矩阵理论-第三章 矩阵的Jordan标准型

合集下载

矩阵理论(第三章矩阵的标准型)

矩阵理论(第三章矩阵的标准型)

100
2100 2 2101 2 0 100 101 2 1 2 1 0 2100 1 2101 2 1
第一节
矩阵的相似对角形
一、矩阵的特征值与特征向量 1、相似矩阵:设V是n维线性空间,T是线性变换, e1, e2,…,en与e'1,e'2,…,e' 是两组基,过渡矩阵 P,则T在这两组基下的矩阵A与B相似,
i
1
i Js
这些约当块构成的分块对角阵J,称为A的约当标准形。
J2
例5 Jordan标准形。
例5的初级因子为 ( 1),( 1),( 2) Jordan标准形为
1 J 1 2
2、k级行列式因子:特征矩阵A(λ)中所有非零的k 级子式的首项(最高次项)系数为1 的最大公因 式Dk(λ)称为 A(λ)的k级行列式因子。
A( ) E A
例5 求矩阵的特征矩阵的行列式因子 解:特征矩阵为
1 1 E A 2
若A能与对角形矩阵相似,对角阵是由特征值构 成的P是由对应特征值的特征向量构成的。
例3
解:
4 6 0 A 3 5 0 3 6 1
100 A ,计算:
4 A E 3 3
6
0
5 0 (1 )2 ( 2) 0 6 1
3级因子,因为
0 0 0 2 1 1 2 3 3 0
1
3
0 0 0, 2 0
2 2(( 1)3 ,( 1)2 ( 2), 2 2 7,0,...) 1
4级因子

Jordan矩阵介绍

Jordan矩阵介绍

矩阵的Jordan 标准形一、矩阵的相似对角化定义1 设A 、B 是两个n 阶方阵,如果存在阶可逆矩阵n P ,使得 B AP P =−1则称B 相似于A ,记为B A ~,可逆矩阵P 称为将A 变成B 的相似变换矩阵。

如果矩阵A 能与一个对角矩阵Λ相似,则称矩阵A 可相似对角化,也说矩阵A 可对角化。

若方阵A 不能与对角矩阵相似,则称矩阵A 不能相似对角化,也说矩阵A 不能对角化。

线性代数课程已给出了矩阵A 可对角化的充要条件:定理1(1)阶方阵n A 可对角化的充要条件是A 有个线性无关的特征向量。

n (2)若阶方阵n A 有个互不相同的特征值n n λλλ,,,21L ,则A 可对角化。

把阶方阵n A 对角化的步骤如下:(1)求出A 的特征值,设互不相同的特征值为s λλλ,,,21L ;(2)对每个特征值i λ(s i ≤≤1),求齐次方程组 0x =−)(E A i λ 的基础解系,得到对应于i λ的线性无关特征向量组{}k i i i p p p L ,,21;若全体线性无关特征向量的个数小于,则矩阵n A 不可对角化。

若线性无关特征向量的个数为,则进行下一步骤。

n (3)将对应于互不相同特征值 s λλλ,,,21L 的特征向量全体作为个列向量构成方阵,则 n ()n P p p p ,,,21L =Λ=−AP P 1为对角矩阵,其对角线上元素为A 的特征值,方阵P 的列向量的顺序与对角矩阵Λ对角线上元素顺序相对应。

二、矩阵的Jordan 标准形一个阶方阵不一定有个线性无关的特征向量,因此不一定存在与之相似的对角矩阵。

我们问:如果一个阶方阵不能与对角矩阵相似,它能否与一个分块对角矩阵相似呢? Jordan 标准形就是为了解决这个问题。

n n n 本段中的λ可以为复数。

定义2 形如m m J ⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛=λλλλλ1111)(O 的阶方阵称为一个阶Jordan 块,其中m m λ为复数。

Jordan标准形简介(完整+简洁)

Jordan标准形简介(完整+简洁)

矩阵Jordan 标准型简介一、什么是矩阵的Jordan 标准型►1.1 设A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 存在,使得1P AP B -=,则称矩阵A 与B 相似,记为A ~B 。

►1.2 任何方阵A 均可通过某一相似变换化为如下Jordan 标准型:1122()()()s s J J J J λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中 10()10i ii i i J λλλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦称为Jordan 块。

12,,,s λλλ为A 的特征。

说明:(1)()i i J λ中的特征值全为i λ,但是对于不同的i 、j ,有可能i j λλ=,即多重特征值可能对应多个Jordan 块矩阵。

(2)Jordan 标准型是唯一的,这种唯一性是指:各Jordan 块矩阵的阶数和对应的特征值是唯一的,但是各Jordan 块矩阵的位置可以变化。

二、如何求矩阵的Jordan 标准型►2.1. 多项式矩阵(又称为λ阵)()()()()()()()()()()111212122212n n n n nn a a a a a a A a a a λλλλλλλλλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦称为λ的多项式矩阵,其中矩阵元素()ij a λ为λ的多项式。

