建筑与土木工程中的数学原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑与土木工程中的数学

学院:材料学院2013级(研)

专业:建筑与土木工程

姓名:***

学号:***********

建筑与土木工程中的数学

一、数学思维为建筑土木设计拓展了思路,创造了灵感

数学美是一种客观存在,是自然美在数学中的反映。建筑在数学思维的启发下不断发展为世界创造和谐美。拜占庭时期的建筑师们将正方形、圆、立方体和带拱的半球等概念优雅地组合起来,就像他们在康士坦丁堡的索菲娅教堂里所运用的那样;埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算,以提高音响效果,并使观众的视域达到最大;圆、半圆、半球和拱顶的创新用法成了罗马建筑师引进并加以完善的主要数学思想;文艺复兴时期的石建筑物,显示了一种在明暗和虚实等方面都堪称精美和文雅的对称……

随着新建筑材料的发现,适应于这些材料最大潜力发挥的新的数学思想也应运而生。用各种各样可以得到的建筑材料,诸如石头、木材、砖块合成材料等等,建筑师们能够设计出实质为任何形状的建筑物。在近代,我们能亲眼见到双曲抛物体形式的建筑物如旧金山圣玛丽大教堂、抛物线型的机棚、模仿游牧部落帐篷的立体组合结构、支撑东京奥林匹克运动大厅的悬链线缆,以及带有椭圆顶天花板的八角形房屋,中国北京的奥林匹克运动会的主场馆鸟巢与水立方的遥相辉映等等。我们常说“简约而不简单”,建筑就是一种能够最终归结为数学的简约的艺术。

二、建筑与土木工程中包含的数学知识

1、基础知识的特点

土木工程专业以数学、力学为基础知识。力学与数学很相似, 都是工具性很强的课程。以数学为例, 这类课程有如下主要特点:

1)、高度的抽象性

这类知识运用抽象的数学模型、函数关系和概念来分析、考察和表述事物量的关系和量变的规律,并不涉及事物或对象的具体性质和内容。

2)、逻辑严密、结论确定和精确

这类知识的概念、推理或运算法则具有充分的确定性。从确定的概念、定义出发, 按照一定的逻辑法则进行推理, 所得的结论必然具有逻辑上的确定性和必然性。

3)、应用的广泛性

从研究对象看, 数学研究现实世界的空间形式和数量关系。而现实世界中的任何一种物质形态及其运动形式都具有一定的空间形式和数量关系。原则上说, 数学可应用于一切科学。

4)、具有独特的公理化方法

数学中的定理、结论都是从最基本的概念、定义或公理出发, 经过严格的逻辑推理之后得到的。数学应用于自然科学中便成为一种独特的公理化方法。

2、专业知识的特点

土木工程专业知识是应用型技术知识。学习这些知识的目的在于方便、合理、安全地进行工程建设。与基础知识相比, 专业知识有如下特点:

一是专业知识来源于工程经验, 是工程经验的总结。其作用在于指导工程建设, 因此往往缺乏基础知识那种严格的逻辑性、公理化、演绎和结果的确定性及精确性。

二是工程问题的影响因素复杂多变, 而基础理论所描述的事物系统的基本特征或数量的制约、依赖关系简单、明确。

三是专业知识通常为某一确定的工程问题“量身定做”的, 一般不具有广泛的应用性。

四是各门专业知识无不试图应用数学方法将自己从描述性科学向“精确性科学”发展。由于不同专业知识系统的影响因素、复杂程度和应用要求不同,不同专业知识数学化的发展程度往往有很大的差别。将工程问题提炼为数学模型需将纷繁复杂的系统尽可能简化, 抓住主要矛盾, 略去次要因素, 抽象出数学模型。了解数学建模的过程就会知道, 由工程问题提炼出的数学模型理论化程度参差不齐、有程度不同的近似性。工程问题的影响因素有变化性, 简化成数学模型时略去的次要因素在一定条件下也有可能转化为主要因素。因此, 由工程问题提炼出的数学模型总有一定的适用条件和范围。

3、基础知识对学生思维方法的影响

基础知识使学生思维方法带有如下特点:

1)、抽象性思维

分析、研究某一事物系统时注重事物系统基本特征或数量的相互依赖和制约关系, 不注意事物系统的具体性质和内容。对某一模型、函数关系或公式, 注重其中参数之间的依赖或制约和演绎结果, 不重视其赖以存在的工程背景。

