第2讲 抽样分布与参数估计

合集下载

抽样分布与参数估计

抽样分布与参数估计

抽样分布与参数估计首先,我们来了解什么是抽样分布。

在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。

假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。

抽样分布的形状和性质取决于总体的分布和样本的大小。

通过分析抽样分布,可以得到有关总体参数的有用信息。

例如,我们想要知道一些城市成年人的平均年收入。

在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。

如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。

这个抽样分布将给我们提供有关总体平均年收入的估计和推断。

接下来,我们将讨论参数估计。

参数估计是指使用样本数据来估计总体参数的过程。

总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。

通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。

常用的参数估计方法有点估计和区间估计。

点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。

点估计给出了一个单一的值,但不能提供关于估计的精度的信息。

因此,我们常常使用区间估计。

区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。

区间估计能够向我们提供关于估计的精确程度的信息。

区间估计依赖于抽样分布的性质。

中心极限定理是制定抽样分布理论的一个重要原则。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。

这使得我们可以使用正态分布的性质来计算置信区间。

构建置信区间的一种常用方法是使用样本均值的标准误差。

标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。

根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。

通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。

第5章--抽样分布与参数估计教案资料

第5章--抽样分布与参数估计教案资料

(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
9
9,1
9,2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
9,10
(5)
(5.5)
(6)
(6.5)
(7)
(7.5)
(8)
(8.5)
(9)
(9.5)
10
10,1
10,2
10,3
10,4
10,5
10,6
10,7
10,8
10,9
10,10
数是 ,标准差是 ,从这个总体中抽出一 个容量是 n 的样本,则样本平均数 X 也服从 正态分布,其平均数 E( X ) 仍为 ,其标准
差为 。 X 5-19
从正态分布的再生定理可以看出,只要总体 变量服从正态分布,则从中抽取的样本,不管n 是多少,样本平均数都服从正态分布。但是在 客观实际中,总体并非都是正态分布。对于从 非正态分布的总体中抽取的样本平均数的分布 问题,需要由中心极限定理来解决。
第5章--抽样分布与参数估计
第一节 抽样的基本概念与数学原理
一、有关抽样的基本概念 二、大数定理与中心极限定理
5-2
一、有关抽样的基本概念
(一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分
单位的集合,这个集合的大小称为样本容量, 一般用n表示,它表明一个样本中所包含的单 位数。
lim
n
1 n
p
n
i 1
X
i
1
(5.5)
5-17
大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。

抽样分布与参数估计

抽样分布与参数估计

三、t分布曲线下的面积分布规律
自由度为 的t分布曲线
t 分布曲线下 的整个面积为1, t 分布曲线下从a到b 的面积为t值分布 在此范围内的百分 比,即t值落在此 范围内的概率P。
双侧:由于t分布以0为中心对称,即 P(t≤- t, )= P(t≥ t, )= /2 于是有P(- t, ≤t≤ t, )=1-
sx
u X
X
t X =n-1
s X
u分布 t分布
二、t分布图形的特点
• 1. t分布是一簇曲线。 t分布有一个参数, 即自由度 ,与标准差的自由度一致。
• 2. t分布曲线以0为中心,左右对称; 越小, t变量值的离散程度越大,曲线越扁平。
• 3. t分布曲线较标准正态曲线要扁平些(高 峰低些,两尾部翘得高些), 逐渐增大, t分布曲线逐渐的逼近于标准正态曲线,若 =,则t分布曲线和标准正态曲线完全吻 合。
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
点值估计
参数估计
假设检验
区间估计
一、基本概念
➢ 参数估计:用样本统计量来估计总体参数。
点值估计:不计抽样误差,直接用样本均数来 估计μ。
区间估计:根据抽样误差的规律,按一定的概 率估计总体均数的所在范围。统计上习惯用95% 或99%可信区间表示总体均数可能所在范围。
第一节 均数的抽样误差 第二节 t分布 第三节 总体均数可信区间的估计
一、抽样研究:从总体中随机抽取部分 观察单位构成样本,用样本信息去 推断总体特征的研究方法。
统计推断的过程
总体