►2.2. 多项式矩阵的初等变换 (1) 互换两行(列)(2) 以非零常数乘以某行(列)[这里不能乘以λ的多项式或零,这样有可能改变原来矩阵的秩和属性](3) 将某行(列)乘以λ的多项式加到另一行(列)►2.3. 多项式矩阵的Smith 标准型:采用初等变换可将多项式矩阵化为如下形式:()()()()12000r d d A d λλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦其中,多项式()i d λ是首一多项式(首项系数为1,即最高幂次项的系数为1),且()()12d d λλ、()()23d d λλ、、()()1r r d d λλ-,即()i d λ是()1i d λ+的因式。

矩阵的Jordan标准型介绍

矩阵的Jordan标准型介绍

矩阵的Jordan 标准型介绍——Jordan 标准型是相似意义下零元素最多的矩阵吗?线性代数中的一个核心的结果(见[1,2])是Jordan 标准型定理:任何一个复数域上的方阵A 都相似于一个Jordan 矩阵1122()((),(),,())J A diag J J J σσλλλ=…,其中11()1i i i i i i J λλλλλ⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠,1,2,,i σ=…,i λ为矩阵A 的特征值。

(注意:对i ,可能有j j ≠i λλ=成立)对于Jrodan 块的置换来说,Jordan 标准型是唯一的(见[2])。

由线性代数中的内容已知,所有与A 相似的矩阵都有与A 置换意义下相同的Jordan 标准型。

那么所有与A 相似的矩阵(包括A )中,是不是含有0元素最多的矩阵呢?答案是否定的。

例如:取()J A 0201100001000010A −⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,则,11000100()00110001J A −⎛⎞⎜⎟−⎜=⎜⎜⎟⎝⎠⎟⎟A 有11个0元素,却只有10个0元素。

()J A 通过观察我们还能发现,矩阵A 的主对角线元素都为0,而且去掉主对角元素以后A 含有7个0元素,而则仍含有10个0元素,那么我们就要问:所有与()J A A 相似的矩阵(包括A )中,是不是含有非主对角线0元素最多的矩阵呢?答案是肯定的。

文献[3]给出了证明。

()J A参考文献[1]. R.A. Brualdi, The Jordan canonical form: an old proof, Amer. Math. Monthly 94(1987) 257–267.[2].R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985,121–127 and 150–153.[3].R. A. Brualdi, P. Pei, X. Zhan, An extremal sparsity property of the Jordancanonical form, Linear Algebra Appl. 429(2008) 2367-2372.。

矩阵论-Jordan标准型

矩阵论-Jordan标准型

d1
dm
={|(iI A) 0},由亏加秩定理得:
dimE(i )= dim N (i I A)
n r(iI A)
n r(P1(i I A)P)
n r(i I P1AP)
n r(iI D)
n (n di ) di.
3) 1),在E(i )(1 i m)中各取一组基,合起来有n个向量,
第三节 Jordan标准型
一、可对角化矩阵
定义:n阶方阵A若相似于一个对角阵,则称A为可对 角化矩阵(或称单纯矩阵)
注1:对角阵的和,积,逆(若存在)仍是对角阵, 其对角线的元就是它的特征值.
注2:若线性变换T的矩阵为可对角化矩阵,等价 于T在某基下的矩阵为对角阵.
定理1: 设A Cnn , A的全部互异特征根为1, , m ,
定理4:A() B() A()与B()有完全一致的不变因子.
初等因子: C上多项式可分解成一次因子的幂的乘积,设A()的不变 因子d1(), , dr ()的分解为:
dd21
( (
) )
( (
)e11 1
)e21 1
( (
2 2
)e12 )e22
dr () ( 1)er1 ( 2 )er2
1 0 -2 T(e1, e2, e3)=(e1, e2, e3) 0 0 0 ,
-2 0 4 问:1)T可否对角化;
2)若T可对角化,试求满秩阵P,使P-1AP为对角阵.
例3:若A Fnn ,且A2 =A(幂等阵),则A必可对角化.
证明:设()=2 -=(-1),由条件知(A)=0,所以 m A()|(), m A()无重根,故结论成立.
例6,例7
定理6:设A,B Cnn ,则A与B相似当且仅当I-A与I-B 等价,即A B I-A I-B.

