考点】向量的模41.已知向量,则a与b夹角的大小为_________.【答案】【解析】两向量夹角为,又两个向量夹角范围是,所以夹角为.【考点】向量数量积与夹角公式【名师】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.42.已知向量,且,则m=A.−8B.−6C.6D.8【答案】D【解析】,由得,解得,故选D.【考点】平面向量的坐标运算、数量积【名师】已知非零向量a=(x1,y1),b=(x2,y2):|a|=|a|=cos θ=cos θ=a·b=0x x+y y=043.在中,点M是边BC的中点.若,则的最小值是____.【答案】【解析】设,由,即有,得,点是的中点,则,.当且仅当取得最小值,且为.则的最小值为,故答案为:.【考点】平面向量数量积的运算.44.已知向量,,则()A.2B.-2C.-3D.4【解析】因,故,应选A。
平面向量及其应用全章综合测试卷(基础篇)(教师版)
D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2
)
C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =
(完整word版)平面向量(逐题详解)
2012年高考文科数学解析分类汇编:平面向量一、选择题1 .(2012年高考(重庆文))设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b +=( )A .5B .10C .25D .102 .(2012年高考(浙江文))设a,b 是两个非零向量.( )A .若|a+b|=|a|-|b|,则a ⊥bB .若a ⊥b,则|a+b|=|a|-|b|C .若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD .若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3 .(2012年高考(天津文))在ABC ∆中,90A ∠=︒,1AB =,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )A .13B .23 C .43D .24 .(2012年高考(四川文))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .||||a b =且//a bB .a b =-C .//a bD . 2a b =5 .(2012年高考(辽宁文))已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =( )A .—1B .—12C .12D .16 .(2012年高考(广东文))(向量、创新)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=ab ()A .12B .1C .32D .527 .(2012年高考(广东文))(向量)若向量()1,2AB =,()3,4BC =,则AC =( )A .()4,6B .()4,6--C .()2,2--D .()2,28 .(2012年高考(福建文))已知向量(1,2),(2,1)a x b =-=,则a b ⊥的充要条件是( )A .12x =-B .1x =-C .5x =D .0x =9 .(2012年高考(大纲文))ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =( )A .1133a b - B .2233a b - C .3355a b -D .4455a b -二、填空题10.(2012年高考(浙江文))在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.11.(2012年高考(上海文))在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .12.(2012年高考(课标文))已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 13.(2012年高考(江西文))设单位向量(,),(2,1)m x y b ==-。
(完整版)平面向量综合试题(含答案)
BACD平面向量一.选择题: 1. 在平面上,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:①BCCAAB=-②OBOCOA=+③OAOBAC2-=其中正确..结论的个数是()A.1个B.2个C.3个D.0个2.下列命题正确的是()A.向量AB的长度与向量BA的长度相等B.两个有共同起点且相等的向量,其终点可能不同C.若非零向量AB与CD是共线向量,则A、B、C、D四点共线D.若→a→b→c,则→a→c3. 若向量= (1,1), = (1,-1), =(-1,2),则等于( )A.+B.C.D.+4.若,且与也互相垂直,则实数的值为( )A. B.6 C. D.35.已知=(2,3) , =(,7) ,则在上的正射影的数量为()A. B. C. D. 6.己知(2,-1) .(0,5) 且点P在的延长线上,, 则P点坐标为( )A.(-2,11)B.(C.(,3)D.(2,-7)7.设,a b是非零向量,若函数()()()f x x x=+-a b a b的图象是一条直线,则必有()A.⊥a b B.∥a b C.||||=a b D.||||≠a b8.已知D点与ABC三点构成平行四边形,且A(-2,1),B(-1,3),C(3,4),则D点坐标为()A.(2,2)B.(4,6)C. (-6,0)D.(2,2)或(-6,0)或(4,6)9.在直角ABC∆中,CD是斜边AB上的高,则下列等式不成立的是(A)2AC AC AB=⋅(B)2BC BA BC=⋅(C)2AB AC CD=⋅(D)22()()AC AB BA BCCDAB⋅⨯⋅=10.设两个向量22(2,cos)aλλα=+-和(,sin),2mb mα=+其中,,mλα为实数.若2,a b=则mλ的取值范围是 ( ) A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]-10.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q等于()A.{(1,1)} B.{(-1,1)} C.{(1,0)} D.{(0,1)}二. 填空题:11.若向量a b,的夹角为60,1a b==,则()a a b-=.12.向量2411()(),,,a=b=.若向量()λ⊥b a+b,则实数λ的值是.13.向量a 、b=1,a 3-=3,则a +3 =14. 如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =则AD BC =__________.15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.三. 解答题:16.设两个非零向量e 1、e 2不共线.