样本统计量

例如:样本均
值、比例
二、抽样误差:在抽样研究中,因抽样造 成的样本统计量与样本统计量、样本统计 量与总体参数的差值。

第二节 抽样估计的基本方法

第二节  抽样估计的基本方法

面向21世纪 课程教材
第四章
抽样与抽样估计
第二节

(四)影响抽ห้องสมุดไป่ตู้误差的因素
1、总体各单位的差异程度(即标准差 的大小) : 越大,抽样误差越大; 2、样本单位数的多少n : 越大,抽样 误差越小; 3、抽样方法:不重复抽样的抽样误差 比重复抽样的抽样误差小; 4、抽样组织方式:简单随机抽样的误 差最大。
面向21世纪 课程教材
第四章
抽样与抽样估计
第二节

(三)估计量优劣的标准 评价估计量的优劣常用下列三个标准。 1.无偏性 2.有效性 3.一致性 点估计的优点是简单、具体明确。但由于样本 的随机性,从一个样本得到的估计值往往不会 恰好等于实际值,总有一定的抽样误差。而点 估计本身无法说明抽样误差的大小,也无法说 明估计结果有多大的把握程度。
xf
336 812 2160 2852 2688 2376 816 560 12600
x x f
2
588 700 648 92 84 648 600 784 4144

面向21世纪 课程教材
第四章
抽样与抽样估计
第二节

解:
xf 12600 126件 x 100 f x x f 4144 6.47件 s 99 f 1
126 1.203 X 126 1.203
,
1000126 1.203 N X 1000126 1.203
即该企业工人人均产量在124.797至 127.203件之间,其日总产量在124797至 127203件之间,估计的可靠程度为95﹪。
面向21世纪 课程教材
但对于某一项调查来说,根据客观要求,一般应 有一个允许的误差限,也就是说若抽样误差在这 个限度之内,就认为是可允许的,这一允许的误 差限度就称为极限误差。

数理统计: 参数估计方法

数理统计: 参数估计方法
23
引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ

1 n
n i 1
Xi

X
(
x)

1

e

x

,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi

X
2
;
s
1 n1
n i 1
( xi

抽样的基本概念

抽样的基本概念

中心极限定理
(图示)
中心极限定理:设从均值为,方差为 2的一个任意总
体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从正态分布。
一个任意分 布的总体
当样本容量足够 大时(n >30) , 样本均值的抽样 分布逐渐趋于正 态分布
X
抽样平均误差
1.重复抽样条件下,记算公式为: 2.不重复抽样条件下,计算公式为:
设总体中 N 个总体单位某项标志的标志值分别
为 X1, X 2 , X N ,其中具有某种属性的有 N1个 单位,不具有某种属性的有 N0个单位,则
⒈ 总体平均数(又叫总体均值): ⒉ 总体标准差: ⒊ 总体方差:
⒋ 总体比例: ⒌ 是非标志总体的标准差:
P P1 P 当P 0.5时, P有最大值
3.小于总体标准差 4.与样本容量的关系
抽样分布
更大样本 容量的抽 样分布
某个样本 容量的抽 样分布
x
n
X
P119例4-5
某班组有5个工人,他们的单位工时工资分别是4、6、8、10 、12元,总体服从于正态分布。现用重复抽样方式从5个工 人中抽出2人,计算样本的平均工时工资的抽样平均误差。
解:总体分布的平均数与方差分别是:
练习:计算样本比例的抽样平均误差
1、某县人口10万人,用简单随机不重复抽样 方法抽取1/10的人口进行调查,得知男性 人口比重为51%,求男性人口比重的抽样平 均误差。
2、对某乡进行简单随机重复抽样调查,抽出 100个农户进行调查,得知年收入在1800元 以上的占95%,求农户年收入在1800元以上 比重的抽样平均误差。
第4章 抽样估计
第一节 抽样的基本概念 第二节 抽样分布与中心极限定理 第三节 总体参数估计 第四节 抽样方案的设计与实施*