矩阵的Jordan标准型及其求解方法

矩阵的Jordan标准型及其求解方法

矩阵的Jordan标准型及其求解方法矩阵是线性代数中的重要概念,它在数学和工程领域中扮演着重要的角色。

在矩阵理论中,Jordan标准型是一种重要的矩阵分解形式,它可以帮助我们更好地理解和求解线性方程组、矩阵的特征值和特征向量等问题。

一、Jordan标准型的定义和性质在矩阵理论中,Jordan标准型是指一个矩阵可以通过相似变换转化为一个由Jordan块组成的对角矩阵。

Jordan块是一个由特征值和特征向量构成的方阵,它具有一些特殊的性质。

首先,Jordan块是一个上三角矩阵,即除了对角线上的元素外,其余元素都为零。

其次,对于一个Jordan块,对角线上的元素都是特征值,而其余元素则是1或0。

这些1的位置与特征向量有关,具体来说,特征向量在Jordan块中的位置决定了1的个数和位置。

Jordan标准型的重要性在于它可以将一个复杂的矩阵分解为一组简单的Jordan 块,从而更容易求解相关问题。

例如,通过Jordan标准型,我们可以求解线性方程组的解、计算矩阵的幂等等。

二、求解Jordan标准型的方法求解矩阵的Jordan标准型有多种方法,其中最常用的方法是通过特征值和特征向量来进行计算。

首先,我们需要计算矩阵的特征值。

特征值是一个标量,它代表了矩阵的某种性质或特征。

通过求解矩阵的特征值,我们可以确定矩阵是否可逆、是否存在特殊结构等。

特征值的计算可以通过求解矩阵的特征多项式来进行,具体计算方法可以使用特征值分解、特征向量分解等。

接下来,我们需要计算矩阵的特征向量。

特征向量是一个非零向量,它与矩阵相乘后等于特征值与特征向量的乘积。

通过求解矩阵的特征向量,我们可以确定矩阵的行与列之间的关系,从而进一步求解Jordan标准型。

在求解特征向量时,我们可以使用多种方法,例如高斯消元法、雅可比迭代法等。

这些方法可以帮助我们求解特征向量的近似解或精确解,从而进一步求解Jordan标准型。

三、应用举例Jordan标准型在实际问题中有着广泛的应用。

第3讲(3)Jordan标准形

第3讲(3)Jordan标准形
17
[方法2] 用初等变换,把J(λ)=λE − J化成 (6.4.1)的形式.
⎡λ − a

E

J
)
=
⎢ ⎢
0
⎢⎣ 0
−1 λ −a
0
0⎤
−1
⎥ ⎥
λ − a⎥⎦
18
3
⎡0 ⎯c⎯1+c2⎯×(λ⎯−a⎯)→ ⎢⎢(λ − a)2
⎢⎣ 0
−1 λ −a
0
0⎤
−1
⎥ ⎥
λ − a⎥⎦
r2 + r1×(λ
ξ3=[2,1,−6]′;ξ2不是A的特征向 量,但将ξ2代入Aξ2=ξ1+ξ2 即 (A−E)ξ2 = ξ1. 便可解得.
42
7
因此取
⎡⎢0 ⎢
−1 2
2
⎤ ⎥

P = [ξ1,ξ2 ,ξ3 ] = ⎢0 0 1 ⎥ ,
⎢⎢1 0 −6⎥⎥


就可使
⎡1 1 0⎤ P −1AP = J = ⎢⎢0 1 0⎥⎥
0 0⎤ ⎥
1
1
⎥ ⎥
0 1 ⎥⎦
⎡1 1

⎢ ⎢0
1
⎢ ⎢⎣
0
0
0⎤
0
⎥ ⎥
−2
⎥ ⎥⎦
36
6
例6 设
⎡ 1 2 0⎤
A
=
⎢ ⎢
0
2 0⎥⎥
⎢⎣−2 −2 1⎥⎦
问:A是否与对角阵相似?如不与对角 阵相似,求可逆矩阵P,使得P−1AP为 Jordan标准形.
37
解 λ −1 −2 0
λ E − A = 0 λ − 2 0 = (λ −1)2(λ − 2) 2 2 λ −1

矩阵论—矩阵的Jordan标准形

矩阵论—矩阵的Jordan标准形
所以,A的初等因子为:
( 1)n1 , ( 2 )n2 , , ( s )ns .
A的特征矩阵E A,其行列式 E A 0 所以,特征矩阵E A的秩为n.
数字矩阵A与B相似 对应的特征矩阵E A与E B等价 A与B有相同的不变因子 A与B有相同的行列式因子 A与B有相同的初等因子
(i
)
1
1
解:显然E-J
(i
)
~
的初等因子。
1
i ni ni
( i )ni nini
所以,J (i )的初等因子为( i )ni .
A1()
定理:设A()
A2 ()
At ()
则A1(),A2 (), , At ()的初等因子的全体
就是A( )的初等因子。
2 0 0
det(B)= n det(A)
所以,矩阵A与矩阵B不相似。
定理:设A C nn , A的初等因子为:
( 1)n1 , ( 2 )n2 , , ( s )ns ,
则矩阵A相似与矩阵J ,
J1(1)
J
J2 (2 )
J
s
(s
)
其中
i 1
i 1
J
(i
)
1
i ni ni
定理:由A()的不变因子可以确定A()的初等因子, 由A()的初等因子和A()的秩可以确定不变因子。
定义:矩阵A的特征矩阵E-A的初等因子称为矩阵A
的初等因子。
求矩阵A的初等因子。
1 1 0 A 4 3 0
1 0 2
1
解:
E
A
~
1
( 1)2 ( 2)
所以,A的初等因子为( 1)2,( 2)
di ()称为A()的不变因子。