如果AB =e 1+e 2,=BC 2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线; ⑵试确定实数k,使k e 1+e 2和e 1+k e 2共线.17. 已知△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .⑴求证:AB ⊥AC ;⑵求点D 与向量AD 的坐标.17.(10分)已知sin(α+π2)=-55,α∈(0,π).(1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值;(2)求cos(2α-3π4)的值.18.已知矩形相邻的两个顶点是A (-1,3),B (-2,4),若它的对角线交点在x 轴上,求另两个顶点的坐标.19. 已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.20.已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<.(1)若a b ⊥,求θ; (2)求a b +的最大值.21.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+.(Ⅰ)求函数()f x 的最大值与最小正周期; (Ⅱ)求使不等式3()2f x ≥成立的x 的集合.22.(12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255. (1)求cos(α-β)的值; (2)若0<α<π2,-π2<β<0,且sin β=-513,求sin α.平面向量参考答案一、选择题:1-5:BABBC 6.A 7. A 【解析】222()()()(||||)f x x x x x =+-=-+-+a b a b a b a b a b ,若函数()f x 的图象是一条直线,即其二次项系数为0, ∴a b =0, ⇒⊥a b.8.D 9. C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.10. A 【分析】由22(2,cos )a λλα=+-,(,sin ),2m b m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A 10. A二、填空题: 11. 21【解析】()2211cos60122a a b a a b a a b -=-⋅=-⋅︒=-=。
平面向量测试题(含答案)
平面向量章末检测一、选择题:本大题共10小题,每小题5分,共50分.1、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3 2.下列四式不能化简为AD 的是( )A .)++(B .(C .;-+BM AD MB D .;+-CD OA OC 3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为( )A .6563B .65C .513 D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么3a b +=( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) 1()2a b →→-(B ) 1()2b a →→-(C ) →a +12b → (D ) 1()2a b →→+6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) 9.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±10、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B. C. 2或 D. 2或10.二、填空题:本大题共5个小题,每小题5分,共计25分.11.若),4,3(=A点的坐标为(-2,-1),则B点的坐标为 . 12.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .13、已知向量3,(1,2)a b ==,且b a⊥,则a 的坐标是_________________。
(完整版)平面向量测试题及详解
平面向量第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·北京西城区期末)已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( )A .5B .6C .7D .8[答案] C[解析] AB →=(3,y -1),∵AB →∥a ,∴31=y -12,∴y =7.(理)(2011·福州期末)已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .2[答案] D[解析] a +b =(3,x +1),4b -2a =(6,4x -2), ∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.(2011·蚌埠二中质检)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .2[答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.(2011·北京丰台期末)如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17D.17[答案] A[解析] 由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.(文)(2011·北京朝阳区期末)在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB →+PC →)等于( )A .-49B .-43C.43D.49[答案] A[解析] 由条件知,P A →·(PB →+PC →)=P A →·(2PM →) =P A →·AP →=-|P A →|2=-⎝⎛⎭⎫23|MA →|2=-49.(理)(2011·黄冈期末)在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( )A.25a -45bB.25a +45b C .-25a +45bD .-25a -45b[答案] B[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa+⎝⎛⎭⎫1-12λb , ∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b .5.(2011·山东潍坊一中期末)已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( ) A .-3 B .-1 C .1 D .3[答案] D[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10, 又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.