参数估计基础

参数估计基础
p =黑球数/50 每次摸出黑球的比例p服从二项分布,表示为:
p ~ B(n,π), 给定n=50, π =0.20. 共抽取100个样本,计算黑球的比例, p1,p2,…,p100.结果见表5-3。
表5-3 从B(n=50 =0.20)抽取的100 个样本频率的频数分布
黑球比例(%) 8.010.012.014.016.018.020.022.024.026.0-
试估计:该样本频率的抽样误差。 已知:p=41.5%,n=776,代入公式(5-4)得到标准误估 计值:
S pp 1 n p 0 .4 1 5 7 1 7 6 0 .4 1 5 0 .0 1 7 7 或 1 .7 7 %
标准误的估计值较小,说明用样本患病率 41.5%估计总体患病率的可靠性较好。
组段(cm) 152.6~
153.2~ 153.8~ 154.4~ 155.0~ 155.6~ 156.2~ 156.8~ 157.4~ 158.0~158.6
合计
频数 1
4 3 19 25 23 18 4 1 2 100
频率(%) 1.0
4.0 3.0 19.0 25.0 23.0 18.0 4.0 1.0 2.0 100.0
= 时,t分布就完全等于标准正态分布。 3、标准正态分布有两个固定常数(0,1),t分 布只有一个参数 。
❖ 练习:
❖ 1、ν=10,双侧尾部面积为0.05的t界值是?
❖ 2、ν=100,单侧尾部面积为0.05的t界值是?
❖ 3、ν=∞,双测尾部面积和单侧尾部面积分别 为0.05的界值是?
❖1、t 0.05/2,10=2.228
两侧越分散; ➢ 随着 逐渐增大,t分布逐渐逼近标准正态分布;
当 趋于 时,t分布就完全成为标准正态分布。

参数估计

参数估计

6. 参数估计6.1. 参数估计概述统计学包括四个方面的问题,其中之一就是统计推断。

所谓统计推断就是指,如果有一个总体,其分布和统计量都不知道,如一批生产出来的产品的质量。

这样就需要对其进行推断,如一批灯泡的平均使用寿命是多少,是否为合格品等。

统计推断就是解决这些问题。

统计推断分为两个方面,一方面是参数估计,另一方面是假设检验。

6.1.1.参数估计所谓参数估计就是通过对样本的研究,来确定总体的统计量。

其中又可分为点估计和区间估计两类。

点估计就是估计出总体的某一统计量的确切值,如总体的均值、方差等。

通常可以通过样本的相应值来进行估计。

如:样本的平均值∑=i X nx 1是总体平均值的估计量; 样本的方差为∑=--=ni i x x n s 122)(11是总体方差的估计量; 点估计的优点在于它能明确地给出所估计的参数。

但是一般说来,估计的数值与实际值之间是肯定会有误差存在的。

在实际工作中常常需要对这种误差进行衡量,也就是说还需要确定这个估计值的精度,或误差范围和可信程度。

因此就产生了区间估计的问题。

区间估计是通过样本来估计总体参数可能位于的区间。

例如说一批产品的平均使用寿命为1000小时,这仅仅是一个点估计,还需要说明大多数产品(95%)的使用寿命的上限和下限值,比如说位于800~1200小时之间,这就是一个区间估计值。

因此,在进行区间估计时,除了要给出一个区间值外,还需要同时指明可以信赖的程度,即在进行区间估计时,需要确定的是αθθθ-=<<1)ˆˆ(21p ,其中α为事先给定的一个很小的正数,如0.10, 0.05, 0.01或0.001等,称之为显著水平;1-α称为参数θ的置信概率,或置信水平。

θ1和θ2为所估计的参数θ的区间范围的上下限。

其含为我们有100(1-α)%的把握相信所估计的参数θ位于θ1和θ2的区间范围内。

6.1.2.估计量的评价标准对于所给出的估计来说,有些是好的,有些则不是。

统计学课件05第5章抽样与参数估计

统计学课件05第5章抽样与参数估计

反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。

抽样分布与参数估计总结

抽样分布与参数估计总结

总体参数的估计区间,称为置信区间。
统计学原理
置信度
如果将构造置信区间的步骤重复多次,置信区
间中包含总体真值的次数所占的比例称为置信 水平(Confidence Level)。
也称为置信度或置信系数 (Confidence Coefficient)。
统计学原理
置信度与置信区间的关系
统计学原理
两个总体参数—比例之差
比例之差:大样本下,服从正态分布。 在估计时使用样本标准差替代。
统计学原理
两个总体的方差比
样本方差比的抽样分布为F分布 其中 第一自由度为n1-1,第二自由度为n2-1
2 s12 2 2 ~ F n1 1, n2 1 2 s2 1
统计学原理
例题:关于扑克牌的游戏
从一副扑克牌(52张)中,有放回地抽
出30张,其平均点数的分布规律如何?
如果以点数来赌胜负,什么区间的胜率
是95%?
统计学原理
统计学原理
第二节 参数估计
主要讨论总体平均数的 参数估计
统计学原理
参数估计的一般问题
参数估计:用样本统计量去估计总体的参
数。
统计学原理
计算结果
计算样本平均数:X=39.5 计算样本标准差:s=7.7736 令:总体标准差=样本标准差,计算抽样误差为
1.2956 95%置信度对应的T值为1.96 得总体平均数的置信区间为:
o 上限:39.5+1.96×1.2956=42.04 o 下限:39.5-1.96×1.2956=36.96
N=200时的抽样分布
Std. Dev = 2.23 Mean = 46.24 N = 200.00

