广东省深圳市2017届中考数学复习-多结论几何综合题专题
初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)
第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。
【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。
大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。
【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。
中考数学解答重难专题专题四 第14题几何图形综合题
专题四 第14题几何图形综合题(2016~2019.14)1. 如图,在矩形ABCD 中,AB =5,AD =3,P 为矩形ABCD 内一动点,且满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为________.第1题图2. 如图,边长为23的菱形ABCD 中,AE ⊥BC 于点E ,且点E 是BC 的中点,连接BD ,交AE 于点F ,点M 是AD 上的一个动点,连接MF 、MC ,则MF +MC 的最小值为________.第2题图3. 如图,正方形ABCD 的边长是4,点M 是AB 的中点,CN =14CD ,P 是直线AC 上的一点,则|PM -P N |的最大值为________.第3题图4.如图,菱形ABCD 的边长为3,∠BAD =60°,点E 、F 在对角线AC 上(点E 在点F 的左侧),且EF =1,则DE +BF 的最小值为________.第4题图5. (2019西工大附中模拟)如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE 、CE ,且∠ABE =∠BCE ,点P 是AB 边上一动点,连接PD 、P E ,则PD +PE 的最小值为________.第5题图6. 如图,已知四边形ABCD ,连接AC 、B D.若AB =AD =BD ,AC =27,∠BCD =30°,则BC 2+CD 2=________.第6题图7. (2018陕师大附中模拟)如图,已知正方形ABCD 的边长为4,⊙B 的半径为2,点P 是⊙B 上的一个动点,则PD -12PC 的最大值为________.第7题图8. 如图,点E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =10 cm 2,S △BQC =20 cm 2,则阴影部分的面积为________cm 2.第8题图8. 如图,菱形ABCD 的边长为4,∠BAD =60°,点E 是AD 上一动点(不与A 、D 重合),点F 是CD 上一动点,且AE +CF =4,则△DEF 面积的最大值为________.第9题图10. 如图,O 为矩形ABCD 的对称中心,M 为BC 边上任一点,ON ⊥OM 且与CD 边交于点N .若AB =6,AD =4,则四边形OMCN 面积的最大值为________.第10题图11.如图,在正方形ABCD中,M、N分别是边BC、CD上的点,∠MAN=45°,△MCN的周长为8,则正方形ABCD的面积为________.第11题图12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是AC的中点,将CD绕点C逆时针旋转,在旋转过程中点D的对应点为点E,连接AE,BE,则△AEB面积的最小值是________.第12题图13.如图,点P为边长为2的正方形ABCD外一点,且P A⊥PB,连接AC、P C,则△P AC面积的最大值为________.第13题图14.如图,已知在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,AC=42,则四边形ABCD 面积的最小值是________.第14题图参考答案1.41【解析】设△ABP中AB边上的高是h.∵S△P AB=13S矩形ABCD,∴12AB·h=13AB·AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如解图,作A关于直线l的对称点E,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=AB2+AE2=52+42=41,即P A+PB的最小值为41.第1题解图2.27【解析】如解图,作点F关于AD的对称点N,连接CN,交AD于点M,则CN的长度即为MF+MC的最小值.∵AE⊥BC,点E是BC的中点,四边形ABCD为菱形,∴CE=BE=3,∴cos∠ABC=BEAB=12,∴∠ABC=60°,∴AE=3,∠EBF=30°,∴EF=1,∴AF=2=AN,∴EN=5,在Rt△CEN中,CN=CE2+EN2=27.第2题解图3.13【解析】如解图,作点M关于直线AC的对称点M′,连接M′N,并延长与直线AC交于点P′,连接P′M,任意在直线AC上取一点P,连接PM,PN,PM′,有PM=PM′,则PM-PN=PM′-PN≤P′M′-P′N=M′N,故M′N为|PM-PN|的最大值.在正方形ABCD中,∴∠BAD=∠D=90°,∵AB=AD=DC=BC=4,∴△MAM′为等腰直角三角形,又AM=BM=12AB=2,则有AM′=AM=2,且M′D=2,又CN=1,则有DN=3,在Rt△M′DN中,根据勾股定理得M′N=M′D2+DN2=13,则|PM-PN|的最大值为13.第3题解图4. 10 【解析】如解图,作DM ∥AC ,连接MF ,且DM =EF =1,连接BM .∵DM =EF ,DM ∥EF ,∴四边形DEFM 是平行四边形,∴DE =FM ,∴DE +BF =FM +FB ≤BM ,根据两点之间线段最短可知,此时DE +FB 最短连接BD ,∵四边形ABCD 是菱形,AB =3,∠BAD =60°,∴△ABD 是等边三角形,∴BD =AB =3.∵DM ∥AC ,且AC ⊥BD ,∴∠MDB =90°.在Rt △BDM 中,BM =12+32=10,∴DE +BF 的最小值为10.第4题解图5. 413-4 【解析】∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠CBE =90°,∵∠ABE =∠BCE ,∴∠BCE +∠CBE =90°,∴∠BEC =90°,∴点E 在以BC 为直径的半圆上移动.如解图,设BC 的中点为O ,作半圆O ,作正方形ABCD 关于直线AB 对称的正方形ABGF ,则点D 的对应点是点F ,连接FO 交AB 于点P ,交半圆O 于点E ,则线段EF 的长即为PD +PE 的最小值.∵∠G =90°,FG =BG =AB =8,OE =4,∴OG =12,∴OF =FG 2+OG 2=413,∴EF =413-4, ∴PD +PE 的长度最小值为413-4.第5题解图6. 28 【解析】∵AB =AD =BD ,∴△ABD 是等边三角形,∴∠DAB =60°.如解图,把△ACD 绕点A 顺时针旋转60°得到△AEB ,连接CE ,则△ACE 是等边三角形,∴CE =AC =27,∵∠DAB +∠BCD =60°+30°=90°,∴∠ADC +∠ABC =360°-90°=270°,∴∠ABE +∠ABC =270°,∴∠CBE =90°,在Rt △BCE 中,BC 2+BE 2=CE 2=28,∵BE =CD ,∴BC 2+CD 2=BC 2+BE 2=28.第6题解图7. 5 【解析】如解图,在BC 上取一点G ,使得BG =1,则CG =3,∵PB BG =21=2,BC PB =42=2,∴PB BG=BC PB ,∵∠PBG =∠PBC ,∴△PBG ∽△CBP ,∴PG PC =BG PB =12,∴PG =12PC ,∴PD -12PC =PD -PG =DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为DG =42+32=5.第7题解图8. 30 【解析】如解图,连接EF ,∵△ADF 与△DEF 同底等高,∴S △ADF =S △DEF ,∴S △ADF -S △DPF =S △DEF -S △DPF ,即S △EPF =S △APD =10 cm 2,同理可得S △EFQ =S △BQC =20 cm 2,∴S 阴影=S △EPF +S △EFQ =30 cm 2.第8题解图9. 3 【解析】如解图,过点F 作FG ⊥AD ,交AD 的延长线于点G ,∵菱形ABCD 边长为4,∠BAD =60°,∴AD =CD =4,∠ADC =180°-∠BAD =120°,∴∠FDG =180°-∠ADC =60°.设AE =x ,∵AE +CF =4,∴CF =4-x ,∴DE =AD -AE =4-x ,DF =CD -CF =4-(4-x )=x ,在Rt △DFG 中,FG =DF ·sin ∠GDF =32x ,∴S △DEF =12DE ·FG =12(4-x )×32x =-34x 2+3x =-34(x -2)2+3,∴当x =2时,△DEF 面积的最大,最大值为 3.第9题解图10. 233【解析】如解图,过点O 作OE ⊥CD 于点E ,作OF ⊥BC 于点F ,∵四边形ABCD 为矩形,∴∠C =90°,∵OF ⊥BC ,OE ⊥CD ,∴∠EOF =90°,∴∠EON +∠FON =90°,∵ON ⊥OM ,∴∠FOM +∠FON =90°,∴∠EON =∠FOM ,∴Rt △OEN ∽Rt △OFM ,∴NE MF =OE OF,∵O 为矩形ABCD 对角线的交点,AB =6,AD =4,∴OE =12AD =2,OF =12AB =3,∴NE =23MF .设BM =x ,如解图①,当0≤x ≤2时,MF =2-x ,NE =23(2-x ),S 四边形OMCN =S 矩形OECF +S △OMF -S △ONE =3×2+12×3×(2-x ) -12×2×23(2-x )=-56x +233,∵-56<0,∴S 四边形OMCN 随x 的增大而减小,∴当x =0时,S 四边形OMCN 的最大值为233;如解图②,当2≤x ≤4时,MF =x -2,NE =23(x -2),S 四边形OMCN =S 矩形OECF -S △OMF +S △ONE =3×2-12×3×(x -2) +12×2×23(x -2)=-56x +233,∵-56<0,∴S 四边形OMCN 随x 的增大而减小,∴当x =2时,S 四边形OMCN 的最大值为6;综上所述,四边形OMCN 面积的最大值为233.第10题解图11. 16 【解析】∵四边形ABCD 为正方形,∴AB =BC ,∠ADN =∠C =90°.如解图,把△DAN 绕点A 顺时针旋转90°得到△BAG ,∴BG =DN ,AG =AN ,∠GAN =90°,∠ABG =∠ADN =90°,∴点G 在CB 的延长线上.∵∠MAN =45°,∴∠MAG =∠GAN -∠MAN =45°,∴∠NAM =∠MAG ,在△MAG 和△MAN中,⎩⎪⎨⎪⎧AM =AM ∠MAG =∠NAM AG =AN,∴△MAG ≌△MAN ,∴MG =MN ,而MG =MB +BG =MB +DN ,∴MN =MB +DN ,∵△MCN 的周长=CN +CM +MN =CN +DN +CM +MB =CD +BC =8,∴CD =4,∴正方形ABCD 的面积为16.第11题解图12. 1 【解析】在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.易知当点E 到AB 的距离最小时,△AEB 的面积最小.如解图,过点C 作CG ⊥AB 于点G ,以点C 为圆心,CD 的长为半径作⊙C交CG 于点F ,此时△ABF 的面积即为△AEB 的面积的最小值.∵CG =AC ·BC AB =125,CF =CD =12AC =2,∴FG =CG -CF =125-2=25,∴△AEB 面积的最小值为12AB ·FG =1.第12题解图13. 2+1 【解析】如解图,以AB 为直径作⊙O 交线段AC 于点E ,连接PE 、OE 、BE ,由AC 为正方形的对角线及⊙O 的直径为AB ,可得△AEB 为等腰直角三角形,则点E 为AC 的中点,∴S △APC =2S △APE ,∴要使得△APC 的面积最大,只需△APE 面积最大即可.∵AE 长度为定值,∴只需使△APE 中AE 边上的高最大即可,∵AE =12AC =12AB 2+BC 2=2,OA =OB =OE =1,∴△AOE 是等腰直角三角形,∴在Rt △AOE 中,利用等面积法求得AE 边上的高为OA ·OE AE =1×12=22,∴△APE 中AE 边上的高的最大值为1+22,∴△APE 面积的最大值为12×(1+22)×2=22+12,∴△P AC 面积的最大值为2×(22+12)=2+1.第13题解图14. 83-8 【解析】∵AB =AD ,∠BAD =60°,∴△ABD 为等边三角形.如解图,过点B 、D 分别作AC 边上的高BE 、DF ,当且仅当E 、F 两点重合时,BE +DF 取得最小值,此时BE +DF =BD .∵AC 长度为定值,∴此时S 四边形ABCD 最小,作△BCD 的外接圆⊙O ,连接OB 、OD ,∵∠BCD =30°,∴∠BOD =60°,又∵OB =OD ,∴△BOD 为等边三角形,∴AC =AE +OE +OC =32BD +32BD +BD =42,∴BD =26-22,∴S 四边形ABCD =12AC ·BD =12×42×(26-22)=83-8.第14题解图。
2017中考数学复习----二次函数综合题
2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。