第三章 特征值与矩阵的Jordan标准型

第三章 特征值与矩阵的Jordan标准型

74

AU1 = U1
λ1 0 . . . 0
c12 c13 · · · c1n C1
.
由于 C1 为 n − 1 阶矩阵, 由归纳假设, 存在 n − 1 阶酉矩阵 U2 使 b22 b23 · · · b33 · · · ∗ U2 C1 U2 = B1 = .. . b2n b3n . . . bnn 为上三角矩阵. 令 U = U1 则 U ∗ AU = 1
证 注意 P 是第三种初等矩阵, P −1 = I − αEpq . 故 P −1 A 仅将 A 的第 q 行的 −α 倍加 到第 p 行, 因此所得矩阵仍是上三角矩阵且不改变 A 的对角线; AP 的意义类似. 因此知 B 是 与 A 的主对角线相同 (包括顺序) 的上三角矩阵. 直接计算可得 bpq . 例 3.1.1 设 λ1 = λ2 , P = I −
0. 故由分块 Schur 三角化定理, 可设 A = A1 ⊕ A2 ⊕ · · · ⊕ As , 其中 Ai 是特征值均为 λi 的 ni 阶上三角矩阵. 则 f (A) = (A − λ1 I )n1 (A − λ2 I )n2 · · · (B − λs I )ns . 由 例 3.1.2 可知, 对每个 i, 均有 (Ai − λi Ini )ni = 0, 故上式的第 i 个因子 (A − λi I )ni 的第 i 个 块为 ni 阶 0 矩阵, 从而整个乘积等于 0 矩阵. 由于 n 阶矩阵 A 的特征多项式是 n 次多项式, Cayley-Hamilton 定理表明, A 的 n 次幂 可由其较低次幂的线性组合给出, 因此, A 的高于 n 次的幂可由其低于 n 次的幂的线性组合给 出, 故对任意自然数 m, 有 Am ∈ Span{I, A, A2 , · · · , An−1 }. 换句话说, n 阶矩阵 A 的任意次幂均属于由 I, A, A2 , · · · , An−1 生成的 Mn (C) 的子空间. 这 就提供了一种计算高次幂的降幂算法. 例 3.1.3 设 A= 求 A2 , A3 , A4 . 解 A 的特征多项式为 f (λ) = λ2 − 4λ + 1, 所以 A2 − 4A + I = 0. 故知 A2 = 4A − I, A3 = 4A2 − A = 15A − 4I, A4 = 15A2 − 4A = 56A − 15I. 命 题 3.1.1 (Sylvester 降幂公式) 设 A 与 B 分别是 m × n 与 n × m 矩阵, m ≥ n. 则 |λIm − AB | = λm−n |λIn − BA|. 证 注意下述分块矩阵的恒等式: I B 0 I 因此, 矩阵 C1 = BA 0 A 0 与矩阵 C2 = 0 0 A AB 0 0 A AB = BA BAB A AB = BA 0 A 0 I B 0 I , 2 3 1 2 ,

矩阵理论-第三章 矩阵的Jordan标准型

矩阵理论-第三章   矩阵的Jordan标准型

1 0 0
1 0 0
c2 ( 2

)c1

0
c3 ( )c1
0

0


2
c3 c2

0
c3(1) 0

0
0

( 1)
推论 1 任一 n 阶可逆 -矩阵均可经过若干次初等 变换化为 n 阶单位矩阵 En .
反之,设
A( ) c 0 ,则 ( 1 c
A( ) ) A( )
A( ) ( 1
c
A( ) )
En ,
所以 A( ) 是可逆的, A( )1 1 A( ) ,其中 A( ) 是 A( ) 的伴随矩阵.
c
例 3.1 –矩阵
1
A(
)
D1( ) 1 D2( ) ( 1) D3 ( ) 2 ( 1)3
不变因子为:
d1( ) 1 , d2( )

D2 ( ) D1( )

(
1) , d3 ( )

D3 ( ) D2 ( )

(
1)2
所以 A( ) 的 Smith 标准形为:
–矩阵的相等、加法、数乘和乘法等概念与运算 都与数字矩阵相同,而且有相同的运算规律. 对 n n 的 -方阵可类似定义行列式、子式、余子式、 伴随矩阵等概念.
如果 –矩阵 A( ) 中有一个 r 阶子式 (r 1) 不为零,
而所有 r 1 阶子式(如果存在的话)全为零,则称
det( E A) ( 1 )m1 ( i )mi ( s )ms
s
其中 mi n,称 mi 为 A 的特征值 i 的代数重数, i 1