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。

壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。

⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

《应用统计学》教学大纲

《应用统计学》教学大纲

《应用统计学》教学大纲一、课程简介统计学是农林经济管理本科专业的一门学科基础必修课。

本课程采取理论讲授与实验操作交替进行的方式,理论讲授部分主要包括统计数据的收集、整理、分析及预测,重点讲授各种统计方法,如参数估计、假设检验、方差分析、时间序列分析、统计指数、相关与回归分析等;实验操作部分包括统计工作过程的实验、Excel等电子表格在统计分析中的应用、统计学知识的综合应用三个实验。

二、教学大纲1.教学目的开设此课旨在培养学生数据收集、处理和分析能力。

通过本课程的学习,学生掌握统计学基本理论、方法及在Excel等统计软件中的运用,达到能应用统计方法分析问题和解决问题的目的。

2.教学要求(1)对教师的要求教师要积极备课,认真准备实验,对课程内容要融会贯通,切忌照本宣科。

授课在多媒体教室,结合典型实用案例和相关统计软件,理论讲授与上机操作交替进行。

做到授课内容与大纲相符,注重全程考核,最终成绩由考勤、调查方案设计、实验报告撰写、调查报告撰写、上机测试及期末考试构成,成绩评价体系标准真实、严谨、公平、公正、公开,提升学生学习积极性。

(2)对学生的要求学生能系统地掌握各种统计方法,并理解各种统计方法中所包含的统计思想;能运用统计方法分析和解决实际问题的能力;能够熟练应用Excel等统计软件进行数据分析。

3.预备知识或先修课程要求先修课程包括《概论论与数理统计》、《微观经济学》、《宏观经济学》、《管理学原理》等。

4.教学方式课程包括理论讲授和实验操作两部分。

理论授课32学时,教师讲授与课堂讨论相结合;实验操作24学时,包括统计工作过程实验、Excel等统计软件的运用及统计学知识的综合运用,以学生上机操作为主,教师引导、实地调查为辅。

5.实验环境和设备1)硬件环境:每个学生一台微型计算机。

2)软件环境:Windows 7、Office 2007(或以上版本)(Excel需安装数据分析及规划求解功能)软件包、卓越班学生还需SPSS、DPS软件包。

第二章 抽样技术的基本概念

第二章 抽样技术的基本概念
样本均值的抽样分布类型一般有三种: 1、正态分布的再生定理;
2、中心极限定理;
3、t分布定理;
对于样本比例,在重复抽样时服从二项分布,在 不重复抽样时服从超几何分布,它们的极限形式都是 正态分布。
正态分布是最重要、最常用的抽样分布。 我们可 以根据正态分布理论,在一定的概率保证下,以所抽 样本所给出的估计值为依据对总体指标作出区间估计。
4、在实践中,我们还经常要对总体中某 特定的组或类进行调查研究,这样的组或类就 称为研究域或子总体。
5
二、调查单位与抽样单位
总体是由单位构成的,单位有调查单位与 抽样单位之分。
调查单位就是调查项目的承担者,即我们 想通过调查取得其观测值的单位,它通常是构 成总体的最基本单位。但有时调查单位与基本 单位并不相同。
标θ ,也就是要在一定的概率保证下,想办 法找出两个数值θ1和θ2(θ1≤θ2),使θ处
于这两个数值之间,即:
Pr(θ1 ≤ θ ≤ θ2 )=1- α
27
区间(θ1,θ2)就被称为抽样的置信区 间或估计区间,θ1被称为置信区间的下限, θ2被称为置信区间的上限 。
在正态分布下,估计量关于总体指标对称
23
二、抽样误差的表现形式
抽样误差的表现形式一般有三种:抽样实 际误差、抽样标准误和抽样极限误差。
抽样实际误差是指抽样估计值与总体指标 值之间的离差。
特点: 1、若估计量无偏,所有可能的实际误差 的总和为0; 2、每一次抽样的实际误差是不可知的; 3、抽样实际误差是随机变量。
24
抽样标准误是衡量抽样误差大小的核心指标,是对总 体指标作出区间估计的一个重要因素,狭义上所指的抽样 误差就是抽样标准误。它就是抽样分布或抽样估计量的标 准差,是抽样分布方差或抽样估计量方差(均方误差)的 平方根。