九年级数学几何综合题
中考数学专题复习之十五:几何综合题【中考题特点】:几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。
解这类几何综合题,应该注意以下几点: (1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想与方法.【范例讲析】:例1:已知:如图,直线PA 交⊙O 于A 、E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB 。
(1)求证:AC 平分 DAB ;(2)若DC =4,DA =2,求⊙O 的直径。
例2:已知:如图,以Rt △ABC 的斜边AB 为直 径作⊙O ,D 是⊙O 上的点,且有AC=CD 。
过点C 作⊙O 的切线,与BD 的延长线交于点E ,连结CD 。
(1)试判断BE 与CE 是否互相垂直?请说明理由;(2)若CD=52,tan ∠DCE=21,求⊙O 的半径长。
例3:如图矩形ABCD 中,过A ,B 两点的⊙O 切CD 于E ,交BC 于F ,AH ⊥BE 于H ,连结EF 。
(1) 求证:∠CEF =∠BAH (2) 若BC =2CE =6,求BF 的长。
例4:如图,AB 是⊙O 的直径,点C 在BA 的延长线上,CA=AO ,点D 在⊙O 上, ∠ABD=30°.⑴求证:CD 是⊙O 的切线;⑵若点P 在直线AB 上,⊙P 与⊙O 外切于点B ,与直线CD 相切于点E ,设⊙O 与⊙P 的半径分别为r 与R ,求Rr的值.例5:已知直线L 与⊙O 相切于点A ,直径AB=6,点P 在L 上移动,连接OP 交⊙O 于点C ,连接BC 并延长BC 交直线L 于点D. (1)若AP=4,求线段PC 的长;(2)若ΔPAO 与ΔBAD 相似,求∠APO 的度数和四边形OADC 的面积。
(答案要求保留根号) 例6:如图1:⊙O 的直径为AB ,过半径OA 的中点G 作弦CE ⊥AB ,在⋂CB 上取一点D ,分别作直线CD 、ED 交直线AB 于点F 、M 。
【复习专题】中考数学复习:几何综合题
几何综合题(旋转为主的题型)一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1 已知:如图,点P 是线段AB 上的动点,分别以AP 、BP 为边向线段AB 的同侧作正△APC和正△BPD ,AD 和BC 交于点M.(1)当△APC 和△BPD 面积之和最小时,直接写出AP : PB 的值和∠AMC 的度数; (2)将点P 在线段AB 上随意固定,再把△BPD 按顺时针方向绕点P 旋转一个角度α,当α<60°时,旋转过程中,∠AMC 的度数是否发生变化?证明你的结论.(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC 的大小是否会发生变化?若变化,请写出∠AMC 的度数变化范围;若不变化,请写出∠AMC 的度数.例2 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..例3 已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD图1 图2例4 在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.五、演练方阵A 档(巩固专练)1.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .2. 已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.3. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F . (1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由;(2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.4. 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.图2AFAB 图1C 1C BA 1A图2A 1C 1ABC图1图3A5. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.6. 如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.B 档(提升精练)1. 如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD . (1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数; (3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.2. 如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD=CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB=4,AD=时,求线段BG 的长.3. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB .(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ; (2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.4. 在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC ,求OE OF的值.5. 如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).C 档(跨越导练)1. 已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N . (1)如图1,当M A N ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当M A N ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.2. 如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O .(1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.3. 问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.4. 在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
中考数学复习专题:几何综合题(含答案解析)
中考数学复习专题:⼏何综合题(含答案解析)⼏何综合题1.已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC ∠=?①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=?,45ACB ∠=?;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=?,AD=2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=?,DE=1,可得EC =1. ∴AC 31=.Rt △ACH 中,由30DAC ∠=?,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明:延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正⽅形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN .(1)如图1,当045α?<②⽤等式表⽰NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α?<CDBA图1备⽤图C DBAM答案:(1)①补全的图形如图7所⽰.(2)当45°<α<90°时,=1802NCE BAM ∠?-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵四边形ABCD 为正⽅形,∴∠BAD=∠ADC=∠BCD=90°,直线BD为正⽅形ABCD的对称轴,点A与点C关于直线BD对称.∵射线AM与线段BD交于点M,∴∠BAM=∠BCM=α.-.∴∠1=∠2=90α∵CE⊥AM,∴∠CEH=90°,∠3+∠5=90°.⼜∵∠1+∠4=90°,∠4=∠5,∴∠1=∠3.-.∴∠3=∠2=90α∵点N与点M关于直线CE对称,-∠.∴∠NCE=∠MCE=∠2+∠3=1802BAM(313. 如图,已知60AOB ∠=?,点P 为射线OA 上的⼀个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满⾜DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在⼀个定点M ,证明你的判断.答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o,∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o∴cos30DF PD =??=∴2DE DF ==(2)当M 点在射线OA 上且满⾜OM =DMME的值不变,始终为1.理由如下:当点P 与点M 不重合时,延长EP 到K 使得PK PD =.∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠. ∴KPMDPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵3,60MO MOL =∠=o,∴sin 603ML MO =?=o.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK ,∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MKME =.∴ME MKMD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成⽴.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上⼀动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中⼼,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的⼤⼩(⽤含α的式⼦表⽰);(3)⽤等式表⽰线段AE 、AF 与CG 之间的数量关系,并证明.答案:(1)补全的图形如图所⽰.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠?= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,⽤等式表⽰线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;ABCE(2)45°;(3)结论:AM CN.证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=α.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°-∠ACD)=12(180°-90°-α-α)=45°-α.∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM AG.∴AM CN.6.在正⽅形ABCD中,M是BC边上⼀点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;答案:(1)补全图形略(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ ,∴AQ AP =,90QAP ∠=°.∵四边形ABCD 是正⽅形,∴AD AB =,90DAB ∠=°.∴12∠=∠.∴△ADQ ≌△ABP .∴DQ BP =,3Q ∠=∠.∵在Rt QAP ?中,90Q QPA ∠+∠=°,∴390BPD QPA ∠=∠+∠=°.∵在Rt BPD ?中,222DP BP BD +=,⼜∵DQ BP =,222BD AB =,∴2222DP DQ AB +=.②BP AB =.7.如图,在等腰直⾓△ABC 中,∠CAB=90°,F 是AB 边上⼀点,作射线CF ,过点B 作BG ⊥C F 于点G ,连接AG .(1)求证:∠ABG =∠ACF ;(2)⽤等式表⽰线段C G ,AG ,BG 之间∵∠CAB=90°. ∵ BG ⊥CF 于点G ,∴∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH ,∵△ABC 是等腰直⾓三⾓形,∴∠CAB =90°,AB =AC . ∵∠ABG =∠ACH . ∴△ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正⽅形ABCD 中,E 是BC 边上⼀点,连接AE ,延长CB ⾄点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对⾓线AC 于点P ,连接AF .