矩阵理论第三章矩阵的Jordan标准型[可修改版ppt]

矩阵理论第三章矩阵的Jordan标准型[可修改版ppt]

若 A( ) 的秩为 r ,则 Dr ( ) 0 ,但 Dr1( ) 0 ,

d1( ) D1( )
dk ( )
Dk ( ) , k Dk1( )
2, ..., r
则 di ( )(i 1, , r) 是 r 个首 1 的多项式.
定义 3.4 上式中的 di ( ) (i 1, , r) 称为 A( ) 的不变因子. 其中 r 为 A( ) 的秩. 定理 3.3 里 A( ) 的 Smith 标准形中的 d1( ), , dr ( ) 就是 它的不变因子.
–矩阵也有初等变换和初等矩阵.
–矩阵的初等行(列)变换,是指以下三种变换: 1.交换 A( ) 的第 i 行(列)与第 j 行(列); 2.用非零的数 k 乘以 A( ) 的第 i 行(列); 3.将 A( ) 的第 j 行(列)乘以一个多项式 ( ) 后,
加到第 i 行(列)上.
–矩阵的初等矩阵是指由一个单位矩阵经过一次 –矩阵的初等行(列)变换后所得的方阵.
等价关系具有以下性质:
1.自反性: A( ) A( ) ; 2.对称性:如果 A( ) B( ) ,那么 B( ) A( ) . 3.传递性:如果 A( ) B( ) 且 B( ) C( ) ,
那么 A( ) C( ) .
由初等变换与初等矩阵的对应关系可得
A() B() 的充要条件是存在一些 m 阶与 n 阶的初等矩阵, 分别左乘与右乘 A( ) 得到 B( ) .
A( ) ( 1
c
A( ) )
En ,
所以 A( ) 是可逆的, A( )1 1 A( ) ,其中 A( ) 是 A( ) 的伴随矩阵.
c
例 3.1 –矩阵
1
A(

矩阵论—Jordan标准形

矩阵论—Jordan标准形

P( i , j ) -1 = P( i , j ) ,
P( i(c) ) -1 = P( i( c -1 ) ) , P( i , j ( ) ) -1 = P( i , j (- ) ) .
由此得出初等变换具有可逆性: 设 - 矩阵 A() 用 初等变换变成 B(),这相当于对 A() 左乘或右乘 一个初等矩阵. 再用此初等矩阵的逆矩阵来乘 B()
2. - 矩阵的Smith标准形
初等变换的定义
定义 下面的三种变换叫做 - 矩阵的初等变换: (1) 矩阵的两行(列)互换位置; (2) 矩阵的某一行(列)乘以非零常数 c ; (3) 矩阵的某一行(列)加另一行(列)的 () 倍, () 是一个多项式. 和数字矩阵的初等变换一样,可以引进初等矩阵 .
就变回 A() ,而这逆矩阵仍是初等矩阵,因而由
B()可用初等变换变回 A() . 我们还可以看出在第 二种初等变换中,规定只能乘以一个非零常数,这 也是为了使 P( i(c) ) 可逆的缘故.
- 矩阵的等价
定义 - 矩阵 A() 称为与 B() 等价,如果
可以经过一系列初等变换将 A() 化为 B() .
a11 ( ) A( ) a ( ) i1
a1 j ( ) aij ( )

a11 ( ) 0
a1 j ( ) aij ( ) a1 j ( ) ( )

a11 ( ) 0 = A1() .
P[] 的元素,就称为 - 矩阵.
讨论 - 矩阵的一些性质,并用这些性质来证明上
关于若尔当标准形的主要定理. 因为数域 P 中的数也是 P[] 的元素,所以在

矩阵论第3章矩阵的Jordan标准形

矩阵论第3章矩阵的Jordan标准形
数余子式等概念.
定 义 3.1.2 设 - 矩 阵 A() P[]mn , 若 A() 中 有 一 个
r(1 r min{m, n}) 阶子式不为零,而所有 r 1阶子式(如果有的 话)全为零,则称 A() 的秩为 r ,记为 rank(A()) r .
进一步,若 n 阶 -矩阵 A() 的行列式 A() 不等于零,则称 A() 是满秩的.