统计学复习(抽样分布、参数估计、假设检验)

统计学复习(抽样分布、参数估计、假设检验)

两个样本均值之差的抽样分布 (1)如: ) 抽样
X1 − N(µ1,σ12 ), X2 − N(µ2 ,σ2 ),
2
则 x1 − x2 ) ~ N(µ1 − µ2 , (
σ12 σ22
n1 + n2
)
抽样
σ12 N1 − n1 σ22 N2 − n2 (x1 − x2 ) ~ N[(µ1 − µ2 , ( )+ ( )] n1 N1 −1 n2 N2 −1
对于无限总体, 对于无限总体, 一个估计 如果对任意 量如能完 ε>ˆ 0 满足条件 全地包含 LimP(|θn −θ |≥ ε ) = 0 未知参数 n→∞ 信息, 信息,即 则称 θˆ 是 θ 为充分量 的一致估计。 的一致估计。
点估计
常用的求点估计量的方法
用样本的数字特征 1.数字特征法: 1.数字特征法:当样本容量增大时 ,用样本的数字特征 数字特征法 去估计总体的数字特征。 去估计总体的数字特征。 例如,我们可以用样本平均数(或成数 和样本方差来估 例如,我们可以用样本平均数 或成数)和样本方差来估 或成数 计总体的均值(或比率 和方差。 或比率)和方差 计总体的均值 或比率 和方差。
样本均值的抽样分布(简称均值的分布) 样本均值的抽样分布(简称均值的分布) 抽样
均值µ=∑Xi/N 均值
均值 X = Σxi
n
样本均值是样本的函数, 故样本均值是一个统计量, 样本均值是样本的函数, 故样本均值是一个统计量, 统计量 统计量是一个随机变量 随机变量, 统计量是一个随机变量, 样本均值的概率分布称为 样本均值的抽样分布。 样本均值的抽样分布。
2
n
总体均值 (µ) )
X ± tα
2
( n −1 )