(1)依题意补全图形;(2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所⽰.(2)证明∵正⽅形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°,∴∠PAH =45°-∠BAE .∵FH ⊥AE .EDCBAM H PDAC∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.(3)判断:FM=PN.证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正⽅形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴FP=MN.∴FM=PN.9.如图所⽰,点P位于等边ABC△的内部,且∠ACP=∠CBP.(1) ∠BPC的度数为________°;(2) 延长BP⾄点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的⾯积.M HPD AC解:(1)120°. ----------------------------2分(2)①∵如图1所⽰.②在等边ABC △中,60ACB ∠=?,∴60.ACP BCP ∠+∠=? ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=?∴()180120.BPC CBP BCP ∠=?-∠+∠=?∴18060.CPD BPC ∠=?-∠=? ∵=PD PC ,∴CDP △为等边三⾓形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=?,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =??∠=∠??=?,,,∴()SAS ACD BCP △≌△. ∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=?,∴=60.ADB CDB ∠∠=?∴=60.ADB CDB ∠∠=?D∴=BM BN BD == ⼜由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =22==-----------------------------------7分10.如图1,在等边三⾓形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (⽤含α的式⼦表⽰);②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①3-. ………………………………………………………………………… 1分② 0≤QL.……………………………………………………………… 2分(2)设直线+33y x =与x 轴,y 轴的交点分别为点A ,点B,可得A ,(0,3)B .∴OA =3OB =,30OAB ∠=?.由0≤Q①如图13,当⊙D 与x 轴相切时,相应的圆⼼1D 满⾜题意,其横坐标取到最⼤值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO=.∵⊙D 的半径为1,∴ 111D E =.∴1AE =11OE OA AE =-=.∴1D x =②如图14,当⊙D与直线y =相切时,相应的圆⼼2D 满⾜题意,其横坐标取到最⼩值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的交点为F .可得60AOF ∠=?,OF ⊥AB .则9cos 2AF OA OAF =?∠==.图13∵⊙D 的半径为1,∴ 21D F =.∴2272AD AF D F =-=.=?∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是;(2)若DBC α∠=,求FEC ∠的⼤⼩; (⽤α的式⼦表⽰)(3)⽤等式表⽰线段,BG GF 和FA 之间的数量关系,并证明.GFEDCBA图15(1)DE DF =;(2)解:连接DE ,DF ,∵△ABC 是等边三⾓形,∴60C ∠=?. ∵DBC α∠=,∴120BDC α∠=?-.∴120BDF BDC α∠=∠=?-,DF DC =. ∴1202FDC α∠=?+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆⼼,DC 为半径的圆上.∴1602FEC FDC ∠=∠=?+α.(3)BG GF FA =+.理由如下:连接BF ,延长AF ,BD 交于点H ,∵△ABC 是等边三⾓形,∴60ABC BAC ∠=∠=?,AB BC CA ==. ∵点C 与点F 关于BD 对称,∴BF BC =,FBD CBD ∠=∠.GFEDCBA∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=,则602ABF α∠=?-. ∴60BAF α∠=?+. ∴FAD α∠=.∴FAD DBC ∠=∠.由(2)知60FEC α∠=?+. ∴60BGE FEC DBC ∠=∠-∠=?. ∴120FGB ∠=?,60FGD ∠=?.四边形AFGB 中,360120AFE FAB ABG FGB ∠=?-∠-∠-∠=?. ∴60HFG ∠=?.∴△FGH 是等边三⾓形. ∴FH FG =,60H ∠=?. ∵CD CE =,∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠??∠=∠??=?∴△△AHD BGE ?. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.HGFEDCBA12.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)⽤等式表⽰线段CD和CE之间的数量关系,并证明.解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90,°,M是BC的中点,AB AC BAC=∠=∴∠BAD=∠CAD=45°.∴△BAD≌△CAD. ………………………………2分∴∠DBA=∠DCA,BD = CD.∵CD=DF,∴B D=DF. ………………………………………3分∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA =180°,∴∠DCA+∠DFA =180°.∴∠BAC+∠CDF =180°.∴∠CDF =90°. ………………………………………4分21CD. ……………………………………5分(3)CE=)证明:∵90∠=°,EAD∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分∴DF =EF .由②可知,CF. …………………………7分∴CE=)1C D .13.如图,正⽅形ABCD 中,点E 是BC 边上的⼀个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对⾓线BD 于点G ,连接AG .(1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .∵四边形ABCD 是正⽅形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°,∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF ,A BC ED∴AE=AF ,∠FAE =90°.∴∠1=∠2.∴△FDA ≌△EBA . …………………3分∴∠FDA =∠EBA =90°,FD=BE .∵∠ADC =90°,∴∠FDA +∠ADC =180°。
2019届深圳中考复习《多结论几何综合题》专题试卷含解析
2017届中考复习多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、44、如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A、1B、2C、3D、47、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、111、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是( )A 、1B 、2C 、3D 、414、如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A 、4个B 、3个C 、2个D 、1个15、(2016•攀枝花)如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4 ,其中正确的结论个数为( )A 、2B 、3C 、4D 、516、如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP= ;④S四边形ECFG=2S △BGE .A 、4B 、3C 、2D 、117、如图所示,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b+c >你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2,∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD 的面积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD时,△ABE与△ACD不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC =CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB=CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD 中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.9、【答案】B【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE ,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB(半径),OD=OC(半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知) ∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG,∴BE= EF= ×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG= ,∴BE=2OG=2 ,GF= ==2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵= ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S△ADF= DF•AG= ×6×=3 ,∵△ADF∽△AED,∴=()2,∴= ,∴S△AED=7 ,∴S△DEF=S△AED﹣S△ADF=4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=.④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE的面积,继而求得S△DEF=4 .20、【答案】D【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴= ,∴∠CAD=∠ABC,故①正确;∵≠ ,∴≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴= ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠ ,∴≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.。
中考数学复习专题7几何综合题、几何与代数综合题 (2)
≥0的解集. 9.阅读下列材料,并用相关的思想方法解决问题. 计算:(1﹣ ﹣ ﹣ )×( + + + )﹣(1﹣ ﹣ ﹣ ﹣
)×( + + ). 令 + + =t,则 原式=(1﹣t)(t+ )﹣(1﹣t﹣ )t =t+ ﹣t2﹣ t﹣ t+t2 = 问题: (1)计算 (1﹣
﹣ ﹣ ﹣…﹣ )×( + + + +…+ + )﹣(1﹣ ﹣ ﹣ ﹣ ﹣…﹣
的代数式表示 ); (2)设该格点多边形外的格点数为 ,则 =
二、应用题 3.定义运算max{a, b}:当a≥b时,max{a,b}=a;当a<b时,max{a, b}=b.如max{﹣3,2}=2. (1)max{ , 3}= 3 ; (2)已知y1= 和y2=k2x+b在同一坐标系中的图象如图所示,若max{ ,k2x+b}= ,结合图象,直接写出x的取值范围; (3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
归纳证明 (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等 式表示出来,请利用图3证明你发现的关系式; 拓展应用 (3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中 点,BE⊥EG,AD= ,AB=3.求AF的长.