所以 rankA() rankB() 2 .但由矩阵的初等变换可知,如果 A() 与
B() 等价,则 A() 与 B() 之间只能差一个非零常数因子, 而 A()
与 B() 不满足这一条件,所以 A() 与 B() 不等价.
这个例子说明,秩相等不是 -矩阵等价的充分条件.
3.1.3 -矩阵的Smith标准型
第3章 矩阵的Jordan标准形
-矩阵的理论和矩阵的 Jordan 标准形不但在矩阵理论与计
算中起着十分重要的作用,而且在工程上的控制理论、系统分析、
力学等领域具有广泛的应用.本章主要讨论 -矩阵的概念与基本 性质,及其 Smith 标准形,然后利用 -矩阵的理论导出矩阵的
Jordan 标准形,最后给出矩阵的 Cayley-Hamiltom 定理.
a 11 0
a11b22
a11b12 c22 a11b12b21
(第二行加到第一行)
a11 0
a11b12
a11b22 c22 a11b12b21 a22 a11b12b21
a 11 0
a11b12 (1 a22
b21 ) a22 a11b12b21
元素 a11b12 (1 b21 ) a22 不能被 a11 整除,这就将
(1)第一行存在元素不能被 a11 整除:

求矩阵的Jordan标准形的两种方法

求矩阵的Jordan标准形的两种方法

求矩阵的Jordan 标准形的两种方法方法1. 利用矩阵的初等因子原理: 由于矩阵的每一个初等因子与一个Jordan 块相对应, 反之亦然. 求出全部的初等因子即可得出其Jordan 标准形.方法2. 利用特征值和特征向量可求的可逆矩阵T 使得AT T 1-为Jordan 标准形. 原理: 在复数域上, 每一个矩阵都与一个Jordan 标准形相似, 即存在可逆矩阵T 使得AT T 1-为Jordan 标准形.例. 设⎪⎪⎪⎭⎫⎝⎛-----=411301621A , 分别用两种方法求A 的Jordan 标准形.解: 方法1..)1(00010001120011000123101100014111102310411316212222)1(232132⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-+---−−→−⎪⎪⎪⎭⎫⎝⎛-+----→⎪⎪⎪⎭⎫⎝⎛----+--−−−→−⎪⎪⎪⎭⎫ ⎝⎛---+=-++--λλλλλλλλλλλλλλλλλλλλλλr r r r r r A E 得A 的初等因子为2)1(,1--λλ, 于是A 的Jordan 标准形为.11001000121⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=J JJ 方法2.(1) 首先求A 的特征值.3)1(||-=-λλA E , 所以特征值为1,1,1.(2) 求出相应的特征向量.求解齐次线性方程组0)(=-X A E 的全部解:.000000311311311622⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫⎝⎛---=-A E相应的特征向量为)0,1,1(1-=α, )1,0,3(2=α. 1α,2α为特征值空间V 1的基.(3) 求出一组基, 使得A 在此基下的矩阵为Jordan 标准形.由于A 不能对角化, 所以必存在一组基321,,βββ使得A 在此基下的矩阵为Jordan 标准形. 再考虑到A 有两个线性无关的特征向量, 所以A 有一个二阶的Jordan 块. 即11ββ=A , 322βββ+=A , 33ββ=A .可见131,V ∈ββ, 需要求出向量322)(βββ=-E A 满足. 所以求解线性方程组 )()(132211V k k X E A ∈=+=-βαα. (*) 该方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---−−−−→−⎪⎪⎪⎭⎫ ⎝⎛----+---=-==0000000031126223113113113113622212121k k k k k k k k B k k k 取. 由于我们想要求一个向量122113V k k ∈+=ααβ使得线性方程组(*)有解, 所以可取任何使得该方程组有解的k 1,k 2. 我们取了k 1=k 2=k. 事实上, 还可以直接取k 1=k 2=k=1. 即)1,1,2(213=+=ααβ, 这样就得到了(*)的解=2β(1,0,0). 再取)0,1,1(11-==αβ. 于是我们有:11ββ=A , 322βββ+=A , 33ββ=A .即.110010001),,(),,(321321⎪⎪⎪⎭⎫ ⎝⎛=ββββββA A A令⎪⎪⎪⎭⎫ ⎝⎛-==100101211),,(321βββT ,则⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛=-211110010001J J J AT T .。