参数估计

参数估计

第九章参数估计抽样的真正目的在于根据已知的统计量来估计总体参数。

检验特定假设有一定用处,但估计方法的用处更大。

基本上有两种估计,即点估计和区间估计。

第一节点估计点估计也即点值估计,是以一个最适当的样本统计值来代表总体参数值。

为了确定每一种估计究竟如何,就必须掌握某种标准。

估计量如果具有无偏性、一致性和有效性这三个要求或标准,就可以认为这种统计量是总体参数的合理估计或最佳估计。

1.无偏性如果统计量的抽样分布的均值恰好等于被估计的参数之值,那么这一估计便可以认为是无偏估计。

换句话说,从最终的结果来看,估计量的期望值就是参数本身。

2.一致性虽然随机样本和总体之间存在一定的误差,但当样本容量逐渐增加时,统计量越来越接近总体参数,满足这种情况,我们就说该统计量对总体参数是一个一致的估计量。

3.有效性估计量的有效性指统计量的抽样分布集中在真实参数周围的程度。

总而言之,如果一个估计量满足无偏性、一致性和有效性这三条准则,就可称其为最佳估计量。

第二节区间估计如果总体均值正好就是样本的均值,这当然非常好。

但如果两者不尽相同,点估计往往会造成一些不必要的误解。

在许多场合,人们宁愿在原来点估计值两边加一个区间,使得我们对参数在预料之中有相当把握。

因此在推论统计中我们更多采用的是区间估计的方法。

所谓区间估计,就是在一定的抽样平均误差内设一个可置信的区间,然后联系到这个区间的精度,将样本的统计值推断为总体的参数值。

1.精确性和可靠性区间估计的任务是,在点估计值的两侧设置一个区间,使得总体参数被估计到的概率大大增加。

当然,设置一个区间是很容易的,当我们对参数被估计到的信心不足时,我们总可以放宽区间。

如果这个区间的大小不受限制,我们就可以把参数被估计到的信心提高到任何水平。

但是区间加大,估计的效度随之降低。

当我们的信心提高到绝对时,估计的价值也随之丧失贻尽。

这就是说,还存在需要考虑的另一方面——区间估计的精确性问题。

这样一来,我们又宁愿估计区间要尽量小一点,最好就是点估计。

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。

例如,样本均值、样本方差等。

1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。

例如,正态分布、t分布等。

二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。

例如,用样本均值来估计总体均值。

2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。

例如,置信区间。

三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。

3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。

四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。

4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。

4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。

六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。

6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。

讲解标准正态分布表的使用方法。

6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。

七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。

解释t 分布与正态分布的关系。

7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。

讲解自由度对t 分布形状的影响。

7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。

【数据分析师Level1】3.抽样分布及参数估计

【数据分析师Level1】3.抽样分布及参数估计

【数据分析师Level1】3.抽样分布及参数估计【数据分析师 Level 1 】3.抽样分布及参数估计1.随机实验随机实验是概率论的⼀个基本概念。

概括的讲,在概率论中把符合下⾯三个特点的试验叫做随机试验可以在相同的条件下重复的进⾏每次试验的可能结果不⽌⼀个,并且能事先明确试验的所有可能结果进⾏⼀次试验之前不能确定哪⼀个结果会出现随机事件在概率论中,随机事件(或简称事件)指的是⼀个被赋予⼏率的事物的集合,也就是样本空间中的⼀个⼦集。

简单来说,在⼀次随机试验中,某个特定时间可能会出现也可能不会出现;但是当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。

随机变量设随机试验的样本空间S=e,X=X(e)S = {e},X=X(e)S=e,X=X(e)是定义在样本空间S上的单值实值函数,称X为随机变量2.正态分布的图像形式既然介绍变量的分布情况,就要介绍⼀下正态分布。

⾸先,正态分布是关于均值左右对称的,呈钟形,如下图所⽰。

其次,正态分布的均值和标准差具有代表性,只要知道其均值和标准差,这个变量的分布情况就完全知道了。

在正态分布中,均值=中位数=众数3.中⼼极限定理从均值为 µ\muµ,⽅差为σ2\sigma^2σ2的⼀个任意总体中抽取容量为n的样本,当n充分⼤时,样本均值的抽样分布近似服从均值为 µ\muµ ,⽅差为σ2n\frac{\sigma^2}{n}nσ2的正态分布根据中⼼极限定理,我们知道如果做很多次抽样的话会得到很多个样本均值,⽽这些样本均值排列起来会形成正态分布,他们的平均数是µ\muµ,标准差是σn\frac{\sigma}{\sqrt{n}}nσ换句话说,有约68% 的样本均值会落在 µ±σn\mu \pm \frac{\sigma}{\sqrt{n}}µ±nσ之间,有约 95 %的样本均值会落在 µ±2σn\mu \pm 2\frac{\sigma}{\sqrt{n}}µ±2nσ有约 99.7 %的样本均值会落在 µ±3σn\mu \pm 3\frac{\sigma}{\sqrt{n}}µ±3n σ​把上述说法稍微转换⼀下就变成:有68 %的 x‾±σn\overline x \pm \frac{\sigma}{\sqrt{n}}x±nσ会包含着 µ\muµ有95 %的 x‾±2σn\overline x \pm 2\frac{\sigma}{\sqrt{n}}x±2nσ会包含着 µ\muµ有99.7 %的 x‾±3σn\overline x \pm 3\frac{\sigma}{\sqrt{n}}x±3nσ会包含着µ\muµ⽽这就是抽样和估计最根本的道理我们从全体之中以随机抽样⽅式抽取n个样本,取得样本观察值,计算它们的平均数 x‾\overline xx ,然后加减两倍的σn\frac{\sigma}{\sqrt{n}}nσ得到⼀组上下区间,然后说:我们有95 % 的信⼼,这个上下区间⼀定会包含着全体的平均数 µ\muµ。

参 数 估 计

参 数 估 计

二、参 数 估 计
【例5-5】 设X~B(1,p),(X1,X2,…,Xn)是取自总体X的一个子样, 试求参数p的极大似然估计量。
解:设(x1,x2,…,xn)是子样(X1,X2,…,Xn)的一组相应的取值。总体X 的分布律为
则似然函数为 取对数后,有 令
二、参 数 估 计
从而得p的极大似然估计值为 p的极大似然估计量为
项目
参数估计
二、参 数 估 计
一、 参数估计的基本原理
参数估计是指由样本指标值(统计量)估计总体指标值 (参数),即当总体的分布性质已知,但其所含参数真值未 知时,根据一组样本的观察值X1,X2,…,Xn来估计总体中未 知参数θ或θ的某函数。首先从样本(X1,X2,…,Xn)中提取有 关总体X的信息,即构造样本的函数——统计量 g(X1X2,…,Xn);然后用样本值代入,求出统计量 g(x1,x2,…,xn)的值,用该值来作为相应待估参数的值。
二、参 数 估 计
二 、 评价估计量的标准
在参数估计中,用样本估计量 作为总体参数θ的估 计量,实际上,对于同一参数,用不同的估计方法求出的估 计量可能不相同,用相同的方法也可能得到不同的估计量。 也就是说,同一参数可能具有多种估计量,而且,从原则上 讲,任何统计量都可以作为未知参数的估计量,那么采用哪 一个估计量好呢?这就涉及估计量的评价问题,而判断估计 量好坏的标准是:有无系统偏差,波动性的大小,伴随样本 容量的增大是否越来越精确,这就是估计的无偏性、有效性 和一致性。
区间的概念,并给出在一定可信程度的前提下求置信区间的
方法,使区间的平均长度最短。
二、参 数 估 计
用给定的置信度1-α说明区间估计的可靠程度
,通常α取值很小,如取0.05、0.01,有时取0.1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A
中位数的抽样分布