5.阅读理解 材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行 的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯 形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有 以下性质: 梯形的中位线平行于两底和,并且等于两底和的一半. 如图(1):在梯形ABCD中:AD∥BC ∵E、F是AB、CD的中点 ∴EF∥AD∥BC EF=
中考数学总复习第三编综合专题闯关篇专题四代数与几何综合问题的基本类型和解题策略第一节用数学思想方法解
专题四 代数与几何综合问题根本类型与解题策略 类型与策略 几何与代数综合题一般题量较大、梯度明显,是初中数学中覆盖面最广、综合性最强题型,试题中综合题大多以代数与几何综合题形式出现,而且留有自主探究空间,表达个性开展与新课程标准理念,代数与几何大型综合题为以下类型:①在几何图形背景下建立函数或方程;②坐标系下几何图形;③函数图象与几何图形相结合问题:近几年来中考几何与代数综合题主要以压轴题形式出现,涉及到题型有关开放性探索问题、动点问题、存在性问题等居多.解答这类综合题,一般要仔细读题,细致分析,找到切入点,迅速解决第一问,然后抓住关键,由此及彼,逐层深入,合理猜测,细致演练确保第二问正确,在时间充裕情况下攻克第三问,需综合运用几何、代数方法及分类讨论思想逐一解决.规律与预测纵观遵义近5年中考,其综合压轴题,一般以二次函数为背景与几何图形综合,由浅入深设置多问,难度较大,考察方式综合运用知识与解决问题能力,预计2021年遵义中考压轴题也会是代数几何综合题,要有针对性剖析训练.第一节 用数学思想方法解决问题,中考重难点突破)数学思想方法是指对数学知识与方法形成规律性理性认识,是解决数学问题根本策略.数学思想方法提醒概念、原理、规律本质,是沟通根底知识与能力桥梁,是数学知识重要组成局部.数学思想方法是数学知识在更高层次上抽象与概括,它蕴含于数学知识发生、开展与应用过程中.中考常用到数学思想方法有:整体思想、化归思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它实质,就可以把所学知识融会贯穿,解题时可以举一反三.【例1】(2021遵义二中二模)如图,菱形ABCD 对角线长分别为3与4,P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE∥BC 交AB 于点E ,PF ∥CD 交AD 于点F ,那么图中阴影局部面积________.【学生解答】3【规律总结】在解题过程中,应仔细分析题意,挖掘题目题设与结论中所隐含信息,然后通过整体构造,常能出奇制胜.【例2】(2021随州中考)二次函数y =ax 2+bx +c(a≠0)局部图象如下图,图象上点(-1,0),对称轴为直线x =2,以下结论:①4a+b =0;②9a+c>3b ;③8a+7b +2c>0;④假设点A(-3,y 1),点B ⎝ ⎛⎭⎪⎪⎫-12,y 2,点C ⎝ ⎛⎭⎪⎪⎫72,y 3在该函数图象上,那么y1<y3<y2;(5)假设方程a(x+1)(x-5)=-3两根为x1与x2,且x1<x2,那么x1<-1<5<x2.其中正确结论有( )A.2个B.3个C.4个D.5个【学生解答】B【例3】(2021遵义六中二模)⊙O半径为2,弦BC=23,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,那么AD长为________.【学生解答】1或3【规律总结】在几何题没有给出图形时,最好先画出图形,运用数形结合与分类讨论数学思想进展解答,防止出现漏解.【例4】(2021三明中考)如图,AB是⊙O直径,分别以OA,OB为直径作半圆.假设AB=4,那么阴影局部面积是________.【学生解答】2π【规律总结】此类题就是化未知为、化繁为简、化难为易,通过一定策略与手段,使复杂问题简单化,陌生问题熟悉化,抽象问题具体化.具体地说,比方把隐含数量关系转化为明显数量关系;把从这一个角度提供信息转化为从另一个角度提供信息,转化内涵非常丰富,与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题转机.模拟题区1.(2021遵义航中二模)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,假设△PAD与△PBC 是相似三角形,那么满足条件点P个数是( C)A.1个B.2个C.3个D.4个(第1题图)(第2题图)2.(2021红花岗二模)二次函数y=ax2+bx+c(a≠0)图象如下图,那么以下结论:①ac>0;②方程ax2+bx+c=0两根之与大于0;③y随x增大而增大;④a -b+c>0,其中正确是( A)A.②B.②④C.①②④D.①②③④3.(2021金华中考)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点H为垂足.设AB=x,AD=y,那么y关于x函数关系用图象大致可以表示为( D),A) ,B),C) ,D)4.(2021淄博中考)如图,△ABC面积为16,点D是BC边上一点,且BD=14BC ,点G 是AB 上一点,点H 在△ABC 内部,且四边形BDHG 是平行四边形,那么图中阴影局部面积是( B )A .3B .4C .5D .6(第4题图)(第5题图)5.(2021岳阳中考)如图,一次函数y =kx +b(k 、b 为常数,且k≠0)与反比例函数y =4x (x>0)图象交于A ,B 两点,利用函数图象直接写出不等式4x<kx +b 解集是__1<x<4__.6.(2021 遵义十一中二模)如图,正方形边长为2,以各边为直径在正方形内画半圆,那么图中阴影局部面积为__8-2π__.(结果用含π式子表示)中考真题区7.(2021 温州中考)假设a +b =22,ab =2,那么a 2+b 2值为( B ) A .6 B .4 C .3 2 D .238.(2021凉山中考)二次函数y =ax 2+bx +c(a≠0)图象如图,那么反比例函数y =-a x与一次函数y =bx -c 在同一坐标系内图象大致是( C ) ,A ) ,B ),C ) ,D )9.(2021 牡丹江中考)矩形ABCD 中,AB =2,BC =1,点P 是直线BD 上一点,且DP =DA ,直线AP 与直线BC 交于点E ,那么C E =__5-2或5+2__.10.(2021德州中考)如图,半径为1半圆形纸片,按如图方式折叠,使对折后半圆弧中点M 与圆心O 重合,那么图中阴影局部面积是__32-π6__.。
押中考数学第9-10题(多结论问题)(学生版)
押中考数学第9-10题(多结论问题)专题诠释:一直以来,函数都是中考数学的重点考察题型。
在选择题中,主要考察函数的性质、函数的图像和函数的应用,难度的跨度较大,从基础到压轴都有可能出现,满分难度较大。
多做、多想、多总结,掌握做题规律,力争不丢分!目录知识点一:函数的性质及探究1模块一〖真题回顾〗 1模块二〖押题冲关〗 5模块三〖考前预测〗 9知识点一:函数的性质及探究模块一〖真题回顾〗1.(2022·辽宁丹东·统考中考真题)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=66.其中正确的有()A.1个B.2个C.3个D.4个2.(2022·贵州黔西·统考中考真题)如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,AF⊥x轴,垂足为F.若OE=3,EF=1.以下结论正确的个数是()①OA=3AF;②AE平分∠OAF;③点C的坐标为(-4,-2);④BD=63;⑤矩形ABCD的面积为242.A.2个B.3个C.4个D.5个3.(2022·四川宜宾·统考中考真题)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD =CE ;②∠DAC =∠CED ;③若BD =2CD ,则CF AF=45;④在△ABC 内存在唯一一点P ,使得PA +PB +PC 的值最小,若点D 在AP 的延长线上,且AP 的长为2,则CE =2+3.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④4.(2022·四川眉山·中考真题)如图,四边形ABCD 为正方形,将△EDC 绕点C 逆时针旋转90°至△HBC ,点D ,B ,H 在同一直线上,HE 与AB 交于点G ,延长HE 与CD 的延长线交于点F ,HB =2,HG =3.以下结论:①∠EDC =135°;②EC 2=CD ⋅CF ;③HG =EF ;④sin ∠CED =23.其中正确结论的个数为()A.1个B.2个C.3个D.4个5.(2022·山东东营·统考中考真题)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是3;③当MN最小时S△CMN=18S菱形ABCD;④当OM⊥BC时,OA2=DN⋅AB.A.①②③B.①②④C.①③④D.①②③④6.(2022·黑龙江·统考中考真题)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP-BP=2OP;④若BE:CE=2:3,则tan∠CAE=47;⑤四边形OECF的面积是正方形ABCD面积的14.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤7.(2022·湖南益阳·统考中考真题)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有()A.①②③B.①②④C.①③④D.②③④8.(2022·黑龙江牡丹江·统考中考真题)下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB ,并把AB 折到图(3)中所示的AD 处;第四步,如图(4),展平纸片,折出矩形BCDE 就是黄金矩形.则下列线段的比中:①CD DE ,②DE AD ,③DE ND ,④AC AD,比值为5-12的是()A.①②B.①③C.②④D.②③9.(2022·黑龙江绥化·统考中考真题)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得∠ABE =∠CBP ,如果AB =2,BC =5,AP =x ,PM =y ,其中2<x ≤5.