矩阵论第3章

矩阵论第3章
为 P[ ]
mn

次 -矩阵.
1 2 3 2 2 1 是一个 2×3 的 3 例如 A( ) 3 2 1 2
显然,数字矩阵是 -矩阵的特例(即 0 次 -矩阵) . 数字
矩阵 A 的特征矩阵 E A 就是 1 次 -矩阵.
秩的,但不可逆.
3.1.2 -矩阵的初等变换与等价
定义 3.1.4 下列三种变换称为 -矩阵的初等变换: (1) -矩阵的两行(列)互换位置; (2) -矩阵的某一行(列)乘以非零常数 k ; (3) -矩阵的某一行(列)的 ( ) 倍加到另一行(列) ,其 中 ( ) 是 的多项式.
注 3.1.2 定理 3.1.4 的逆命题不成立.
1 1 例如 设 A( ) , B ( ) . 1 0 2 因为 A( ) 0 , B( ) 2 0 , 所以 rankA( ) rankB( ) 2 . 但由矩阵的初等变换可知, 如果 A( ) 与 B( ) 等价,则 A( ) 与 B( ) 之间只能差一个非零常数因子, 而 A( ) 与 B( ) 不满足这一条件,所以 A( ) 与 B( ) 不等价.
定义 3.1.6 设 A( ) 与 B( ) 是两个 m n 的 -矩阵,若 A( ) 可以经过有限次初等变换变成 B( ) ,则称 B( ) 与 A( ) 等价,记 为 B( ) ≌ A( ) .
由此定义以及数字矩阵的相关结果立即可得: 定理 3.1.3 设 A( ) 与 B( ) 是两个 m n 的 -矩阵,则 B( ) ≌ A( ) 的 充 分 必 要 条 件 为 存 在 m 阶 - 矩 阵 的 初 等 矩 阵
不可逆.
注 3.1.1 在 n 阶 -矩阵中,可逆必满秩,反之不然.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,s .
, r ; j 1, 2,
定义 3.5 di ( ), i 1, 2, , r 的如上因式分解式中, 所有幂指数不为 0 的因式
( j )
kij
( i 1, 2, , r ; j 1, 2, , s ),称为 A( ) 的初等因子. 全体初等因子的集合称为初等因子组.
以下在复数域内讨论问题.
d1 ( ) ( 1 ) ( 2 )
k11 k12
( j ) ( j )
k1 j
( s )k1 s ( s )kis ( s )krs
d i ( ) ( 1 ) ( 2 )
ki 1
–矩阵的初等矩阵是指由一个单位矩阵经过一次 –矩阵的初等行(列)变换后所得的方阵.
初等变换和初等矩阵都是可逆的
定理 3.2 对任意一个 m n 型的 –矩阵 A( ) ,
作一次某种初等行(列)变换,相当于给 A( ) 左(右)乘一个相应的 m 阶( n 阶)初等矩阵.
定义 3.2
B 的充要条件是 A 、 B 有相同的不变因子.
B 的充要条件是 A 、 B 有相同的初等因子组.
定义 3.6 设 i 为 A 的互异特征值, i 1, 2, 且 A 的特征多项式
尽管它们的初等因子组相同,但因为两者的秩不等, 显然不等价.
为了求 A( ) 的初等因子,只要将 A( ) 化为准对角阵即可, 因为有以下结论:若 矩阵
A1 ( ) A( ) A2 ( ) Ak ( )
则 A1 ( ), A2 ( ),
的 m n 型矩阵称为 –矩阵或多项式矩阵, 其中 aij ( ) (i 1, 2,
, m; j 1, 2,
, n) 为 的多项式.
–矩阵的相等、加法、数乘和乘法等概念与运算
都与数字矩阵相同,而且有相同的运算规律. 对 n n 的 -方阵可类似定义行列式、子式、余子式、 伴随矩阵等概念.
1 A( ) 2 3
中,因为 det A( ) 4 , det B( ) 3 2 ,所以
A( ) 是可逆的, B( ) 是不可逆的.
–矩阵也有初等变换和初等矩阵.
–矩阵的初等行(列)变换,是指以下三种变换:
1.交换 A( ) 的第 i 行(列)与第 j 行(列) ; 2.用非零的数 k 乘以 A( ) 的第 i 行(列) ; 3.将 A( ) 的第 j 行(列)乘以一个多项式 ( ) 后, 加到第 i 行(列)上.
推论 1 任一 n 阶可逆 -矩阵均可经过若干次初等 变换化为 n 阶单位矩阵 En . 推论 2 可逆 -矩阵可表示为若干个初等矩阵之积.
定义 3.3 n 阶 -矩阵 A( ) 中所有非零 k 阶子式的 首项系数为 1 的最大公因式称为 A( ) 的 k 阶行列 式因子,记为 Dk ( ) .
则 di ( )(i 1, , r ) 是 r 个首 1 的多项式.
定义 3.4 上式中的 di ( ) (i 1, 其中 r 为 A( ) 的秩.
, r ) 称为 A( ) 的不变因子. , dr ( ) 就是
定理 3.3 里 A( ) 的 Smith 标准形中的 d1 ( ), 它的不变因子.
r1 r3
1 2 3 3
化为 Smith 标准形,其不变因子为 d1 ( ) 1 , d2 ( ) ( 1) ,
d3 ( ) ( 1)2 .
方法二 用定义计算 根据最大公因式的计算,知行列式因子为
D1 ( ) 1 D2 ( ) ( 1)
定理 3.4 等价的 n 阶 -矩阵有相同的各阶行列式因子及 不变因子. 两个 n 阶 -矩阵等价当且仅当它们有相同的行列式因子 或相同的不变因子.
由此可知 n 阶 -矩阵的 Smith 标准形唯一.
( 1) ,求 A( ) 的 例 3.4 设 A( ) 2 ( 1) Smith 标准型及不变因子.
1 1 A ( ) ) A( ) A( ) ( A ( ) ) En , c c
所以 A( ) 是可逆的, A( ) 1
1 A ( ) ,其中 A ( ) 是 A( ) 的伴随矩阵. c
例 3.1
–矩阵
3 1 3 , B( ) 2 2 5 4 2
D3 ( ) 2 ( 1)3
不变因子为:
d1 ( ) 1 , d 2 ( )
D3 ( ) D2 ( ) ( 1)2 ( 1) , d 3 ( ) D2 ( ) D1 ( )
所以 A( ) 的 Smith 标准形为:
1 ( 1) 2 ( 1)