(2011·烟台调研)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .是定值6 C .最小值为2 D .与P 的位置有关[答案] B[解析] 设BC 边中点为D ,则 AP →·(AB →+AC →)=AP →·(2AD →)=2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.(2011·河北冀州期末)设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件[答案] B[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.(2011·甘肃天水一中期末)已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150°[答案] C[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.(文)(2011·福建厦门期末)在△ABC 中,∠C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB →等于( )A .2B .3C .4D .6[答案] B[解析] 解法1:如图以C 为原点,CA 、CB 为x 轴、y 轴建立平面直角坐标系,则A (3,0),B (0,3),设M (x 0,y 0),∵BM →=2MA →,∴⎩⎪⎨⎪⎧ x 0=2(3-x 0)y 0-3=2(-y 0),∴⎩⎪⎨⎪⎧x 0=2y 0=1,∴CM →·CB →=(2,1)·(0,3)=3,故选B. 解法2:∵BM →=2MA →,∴BM →=23BA →,∴CB →·CM →=CB →·(CB →+BM →)=|CB →|2+CB →·⎝⎛⎭⎫23BA → =9+23×3×32×⎝⎛⎭⎫-22=3.(理)(2011·安徽百校联考)设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数[答案] A[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.(2011·宁夏银川一中检测)a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=0[答案] D[分析] 由于向量AC →,AB →有公共起点,因此三点A 、B 、C 共线只要AC →,AB →共线即可,根据向量共线的条件可知存在实数λ使得AC →=λAB →,然后根据平面向量基本定理得到两个方程,消去λ即得结论.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.(文)(2011·北京学普教育中心)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量运算a ⊕b =(a 1,a 2)⊕(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝⎛⎭⎫2,12,n =⎝⎛⎭⎫π3,0,点P (x ,y )在y =sin x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊕OP →+n (其中O 为坐标原点),则y =f (x )的最大值及最小正周期分别为( )A .2;πB .2;4π C.12;4π D.12;π [答案] C[解析] 设点Q (x ′,y ′),则OQ →=(x ′,y ′),由新定义的运算法则可得: (x ′,y ′)=⎝⎛⎭⎫2,12⊕(x ,y )+⎝⎛⎭⎫π3,0 =⎝⎛⎭⎫2x +π3,12y , 得⎩⎨⎧x ′=2x +π3y ′=12y,∴⎩⎪⎨⎪⎧x =12x ′-π6y =2y ′,代入y =sin x ,得y ′=12sin ⎝⎛⎭⎫12x ′-π6,则 f (x )=12sin ⎝⎛⎭⎫12x -π6,故选C. (理)(2011·华安、连城、永安、漳平一中、龙海二中、泉港一中六校联考)如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )A.83B.32C.53 D .1[答案] B[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.(2011·辽宁沈阳二中阶段检测)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( )A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形 [答案] A[分析] 根据平面向量的概念与运算知,AB →|AB →|表示AB →方向上的单位向量,因此向量AB →|AB →|+AC→|AC →|平行于角A 的内角平分线.由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0可知,角A 的内角平分线垂直于对边,再根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可求角A .[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.[点评] 解答本题的关键是注意到向量AB →|AB →|,AC →|AC →|分别是向量AB →,AC →方向上的单位向量,两个单位向量的和一定与角A 的内角平分线共线.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·湖南长沙一中月考)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于________.[答案]5[解析] 3a +b =(3,6)+(-2,y )=(1,6+y ), ∵a ∥b ,∴-21=y2,∴y =-4,∴3a +b =(1,2),∴|3a +b |= 5.(理)(2011·北京朝阳区期末)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.[答案] 2 3[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12, ∴|a +2b |=2 3.14.(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________.[答案] λ<-32且λ≠-3[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0, ∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.(2011·黄冈市期末)已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________.[答案] 0≤m <1[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3), ∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.