则下列结论中,正确的个数为()(1)y 与x 的关系式为y =x -4x ;(2)当AP =4时,△ABP ∽△DPC ;(3)当AP =4时,tan ∠EBP =35.A.0个B.1个C.2个D.3个10.(2022·江苏连云港·统考中考真题)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB =435AD ;③GE =6DF ;④OC =22OF ;⑤△COF ∽△CEG .其中正确的是()A.①②③B.①③④C.①④⑤D.②③④模块二〖押题冲关〗1.(2023·江苏连云港·统考一模)如图,在边长为4的正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°;②AP=FP;③AE=102AO;④四边形OPEQ的面积为43;⑤BF=43.其中正确的结论有()A.2个B.3个C.4个D.5个2.(2023·广东深圳·深圳市南山外国语学校校联考二模)如图,在正方形ABCD中,AD=4,E为CD中点,F为BC上的一点,且∠EAF=45°,∠ABG=∠DAE,连接EF,延长BG交AE于点M,交AD于点N,则以下结论;①DE+BF=EF②BN⊥AE③BF=83④S△BGF=1615中正确的是()A.1个B.2个C.3个D.4个3.(2023·辽宁铁岭·校联考一模)如图,正方形ABCD的对角线AC,BD相交于点O,点E是AB上一点,OF⊥OE交AD于点F,连接CF,DE交于点P,连接OP.则下列结论:①∠OPC=45°;②DE⊥CF;③CP -DP =2OP ;④若AF :FD =3:2,则tan ∠ACF =47;⑤四边形OEAF 的面积是正方形ABCD 面积的14.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤4.(2023·江苏无锡·校考二模)如图,在正方形ABCD 中,F 是BC 边上一点,连接AF ,以AF 为斜边作等腰直角△AEF .有下列四个结论:①∠CAF =∠DAE ;②点E 在线段BD 上;③当∠AEC =135°时,CE 平分∠ACD ;④若点F 在BC 上以一定的速度由B 向C 运动,则点F 的运动速度是点E 运动速度的2倍.其中正确的结论的个数为()A.1B.2C.3D.45.(2023·黑龙江绥化·统考一模)如图,正方形ABCD 中,BE =EF =FC ,CG =2GD ,BG 分别交AE ,AF于点M ,N .下列结论:①AF ⊥BG ;②BN =23NF ;③BM MG=38;④S 四边形CGNF :S 四边形ANGD =18:31.其中结论正确的个数有()A.1个B.2个C.3个D.4个6.(2023·安徽滁州·校考模拟预测)如图,在边长为1的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是()①AG ⊥BE ;②HD 平分∠EHG ;③△ABG ∽△FDG ;④S △HDG:S △HBG =tan ∠DAG ;⑤线段DH 的最小值是5-12;⑥当E 、F 重合时,延长AG 交CD 于M ,则tan ∠EBM =34.A.5个B.4个C.3个D.2个7.(2023·黑龙江绥化·校联考一模)如图,在正方形ABCD 中,E 是线段CD 上一动点,连接AE 交BD 于点F ,过点F 作FG ⊥AE 交BC 于点G ,连接AG ,EG ,现有以下结论:①△AFG 是等腰直角三角形;②DE+BG =EG ;③点A 到EG 的距离等于正方形的边长;④当点E 运动到CD 的三等分点时,BG BC =12或BG BC=13.以上结论正确的个数有()A.1个B.2个C.3个D.4个8.(2023·山东泰安·宁阳二中校考一模)如图,在矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 于点M ,交CD 于点F ,过点D 作DE ∥BF 交AC 于点N .交AB 于点E ,连接FN ,EM .有下列结论:①图中共有三个平行四边形;②当BD =2BC 时,四边形DEBF 是菱形;③BD ⊥ME ;④AD 2=BD ⋅CM .其中,正确结论的序号是()A.①②③B.①②④C.①③④D.②③④9.(2023·广东深圳·模拟预测)如图,正方形ABCD 中,E 、F 分别为边AD 、DC 上的点,且AE =FC ,过F 作FH ⊥BE ,交AB 于G ,过H 作HM ⊥AB 于M ,若AB =9,AE =3,则下列结论中:①△ABE ≅△CBF ;②BE =FG ;③2DH =EH +FH ;④HM AE=35,其中结论正确有()A.1个B.2个C.3个D.4个10.(2023·浙江杭州·校联考一模)如图,在△ABC中,∠BAC=90°,AB=AC=12,点P在边AB上,D,E分别为BC,PC的中点,连接DE.过点E作BC的垂线,与BC,AC分别交于F,G两点.连接DG,交PC于点H.有以下判断:①∠EDC=45°;②DG⊥PE,且DG=PE;③当AP=6时,△APG的面积为9;④CHCE的最大值为2+12.其中正确的是()A.①③B.①③④C.①②④D.①②③④模块三〖考前预测〗11.(2023·山东东营·东营市东营区实验中学校考一模)如图,PA、PB是⊙O的切线,切点分别为A、B,BC是⊙O的直径,PO交⊙O于E点,连接AB交PO于F,连接CE交AB于D点.下列结论:①PA= PB;②OP⊥AB;③CE平分∠ACB;④OF=12AC;⑤E是△PAB的内心;⑥△CDA≌△EDF.其中一定成立的有( )个.A.5B.4C.3D.212.(2023·山东枣庄·校考模拟预测)如图,△ABC内接于⊙O,∠A所对弧的度数为120°.∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①cos∠BFE=12;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是()A.①和②B.①和③C.②和③D.③和④13.(2023·天津·模拟预测)如图,△ABC 中,AC =BC ,点M ,N 分别在AC ,AB 上,将△AMN 沿直线MN 翻折,点A 的对应点D 恰好落在BC 边上(不含端点B ,C ),下列结论:①直线MN 垂直平分AD ;②∠CDM =∠BND ;③AD =CD ;④若M 是AC 中点,则AD ⊥BC .其中一定正确的是()A.①②B.②③C.①②④D.①③④14.(2023·安徽芜湖·统考一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为线段BC 上一点,以AD 为一边构造Rt △ADE ,∠DAE =90°,AD =AE ,下列说法正确的是()①∠BAD =∠EDC ;②△ADO ∼△ACD ;③BD OE =AD AO ;④2AD 2=BD 2+CD 2.A.仅有①② B.仅有①②③ C.仅有②③④ D.①②③④15.(2023·广东惠州·模拟预测)如图,已知正方形ABCD 的边长为a ,E 为CD 边上一点(不与端点重合),将ΔADE 沿AE 翻折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .则下列给出的判断:①∠EAG =45°;②若DE =13a ,则tan ∠GFC =2;③若E 为CD 的中点,则△GFC 的面积为110a 2;④若CF =FG ,则DE =(2-1)a ,其中正确的是()A.①②③B.①②④C.②③④D.①②③④16.(2023·广东深圳·一模)如图,将正方形ABCD 翻折,使点C 、D 分别与点C '、D '重合,折痕为MN ,C 'D '交AD 于点E ,CC 交MN 于点F ,连接CE 、C 'M .给出以下结论:①MN 垂直平分CC ;②DN +BC =CM ;③∠C CE =45°;④△AC 'E 的周长等于AB 的2倍.其中正确的个数有()A.1个B.2个C.3个D.4个17.(2023·山东青岛·模拟预测)如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上一点,且CD =DE ,连结BE ,分别交AC ,AD 于点F ,G ,连结OG ,①OG =12AB ②S 四边形ODGF =S △ABF ③由点A 、B 、D 、E 构成的四边形是菱形;④S △ACD =2S △ABG 中正确的结论是()A.①③B.②④C.①②③D.①②③④18.(2023·江苏无锡·模拟预测)如图,在平面直角坐标系中,点O 为坐标原点,矩形OABC 按如图所示摆放在第一象限,点B 的坐标为3m ,m ,将矩形OABC 绕着点O 逆时针旋转α(0<α<90°),得到矩形OA BC .直线OA 、B C 与直线BC 相交,交点分别为点D 、E ,有下列说法:①当m =1,α=30°时,矩形OA B C 与矩形OABC 重叠部分的面积为32;②当m =1,且B 落到y 轴的正半轴上时,DE 的长为103;③当点D 为线段BE 的中点时,点D 的横坐标为43m ;④当点D 是线段BE 的三等分点时,sin α的值为25或45.其中,说法正确的是()A.①②B.③④C.①②③D.①②④19.(2023·山东德州·统考一模)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号是()A.①②④B.①②③C.①③D.②③④20.(2023·天津·一模)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE,EF.下列结论:①AB=2BD;②图中有DFOE= 4对全等三角形;③BD=BF;④若将△DEF沿EF折叠,则点D不一定落在AC上;⑤S四边形S△AOF,上述结论中正确的个数是()A.1B.2C.3D.4。
中考数学真题分类汇编——几何综合题(含答案)