A( ) 虽然是对角形,但对角元素不满足依次相除性,
故不是 Smith 标准形. 方法一 用初等变换
( 1) ( 1) r3 ( 2) r2 A( ) c3 c2 ( 2) 1 ( 1)2
的秩相等,但不等价.
定理 3.3 若 rank ( A( )) r ,则
d1 ( ) d 2 ( ) A( ) D( ) 0
d r ( ) 0
其中 di ( ) | di 1 ( ) , i 1, 2, , r 1 (依次相除性),
, Ak ( ) 的各个初等因子组的全体即为 A( )
的全体初等因子组.
3.2 矩阵的Jordan标准形
今后为叙述简约,规定对于数字矩阵 A , 称 E A 的不变因子、初等因子为 A 的 不变因子、初等因子.
定理 3.6 A ~ B E A E B 定理 3.7 A 定理 3.8 A
第三章 矩阵的Jordan标准型
矩阵的Jordan标准型不但在矩阵理论与 计算中起着十分重要的作用,而且在控 制理论、系统分析等领域有广泛的应用.
3.1不变因子与初等因子
形如
a11 ( ) a12 ( ) a21 ( ) a22 ( ) A( ) am 1 ( ) am 2 ( ) a1n ( ) a2 n ( ) amn ( )
定义 3.1
设有 n 阶 –矩阵 A( ) 、 B( ) ,若可使
A( )B( ) B( ) A( ) En
成立,则称 A( ) 为可逆的, B( ) 称为 A( ) 的逆矩 阵,记为 A1 ( ) . 满秩的 –矩阵不一定可逆.
定理 3.1
n阶
–矩阵 A( ) 可逆的充要条件是 A( )
的行列式是一个非零常数.
证明 若 –矩阵 A( ) 可逆,则有 A( )B( ) B( ) A( ) En 成立, 对其两边取行列式便有 A( ) B( ) 1 ,由于 A( ) 、 B( ) 都是 的多项式, 所以 A( ) 、 B( ) 都是常数. 反之,设 A( ) c 0 ,则 (
0 0 1 0 1 0 0 0 0 c3 c2 c2 ( 2 ) c1 c ( 1) c3 ( ) c1 3 2 0 0 0 0 ( 1)
如果 –矩阵 A( ) 中有一个 r 阶子式 ( r 1) 不为零, 而所有 r 1 阶子式(如果存在的话)全为零,则称
A( ) 的秩为 r ,记为 rankA( ) r .零矩阵的秩为 0 .
当 rank ( Ann ( ) ) n 时,称 Ann ( ) 为满秩的或非奇异的.
由定义知 Dn ( ) 即为 A( ) 的行列式的值,显然
Dk ( ) | Dk 1 ( ) (称为依次相除性), k 1, 2,
,n1 .
若 A( ) 的秩为 r ,则 Dr ( ) 0 ,但 Dr 1 ( ) 0 , 记
d1 ( ) D1 ( )
Dk ( ) d k ( ) , k 2, ..., r Dk 1 ( )
( 1) ( 1) r2 r3 2 2 ( 1) ( 1) c2 ( 2) c3 1 0 1
1 1 ( 1) r2 r3 ( 1) c c c c 2 2 ( 1) ( 1)
定理 3.5 n 阶 矩阵 A( ) 、 B( ) 等价的充要条件 是它们有相同的初等因子组且秩相等.
需) 2 2 ( 2) 2 2 B( ) ( 2) 0
di ( ) 为首 1 多项式, i 1, 2,
,r .
D( ) 为 A( ) 的等价标准形,称为 Smith 标准形.
1 2 为 Smith 标准形. 例 3.2 化 A( ) 1 2 2 2 解 2 2 1 1 r3 r1 0 A( ) 0 c1 c3 0 0 2 1 2 2
设 A( ) 、 B( ) 是两个同型的 –矩阵,
如果 A( ) 可以经过有限次初等变换化为 B( ) , 则称 A( ) 与 B( ) 是等价的,记作 A( ) B( ) .
等价关系具有以下性质: 1.自反性: A( ) A( ) ; 2.对称性:如果 A( ) B( ) ,那么 B( ) A( ) . 3.传递性:如果 A( ) B( ) 且 B( ) C ( ) , 那么 A( ) C ( ) .
ki 2
kij
d r ( ) ( 1 )kr 1 ( 2 )kr 2
相关文档
最新文档