X
估计量的优良性准则
(一致性)
一致性:随着样本容量的增大,估计量越来越接 近被估计的总体参数
P(X )
较大的样本容量
B A
较小的样本容量

X
区间估计
区间估计
(概念要点)
1. 根据一个样本的观察值给出总体参数的估计范围 2. 给出总体参数落在这一区间的概率
3. 例如: 总体均值落在50~70之间,置信度为 95%
一. 点估计 二. 点估计的优良性准则 三. 区间估计
参数估计的方法
估 计 方 法



区间估计
矩估计法 顺序统计量法 最大似然法 最小二乘法
被估计的总体参数
总体参数 均值 一个总体 比例 方差 均值之差 两个总体 比例之差 方差比 符号表示
用于估计的 样本统计量

P
x ˆ p
s2 x1 x2 ˆ1 p ˆ2 p
x 2.5
2 x 0.625
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N ~ (μ,σ2 )时,来自该总体的所 有容量为n的样本的均值X也服从正态分布,X 的 数学期望为μ,方差为σ2/n。即X~N(μ,σ2/n)
=10
n=4 x 5 n =16 x 2.5
总体均值的区间估计
(非正态总体:实例)
解:已知 x = 26, =6 , n=100, 1- = 【例】某大学从该 0.95,Z/2=1.96 校学生中随机抽取 100 人 , 调 查 到 他 x Z 2 , x Z 2 们平均每天参加体 n n 育锻炼的时间为 26 6 6 分钟。试以 95 %的 ,26 1.96 26 1.96 100 100 置信水平估计该大 学全体学生平均每 24.824,27.176 天参加体育锻炼的 我们可以 95 %的概率保证平均每天 时间(已知总体方 参加锻炼的时间在 24.824 ~ 27.176 差为36小时)。 分钟之间
总体、个体和样本
(概念要点)
总体(Population):调查研究的事物或现象的全体
个体(Item unit):组成总体的每个元素 样本(Sample):从总体中所抽取的部分个体 样本容量(Sample size):样本中所含个体的数量
样本均值的抽样分布
抽样分布
(概念要点)
1. 所有样本指标(如均值、比例、方差等) 所形成的分布称为抽样分布
总体均值的区间估计
(实例)
【例】从一个 正态总体中抽 取一个随机样 本, n = 25 ,其均值x = 50 , 标 准 差 s = 8。 建立 总体均值 的 95% 的置信区 间。
解:已= 0.95,t/2=2.0639。 s n 1 s n 1 , x t 2 x t 2 n n
95% 的样本
99% 的样本
置信水平
1. 总体未知参数落在区间内的概率 2. 表示为 (1 -

为显著性水平,是总体参数未在区间内 的概率 相应的 为0.01,0.05,0.10
3. 常用的显著性水平值有 99%, 95%, 90%

区间与置信水平
均值的抽样分布
/2
x
1-
置信区间 样本统计量 (点估计)
置信下限
置信上限
置信区间估计
(内容)
置信区间
均 值 2 已知 2 未知
比例
方差
落在总体均值某一区间内的样本
X = Zx

_ x
- 2.58x
-1.65 x
+1.65x
+ 2.58x
X
-1.96 x
+1.96x
90%的样本
两个样本方差比的抽样分布
设X1,X2,… ,Xn1是来自正态总体N~(μ1,σ12 )的 一个样本, Y1 , Y2 , … , Yn2 是来自正态总体 N~(μ2,σ22 ) 的 一 个 样 本 , 且 Xi(i=1,2,… , n1) , Yi(i=1,2, …,n2)相互独立,则
s