中考数学真题分类汇编——几何综合题(含答案)类型1 类比探究的几何综合题类型2 与图形变换有关的几何综合题类型3 与动点有关的几何综合题类型4 与实际操作有关的几何综合题类型5 其他类型的几何综合题类型1 类比探究的几何综合题(2018苏州)(2018烟台)(2018东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°, BO:OD=1:3,求DC的长.(2018长春)(第24题图1) (第24题图2) (第24题图3)(2018陕西)(2018齐齐哈尔)(2018河南)(2018仙桃)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.(2018襄阳)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值为;②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=22,则BC= .(2018淮安)(2018咸宁)(2018黄石)在△ABC 中,E 、F 分别为线段AB 、AC 上的点(不与A 、B 、C 重合). (1)如图1,若EF ∥BC ,求证:AEF ABC S AE AFS AB AC∆∆= (2)如图2,若EF 不与BC 平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF 上一点G 恰为△ABC 的重心,34AE AB =,求AEFABC S S ∆∆的值.BBB(2018山西)(2018盐城)【发现】如图①,已知等边ABC ,将直角三角形的60角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若6AB=,4AE=,2BD=,则CF=_______;(2)求证:EBD DCF∆∆.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF∠且FD平分CFE∠?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰ABC∆中,AB AC=,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON B∠=∠),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC∆的顶点重合),连接EF.设Bα∠=,则AEF∆与ABC∆的周长之比为________(用含α的表达式表示).(2018绍兴)(2018达州)(2018菏泽)(2018扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN与EC相交于点P,求tan CPN∠的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中CPN∠不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点M、N,可得∠就变换到中Rt DMN∆.∠=∠,连接DM,那么CPNMN EC,则DNM CPN//问题解决(1)直接写出图1中tan CPN ∠的值为_________;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos CPN ∠的值; 思维拓展(3)如图3,AB BC ⊥,4AB BC =,点M 在AB 上,且AM BC =,延长CB 到N ,使2BN BC =,连接AN 交CM 的延长线于点P ,用上述方法构造网格求CPN ∠的度数.(2018常德)已知正方形ABCD 中AC 与BD 交于O 点,点M 在线段BD 上,作直线AM 交直线DC 于E ,过D 作DH AE ⊥于H ,设直线DH 交AC 于N .(1)如图14,当M 在线段BO 上时,求证:MO NO =;(2)如图15,当M 在线段OD 上,连接NE ,当//EN BD 时,求证:BM AB =; (3)在图16,当M 在线段OD 上,连接NE ,当NE EC ⊥时,求证:2AN NC AC =⋅.(2018滨州)(2018湖州)(2018自贡)如图,已知AOB 60∠=,在AOB ∠的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA OB 、相交于点D E 、 .⑴当DCE ∠绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE OD +与OC 的数量关系,并说明理由;⑵当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,⑴中的结论是否成立?并说明理由; ⑶当DCE ∠绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD OE 、与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.(2018嘉兴、舟山)O BOO B图3.(2018淄博)(1)操作发现:如图①,小明画了一个等腰三角形ABC ,其中AB AC =,在ABC ∆的外侧分别以,AB AC 为腰作了两个等腰直角三角形ABD ACE ,,分别取,BD CE ,BC 的中点,,M N G ,连接,GM GN .小明发现了:线段GM 与GN 的数量关系是 ;位置关系是 . (2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形,其中AB AC >,其它条件不变,小明发现的上述结论还成立吗?请说明理由. (3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向ABC ∆的内侧分别作等腰直角三角形,ABD ACE ,其它条件不变,试判断GMN ∆的形状,并给与证明.类型2 与图形变换有关的几何综合题(2018宜昌)在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F . (1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌; (2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值; ③当BP 9=时,求BE EF 的值.图1 图2 图2备用图 23.(1)证明:在矩形ABCD 中,90,A D AB DC ∠=∠==, 如图1,又AE DE =,图1∆≅∆,ABE DCE(2)如图2,图2①在矩形ABCD中,90∠=,ABC∆沿PC折叠得到GPC∆BPC∠=∠∴∠=∠=,BPC GPC PGC PBC90⊥BE CG∴,BE PG//∴∠=∠GPF PFBBPF BFP∴∠=∠∴=BP BFAD=时,②当25∠=BEC90∴∠+∠=,90AEB CED90AEB ABE ∠+∠=,CED ABE ∴∠=∠ 又90A D ∠=∠=,ABE DEC ∴∆∆∽AB DEAE CD∴=∴设AE x =,则25DE x =-,122512xx -∴=, 解得19x =,216x =AE DE <9,16AE DE ∴==, 20,15CE BE ∴==,由折叠得BP PG =,BP BF PG ∴==,//BE PG , ECF GCP ∴∆∆∽EF CEPG CG∴=设BP BF PG y ===,152025y y -∴=253y ∴=则253BP = 在Rt PBC ∆中,PC =,cos 10BC PCB PC ∠=== ③若9BP =,解法一:连接GF ,(如图3)90GEF BAE ∠=∠=, //,BF PG BF PG =∴四边形BPGF 是平行四边形BP BF =,∴平行四边形BPGF 是菱形//BP GF ∴, GFE ABE ∴∠=∠, GEF EAB ∴∆∆∽EF ABGF BE∴=129108BE EF AB GF ∴==⨯= 解法二:如图2,90FEC PBC ∠=∠=,EFC PFB BPF ∠=∠=∠, EFC BPC ∴∆∆∽EF CEBP CB∴=又90BEC A ∠=∠=, 由//AD BC 得AEB EBC ∠=∠,AEB EBC ∴∆∆∽AB CEBE CB∴=AE EFBE BP∴=129108BE EF AE BP ∴==⨯=解法三:(如图4)过点F 作FH BC ⊥,垂足为HBPF PFEGS BF BFS EF PG BE∆==+四边形图41212BFC BEC S BF EF BC EFBE S BC ∆∆⋅===⨯ 912EFBE ∴=129108BE EF ∴=⨯=(2018邵阳)(2018永州)(2018无锡)(2018包头)(2018赤峰)(2018昆明)(2018岳阳)(2018宿迁)(2018绵阳)(2018南充)(2018徐州)类型3 与动点有关的几何综合题(2018吉林)(2018黑龙江龙东)(2018黑龙江龙东)(2018广东)已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜边OB=4,将Rt△OAB绕点O顺时针旋转60o,如图25-1图,连接BC.(1)填空:∠OBC=_______o;(2)如图25-1图,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图25-2图,点M、N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号)(2018衡阳)(2018黔东南)如图1,已知矩形AOCB,6cm s的AB cm=,动点P从点A出发,以3/=,16BC cm速度向点O运动,直到点O为止;动点Q同时从点C出发,以2/cm s的速度向点B运动,与点P同时结束运动.(1)点P 到达终点O 的运动时间是________s ,此时点Q 的运动距离是________cm ; (2)当运动时间为2s 时,P 、Q 两点的距离为________cm ; (3)请你计算出发多久时,点P 和点Q 之间的距离是10cm ;(4)如图2,以点O 为坐标原点,OC 所在直线为x 轴,OA 所在直线为y 轴,1cm 长为单位长度建立平面直角坐标系,连结AC ,与PQ 相交于点D ,若双曲线ky x=过点D ,问k 的值是否会变化?若会变化,说明理由;若不会变化,请求出k 的值.(2018青岛)已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.(2018广州)如图12,在四边形ABCD 中,∠B=60°,∠D=30°,AB=BC. (1)求∠A+∠C 的度数(2)连接BD,探究AD,BD,CD 三者之间的数量关系,并说明理由。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
中考数学几何多结论问题
∴正确的有4个. 故选D.
3. 如图,P为正方形ABCD的对角线BD上任一
点,过点P作PE⊥BC于点E,PF⊥CD于点F,
连接EF.给出以下4个结论:
①△FPD是等腰直角三角形;②AP=EF;③
AD=PD;④∠PFE=∠BAP.