(2011·河北冀州期末)已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________.[答案] ±522[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c , ∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·甘肃天水期末)已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小. [解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12, ∴α=π3.因此,两向量a 与b 的夹角为π3.18.(本小题满分12分)(2011·呼和浩特模拟)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ, ∵过(4,-10)点,∴16-10=λ,即λ=6, ∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ),∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.(本小题满分12分)(2011·宁夏银川一中月考,辽宁沈阳二中检测)△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.[分析] 根据向量关系式得到角B 的三角函数的方程,解这个方程即可求出角B ,根据余弦定理列出关于c 的方程,解这个方程即可.[解析] (1)∵m ⊥n ,∴m ·n =0, ∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0, ∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0, ∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B , ∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =asin A,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π, 若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1. 综上c =2或c =1.20.(本小题满分12分)(2011·山东济南一中期末)已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |;(2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值. [解析] (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22 =2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x2 =2+2cos2x =2|cos x |, ∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x .(2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.(本小题满分12分)(2011·河南豫南九校联考)已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB →+b ,b >a .(1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12] 当a >0时,f (x )∈[-2a +b ,a +b ]∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧a =1b =4, 当a <0时,f (x )∈[a +b ,-2a +b ]∴⎩⎪⎨⎪⎧ a +b =2-2a +b =5,得⎩⎪⎨⎪⎧ a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =4 22.(本小题满分12分)(2011·北京朝阳区模拟)已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1),设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1 消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0.因为N 在椭圆内,所以Δ>0. 所以⎩⎪⎨⎪⎧ x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1]=(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2, 所以-187≤-9(1+k 2)3+4k 2≤-125.解得1≤k 2≤3. 所以-3≤k ≤-1或1≤k ≤ 3.。
平面向量练习题(附答案)
平面向量练习题(附答案)平面向量练题一.填空题。
1.XXX等于0.2.若向量a=(3,2),b=(-1,1),则向量2b-a的坐标是(-7,-3)。
3.平面上有三个点A(1,3),B(2,2),C(7,x),若∠ABC=90°,则x的值为-16.4.向量a、b满足|a|=1,|b|=2,(a+b)⊥(2a-b),则向量a与b的夹角为90°。
5.已知向量a=(1,2),b=(3,1),那么向量2a-1b的坐标是(1,3)。
6.已知A(-1,2),B(2,4),C(4,-3),D(x,1),若AB与CD共线,则|BD|的值等于5.7.将点A(2,4)按向量a=(-5,-2)平移后,所得到的对应点A'的坐标是(-3,2)。
8.已知a=(1,-2),b=(1,x),若a⊥b,则x等于-1.9.已知向量a,b的夹角为120°,且|a|=2,|b|=5,则(2a-b)·a=-6.10.设a=(2,-3),b=(x,2x),且3a·b=4,则x等于-2/3.11.已知AB=(6,1),BC=(x,y),CD=(-2,-3),且BC∥DA,则x+2y的值为-5.12.已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|≠0,|b|≠0,则a与b的夹角为60°。
13.在△ABC中,O为中线AM上的一个动点,若AM=2,则OAOB+OC的最小值是5.14.将圆x+y=2按向量v=(2,1)平移后,与直线x+y+λ相切,则λ的值为-1.二.解答题。
15.设平面三点A(1,0),B(0,1),C(2,5)。
1)向量2AB+AC=(3,4),其模为5.2)向量AB=(1,-1),向量AC=(1,5),则它们的夹角为arccos[(1*(-1)+5*1)/(sqrt(2)*sqrt(26))]≈69.4°。
3)向量BC=(2,4),与向量(-4,2)垂直,故与向量(1,-1)垂直的单位向量为(1/sqrt(2),1/sqrt(2))。