2 x 2 1
/2
x
(1 - ) % 区间包含了
X
% 的区间未包含
影响区间宽度的因素
1. 数据的离散程度,用 来测度
x 2. 样本容量, n
3. 置信水平 (1 - ),影响 Z 的大小
第三节 总体均值和总体比例 的区间估计
一. 总体均值的区间估计 二. 总体比例的区间估计 三. 样本容量的确定
均值和方差

X
i 1
N
总体分布
.3
i
N
N i 1
2.5
2
2 ( X ) i
N
1.25
.2 .1 0
1 2 3 4
样本均值的抽样分布
(一个例子)
现从总体中抽取n=2的简单随机样本,在重复 抽样条件下,共有42=16个样本。所有样本的结果 如下表
所有可能的n = 2 的样本(共16个) 第一个 观察值 第二个观察值 1 2 3 4
T 统计量的分布
设X1,X2,…,Xn1是来自正态总体N~(μ1,σ12 )的一个 样本, 称 n( X ) 为统计量,它服从自由度为(n-1)的t 分布 T S
t 分布
标准正态分布
t (df = 13)
正态分布
t (df = 5)
Z
X
t 分布与正态分布的比较
不同自由度的t分布
t
第二节 参数估计基本方法
2. 是一种理论概率分布 3. 随机变量是 样本统计量

样本均值, 样本比例等
4. 结果来自容量相同的所有可能样本
样本均值的抽样分布
(一个例子)
【例】设一个总体,含有4个元素(个体),即总体单 位数 N=4 。 4 个个体分别为 X1=1 、 X2=2 、 X3=3 、 X4=4 。总体的均值、方差及分布如下
= 50
X
x 50
X
总体分布
抽样分布
中心极限定理
(图示)
中心极限定理:设从均值为,方差为 2的一个任意总 体中抽取容量为n的样本,当n充分大时,样本均值的抽 样分布近似服从均值为μ、方差为σ2/n的正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
抽样分布与参数估计
参数估计在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
统计推断的过程
总体
样 本
样本统计量
例如:样本均 值、比例、方 差
抽样与参数估计
1、 2、 3、 4、 5、 抽样与抽样分布 参数估计基本方法 总体均值和总体比例的区间估计 两个总体均值及两个总体比例之差的估计 正态总体方差及两正态总体方差比的区间 估计
s s
2 1 2 2
2 1 2
P 1P 2

2 1
2 2
如果现在睡觉, 你会做梦; 如果现在学习, 你将会圆梦。
点估计
点估计
(概念要点)
1. 从总体中抽取一个样本,根据该样本的统计 量对总体的未知参数作出一个数值点的估计
例如: 用样本均值作为总体未知均值的估计值 就是一个点估计
式中:M为样本数目 比较及结论:1. 样本均值的均值(数学期望)等于总体均值
2. 样本均值的方差等于总体方差的1/n
样本均值的分布与总体分布的比较
总体分布
.3
P(x)
抽样分布
.3 .2 .1 0
.2 .1 0
1
2
3
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
= 2.5
σ2 =1.25
总体
不同容量样本的抽样分布
n=1 n=4 n=10
简单随机样本


计算样本方差S2
计算卡方值
n=20
2 = (n-1)S2/σ2
计算出所有的
2
2值
均值的标准误
1. 所有可能的样本均值的标准差,测度所 有样本均值的离散程度
2. 小于总体标准差 3. 计算公式为
x n
两个样本方差比的抽样分布
总体均值的区间估计
(2已知)
总体均值的置信区间
(2 已知)
1. 假定条件

总体服从正态分布,且总体方差(2)已知 如果不是正态分布,可以由正态分布来近似 (n 30)
2. 使用正态分布统计量Z x Z ~ N (0,1) n 3. 总体均值 在1-置信水平下的置信区间为 , x Z 2 x Z 2 n n
2 sx 12 2 2 ~ F (n1 1, n2 1) sy 2
s
2 y 2 2
将F(n1-1 , n2-1 )称为第一自由度为(n1-1),第二 自由度为(n2-1)的F分布
两个样本方差比的抽样分布
不同样本容量的抽样分布
(1,10) (5,10) (10,10)
F
T 统计量的分布
.2 .3 P(x)
.1
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和方差
1.0 1.5 4.0 x 2.5 M 16
i 1
n
x
i 1
n
i
2 x
2 ( x ) i x
M (1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
相关文档
最新文档