其中,所有正确的结论是( )
A. ①②
B. ①④
C. ①②④
D. ①③④
∴FH≠FD, ∴S△EFH≠S△EFD, ∴S四边形EFHG=S△HEG+S△EFH=S△AHG+ S△EFH≠S△DEF+S△AGH,故③错误,
18. 如图,点E,F分别为正方形ABCD的边BC,
CD上一点,AC,BD交于点O,且∠EAF=
45°,AE,AF分别交对角线BD于点M,N,
则有以下结论:①△AOM∽△ADF;②EF=
∵CG=GF,∴∠CFG=∠FCG, ∵∠BGF=∠CFG+∠FCG, 又∵∠BGF=∠AGB+∠AGF, ∴∠CFG+∠FCG=∠AGB+∠AGF, ∵∠AGB=∠AGF,∠CFG=∠FCG, ∴∠AGB=∠FCG, ∴AG∥CF, ∴④正确;
8. 如图,在菱形ABCD中,AB=6,∠DAB=
60°,AE分别交BC,BD于点E,F,CE=2,
连接CF,以下结论:①△ABF≌△CBF;②
点E到AB的距离是 ;③AF=CF;④△ABF
的面积为 .其中一定成立的有( )个
A. 1
B. 2
C. 3 D. 4
10. 如图,在正方形ABCD中,E,F分别为BC,
CD的中点,连接AE,BF交于点G,将△BCF
11. 如图,正方形ABCD边长为6,E是BC的中
点,连接AE,以AE为边在正方形内部作
∠EAF=45°,边AF交CD于F,连接EF.则下
2017中考近三年中考数学综合题集锦
2 2 x12 2 x1 x2 x2 8 , 即 ∴ x12 2 x1 x2 x2 8 , ∴
x1 x2 8
2a 2 4a 2 a1 4, a2 1 ) 8, ( x1 x2 ) 4 x1 x. 8 解得 a1 4, a2 1 . 经检验, 2∴ ( a2 a2 2a 2 4a 3 ) 8 的根.∵ a 4 舍去,∴ a 1 . 都是方程 ( a2 a2 2
2
x1 0 , x2 x1 1 .
(1)试证明 c 0 ; (2)证明 b 2(b 2c) ;
2
(3)对于二次函数 y x bx c ,若自变量取值为 x 0 ,其对应的函数值为 y 0 ,则
2
当 0 x0 x1 时,试比较 y 0 与 x1 的大小. 解:(1)将已知的一元二次方程化为一般形式 即 x (b 1) x c 0
∵ x2 x1 1
2
∴ ( x2 x1 ) 1
2
2
于是 b 2b 4c 1 1,即 b 2b 4c 0 ∴ b 2(b 2c)
2
(3)当 0 x0 x1 时,有 y 0 x1 ∵ y0 x0 bx0 c , x1 bx1 c x1
2
入方程 x 8x k 0 ,解得 x1 2, x2 6 .∴AE=2,AB=6.
2
∴⊙O 的半径为
1 ( AB AE ) 2 2
2 2 2
(2)∵CB⊥AB,AB 经过圆心 O,∴CB 切⊙O 于点 B,∴CD=CB.在 Rt△ABC 中, 设 CD x , 由勾股定理得 AB BC AC , ∴ 6 x ( 2 3
2019届中考数学(通用版)复习专题学案:几何综合题
几何综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型一以三角形为背景的综合题典例1(2019·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【解析】(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°.∴DE=BE=2.∴四边形ADEF的面积为DE·DG=6.举一反三1. (2019·湖北武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.(1)(2)(第1题)【小结】此类题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.类型二以四边形为背景的综合题典例2(2019·安徽)如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于点N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON,求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.(1)(2)(3)【全解】(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°.∵PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°.∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°.故答案为60°.②如图(1),作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,(1)(2)如图(2),连接OE.(2)∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC, ∴AM=BP=EN.又∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS).(3)如图(3),连接OE.(3)由(2)得,△OMA≌△ONE,∴∠MOA=∠EON.∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形.∴∠AFE=∠AOE=120°.∴∠MON=120°.∴∠GON=60°.∵∠GON=60°-∠EON,∠DON=60°-∠EON,∴∠GOE=∠DON.∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA).又∠GON=60°,∴△ONG是等边三角形.∴ON=NG.∵OM=ON,∠MOG=60°,∴△MOG是等边三角形.∴MG=GO=MO.∴MO=ON=NG=MG.∴四边形MONG是菱形.【技法梳理】(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)连接OE,由△OMA≌△ONE证明;(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.举一反三2. (2019·山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图(1),当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由.(2)如图(2),当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图(3),当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由.(4)如图(4),当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.(1)(2)(3)(4)(第2题)【小结】主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.类型三以圆为背景的综合题典例3(2019·江苏苏州)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm,矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm,若☉O与矩形ABCD沿l1同时向右移动,☉O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s),(1)如图,连接OA,AC,则∠OAC的度数为°;(2)如图,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【全解】(1)∵l1⊥l2,☉O与l1,l2都相切,∴∠OAD=45°.∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm.∴∠DAC=60°.∴∠OAC的度数为∠OAD+∠DAC=105°.(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为点E, 连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1,如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置,设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2.由(2)得,∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三, 由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,【提醒】本题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【技法梳理】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1-OO1-2=t-2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与☉O第一次相切时,设移动时间为t1,②当直线AC与☉O第二次相切时,设移动时间为t2,分别求出即可.举一反三3. (2019·浙江宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数表达式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.方案一方案二方案三方案四方案备用图方案备用图(第3题)【小结】本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.类型一2. (2019·浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是.(第2题)类型二3. (2019·广东珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;.(第3题)4. (2019·浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.(第4题)类型三5. (2019·湖南怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作☉O,DF与☉O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).(第5题)6. (2019·黑龙江大庆)如图(1),已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图(2),当S取最大值时,等腰梯形ABCD的四个顶点都在☉O上,点E和点F分别是AB 和CD的中点,求☉O的半径R的值.(1)(2)(第6题)参考答案【真题精讲】(2)如图(1),过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,(第1题(1))∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.∴△ACQ∽△CMP.(3)如图(2),仍有PM⊥BC于点M,PQ的中点设为点D,再作PE⊥AC于点E,DF⊥AC于点F,(第1题(2))∵∠ACB=90°,∴DF为梯形PECQ的中位线.∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立.∴D在过R的中位线上.∴PQ的中点在△ABC的一条中位线上.2. (1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF.由于∠CDF+∠ADF=90°.∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF,如图(1),延长FD交AE于点G,(第2题(1))则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图(2):(第2题(2)) 由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC===,∴CP=OC-OP=-1.3. (1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图(1),方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为☉O与AB,BF的切点.方案二方案三(第3题)方案二:设半径为r.在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB-AO1-CO2=3-2r,∴(2r)2=22+(3-2r)2,比较知,方案三半径较大.(3)①∵EC=x,∴新拼图形水平方向跨度为3-x,竖直方向跨度为2+x.类似题(1),所截出圆的直径最大为3-x或2+x较小的.∴方案四时可取的圆桌面积最大.【课后精练】1.①②③④解析:①∵AB=AC,∴∠B=∠C.∵∠ADE=∠B,∴∠ADE=∠C.∴△ADE∽△ACD.故①结论正确.故③正确.④易证得△CDE∽△BAD,由②可知BC=16, 设BD=y,CE=x,整理,得y2-16y+64=64-10x,即(y-8)2=64-10x,∴0<y<8,0<x<6.4.故④正确.2.①③⑤解析:①连接CD,如图(1)所示.(第2题(1))∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图(2)所示.(第2题(2))∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.③当AD=2时,连接OC,如图(3)所示.(第2题(3))∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB,AF,如图(4)所示.(第2题(4))∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴DB=4.∴AD=AB-DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图(5)中阴影部分.(第2题(5))∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.3. (1)∵四边形ABCD是正方形,∴AD∥BF.∵AE=CF,∴四边形ACFE是平行四边形.∴EF∥AC.(2)连接BG,(第3题)∵EF∥AC,∴∠F=∠ACB=45°.∵∠GCF=90°,∴∠CGF=∠F=45°.∴CG=CF.∵AE=CF,∴AE=CG.在△BAE与△BCG中,∴△BAE≌△BCG(SAS).∴BE=BG.∵BE=EG,∴△BEG是等边三角形.∴∠BEF=60°.(3)∵△BAE≌△BCG,∴∠ABE=∠CBG.∵∠BAC=∠F=45°,∴△AHB∽△FGB.(2)如图(1),连接CD交OP于点G,(第4题(1))在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图(2),当点M在CE边上时,(第4题(2))∵MF∥OC,∴△EMF∽△ECO.∴t=1.第二种情况:如图(3),当点N在DE边(第4题(3))∵NF∥PD,∴△EFN∽△EPD.(Ⅱ)当点C在BO的延长线上时,第一种情况:如图(4),当点M在DE边上时,(第4题(4))∵MF∥PD,∴EMF∽△EDP.第二种情况:如图(5),当点N在CE边上时,(第4题(5))∵NF∥OC,∴△EFN∽△EOC.5. (1)∵四边形ABCD是矩形, ∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°-∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)∵DF与☉O相切于点G, ∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴∴图中阴影部分的面积约为6.2.6. (1)作AH⊥CD于点H,BG⊥CD于点G,如图(1),(第6题(1))则四边形AHGB为矩形,∴HG=AB=3x.∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG.在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°.∴AD=2t,AH=t.∴BC=2t,CG=t.∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8-x.∴AD=2(8-x)=16-2x,CD=8-x+3x+8-x=16+x.(3)连接OA,OD,如图(2),(第6题(2))当x=2时,AB=6,CD=16+2=18,等腰梯形的高为(8-2)=6, 则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴.∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6.∴等腰梯形ABCD的外接圆的圆心O在EF上.设OE=a,则OF=6-a.在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2.在Rt△ODF中,∵OF2+DF2=OD2,∴(6-a)2+92=R2.∴a2+32=(6-a)2+92,解得a=5.∴R2=(5)2+32=84.∴R=2.。
中考数学几何综合题 练习(附答案)
几何专题综合训练1如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点.(1)求证:△BCF ≌△DCE .(2)若BC=5,CF=3,∠BFC=900,求DG :GC 的值.2正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.NDA CBM第2题图3在图3-1至图3-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图3-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图3-1中的CE绕点C顺时针旋转一个锐角,得到图3-2,求证:△FMH是等腰直角三角形;(3)将图3-2中的CE缩短到图3-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图3-1AHC(M) D E BF G(N)G图3-2AHCDEBF NMAHCDE图3-3BF GMN4如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;(4分) (2)连接FC ,观察并猜测∠FCN 的度数,并说明理由;(4分)(3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB =a ,BC =b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请用含a 、b 的代数式表示tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明N M B E A C D F G图(1)图(2) M B E A C D F G N5如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.(1)写出y与x的函数关系,并确定自变量x的范围.(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由..答案1. 分析与解答 (1)∵四边形 ABCD 是正方形,∴∠BCF+∠FCD=900,BC=CD .∵△ECF 是等腰直角三角形,CF=CE .∴∠ECD+∠FCD=900.∴∠BCF=∠ECD .∴△BCF ≌△DCE(2)在△BFC 中,BC=5,CF=3,∠BFC=900. ∴4==.∵△BCF ≌△DCE ,∴DE=BF=4,∠BFC=∠DEC=∠FCE=900. ∴DE ∥FC .∴△DGE ∽△CGF .∴DG :GC=DE :CF=4:3.2. .解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN ⊥ ,90AMN ∴∠=°,90CMN AMB ∴∠+∠=°.在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△. ······················································· 2分 (2)Rt Rt ABM MCN △∽△,44AB BM xMC CN x CN∴=∴=-,, 244x x CN -+∴=, ···················································································································· 4分22214114428(2)102422ABCNx x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形, 当2x =时,y 取最大值,最大值为10. ··················································································· 6分 (3)90B AMN ∠=∠= °,∴要使ABM AMN △∽△,必须有AM ABMN BM=, ································································ 7分 由(1)知AM ABMN MC=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =. ···································· 9分3(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .NDA CBM答案第2题图∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.。
广东省深圳市中考数学复习 多结论几何综合题专题-人教版初中九年级全册数学试题
多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、4 4、如图,把一X长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD 2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE 、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S 四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A、1B、2C、3D、47、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC 于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S ▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE ,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、1 11、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF 为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、414、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A、4个B、3个C、2个D、1个15、(2016•某某)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数为()A、2B、3C、4D、516、如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠B QP= ;④S四边形ECFG=2S△BGE.A、4B、3C、2D、1 17、如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD ,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB 于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D 【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b 时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC =a2, S△CDE=b2, S梯形ABDE=(a+b)2,∴S△ACE=S 梯形ABDE-S△ABC-S△CDE=ab ,S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N 为中点,∴△BMD 为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C 【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD的面积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD 时,△ABE与△ACD不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D 【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB =CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B 【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD 中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C 【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠D FC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C 【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C 【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S ▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA ,∴OE=AB ,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE 平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D 【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD中,∴△AED≌△AFD (AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE 成立,据此解答即可.9、【答案】B 【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD 是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A 【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB (半径),OD=OC (半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C 【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO 为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D 【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D 【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA 和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG 是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B 【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OE B得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S:S=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B 【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD 是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE <AB,∴ >2,故②错误.∵∠AOB=90°,∴AG=FG>OG ,△AGD与△OGD 同高,∴S △AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG ,∴BE= EF= × OG=2OG .故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OG F 时等腰直角三角形.∵S△OGF=1,∴ OG2=1,解得OG= ,∴BE=2OG=2 ,GF= = =2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG 是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B 【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ 中,设QB=x ,∴x2=(x ﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D 【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a ﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD 是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D 【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL ),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x ,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F 作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C 【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴ ,DG=CG ,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵ = ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD 中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S △ADF= DF•AG= ×6× =3 ,∵△ADF∽△AED,∴ =()2,∴ = ,∴S△AED=7 ,∴S △DEF=S△AED ﹣S△ADF=4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E= .④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE 的面积,继而求得S△DEF =4 .20、【答案】D 【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴ = ,∴∠CAD=∠ABC,故①正确;∵ ≠ ,∴ ≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴ = ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P 为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵ ≠ ,∴ ≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△A CQ的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.。
初中几何多结论问题
专题—几何多结论问题【考题研究】以函数/几何为背景多结论问题自13年以来深圳广州等地每年必考,出现的位置是选择题或者填空题的压轴题.其难度不言自于,对学生综合分析问题的能力要求比较高.【解题策略】常见类型有:(1)代数中的多结论题;特别是有关二次函数中的多结论选填题是综合性比较强的题目,解决此类题目不仅要掌握二次函数的图象与性质、抛物线位置与字母系数的关系、二次函数与方程、不等式的关系等知识,还要学会代入特殊值的方法并结合二次函数的图象去验证一些不等式的正误;(2)几何中的多结论题;几何中的多结论选填题则结合了三角形、四边形、圆的有关性质和判定,是几何中综合性很强的题目,掌握三角形、四边形、圆的有关性质并能熟练的运用才能解决此类问题.具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.常用方法有以下几种:1.直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.2.特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好.3.筛选法(也叫排除法、淘汰法)运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件和各选项之间的关系,通过分析、推理、计算、判断,对选择项进行筛选,将其中与题设相矛盾的干扰逐一排除从而获得正确结论的方法。
使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.4.逆推代入法将选择项中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的择题项的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度. 5.直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、4 4、如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O .下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S 四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =.在以上4个结论中,正确的有()A、1B、2C、3D、41 / 157、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、111、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B 与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF 为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A、1B、2C、3D、414、如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A、4个B、3个C、2个D、1个15、(2016•攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE 分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数为()A、2B、3C、4D、516、如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四边形ECFG=2S△BGE.A、4B、3C、2D、117、如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>03 / 15你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF =4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB 于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC =a2, S△CDE =b2, S梯形ABDE =(a+b)2,∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,S△ABC+S△CDE =(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD的面5 / 15积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD时,△ABE与△ACD 不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB=CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.7 / 15【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC ,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB ,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD中,∴△AED≌△A FD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO 中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.9、【答案】B【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF 中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB(半径),OD=OC(半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形9 / 15ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB = FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△AC D,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB = FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB ,∴ >2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG ,∴BE= EF= × OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,11 / 15∴ OG2=1,解得OG= ,∴BE=2OG=2 ,GF= ==2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴ ,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,13 / 15∴S△FGC=S△GCE﹣S△FEC = ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF ,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴ ,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵ = ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD 中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S△ADF = DF•AG= ×6× =3 ,∵△ADF∽△AED,∴ =()2,∴ = ,∴S△AED =7 ,∴S△DEF=S△AED﹣S△ADF =4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=.④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE的面积,继而求得S△DEF =4 .20、【答案】D【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴ = ,∴∠CAD=∠ABC,故①正确;∵ ≠ ,∴ ≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴ = ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵ ≠ ,∴ ≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.15 / 15。