2)、思维的理想化、简单化、绝对化

简单地将任何事物系统的特征或数量之间的关系看成像数学那样具有严密的逻辑性、用数学方法演绎会有确定和精确的结果。

三、建筑与土木工程中的几何学

建筑的几何学价值首先表现在简洁美。几何学的理论基础在于格式塔心理学的视觉简化规律,简洁产生了重复性,重复演绎出高层建筑的节奏和韵律美,最终形成建筑和谐统一的审美感受;同时,简洁的形体易于谐调,使不同的形体组合具有统一美感。

1、几何学在建筑与土木工程中的早期运用

几何学的开端可以追溯到古埃及、古印度和古巴比伦。早期的几何学是关于长度、角度、面积和体积的经验原理,用于测绘、建筑、天文和各种工艺制作。通常认为,几何学是“geometry”的音译,其词头“geo”是“土地”的意思,词尾“metry”是“测量学”的意思,合起来即“土地测量学”。可见,建筑学与几何学的关联由来已久。

2、文艺复兴时期的建筑几何学

到了文艺复兴时期,人们普遍确信建筑学是一门科学,建筑的每一部分,无论是内部还是外部,都能够被整合到数学比例中。“比例”成为建筑几何学在文艺复兴时期的代名词,而象心形、圆形、穹顶则是文艺复兴时期建筑的基本形式,只要人们用几何化的形式来诠释宇宙和谐概念的话,就无法避免这些形式。在这一时期,建筑师追求绝对的、永恒的、秩序化的逻辑,形式的完美取代了功能的意义。

3、科学改革之后的建筑几何学

17世纪科学革命所揭示的宇宙是一部数学化的机器。这一时期法国最重要的建筑理论家都是科学家,在笛卡尔理性主义精神的引导下,一切问题讨论的基础都以理性为原则,数学被认为是保证“准确性”和“客观性”的唯一方法。笛卡尔通过解析几何沟通了代数与几何,蒙日则将平面上的投影联系起来,在《画法几何》中第一次系统地阐述了平面图式空间形体方法,将画法几何提高到科学的水平。与传统的模拟视觉感受方式不同,画法几何切断了视觉与知识之间的直接联系,赋予建筑以不受个人主观认识影响的客观真实性,时至今日仍然是建筑学交流最重要的媒介。

四、建筑与土木工程中的黄金分割

1、黄金分割的简介

黄金分割是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618。

0.618被公认为最具有审美意义的比例数字。

2、黄金分割在建筑与土木工程中的运用

世界上最有名的建筑物中几乎都包含“黄金分割比”。例如,法国巴黎圣母院的正面高度和宽度的比例是8:5,它的每一扇窗户长宽比例也是如此。“黄金分割律”在线条、面积、体积上的体现则比较明显,古希腊人运用的也最多。希腊人建筑上所用的柱子,和符合“黄金分割律”的人身一样,有着一种节奏性的和谐,柱头和柱身的比例也是一比七。面积上以长方形为最美,且长方形的边长和高的比例是七比一。在立体建筑物方面,如台阶、窗门,以及整个建筑的高低比例都符合“黄金分割律”,即七比一。

而在现代建筑中,许多著名的大建筑师都在他们的设计中运用“黄金分割比”,如米斯·凡·德洛(Ludwig Mies Van der Rohe,1886-1969)的别墅,勒·柯布西耶(Le Corbusier,1887-1965)朗香教堂(La chapella de Ronchamp)等。举世闻名的法国巴黎埃菲尔铁塔、当今世界最高建筑之一的加拿大多伦多电视塔(553.33米),都是根据黄金分割的原则来建造的。上海的东方明珠广播电视塔,塔身高达468米。为了美化塔身,设计师巧妙地在上面装置了晶莹耀眼的上球体、下球体和太空舱,既可供游人登高俯瞰地面景色,又使笔直的塔身有了曲线变化。更妙的是,上球体所选的位置在塔身总高度5∶8的地方,即从上球体到塔顶的距离,同上球体到地面的距离大约是5∶8这一符合黄金分割之比的安排,使塔体挺拔秀美,具有审美效果。

五、结论与总结

建筑与土木工程,只有数与形结合,才更具有神韵,数学赋予了建筑活力,同时它的美也被建筑表现得淋漓尽致,当你在欣赏一座跨海大桥时,其实是在不知不觉中惊叹大桥的静定多跨结构中包含的数学和自然融合美的成分。千百年来,数学已成为设计和构图的无价工具.它既是建筑设计的智力资源,也是减少试验、消除技术差错的手段。比例、与比例相关的均衡、尺度、布局的序列都是构成建筑美的要素。和谐的比例和尺度是建筑结构呈现自然美的基本条件。比例的均称与平衡,圆形的对称和和谐,曲面的柔软与变幻,总能不断地启发建筑师创造出更具和谐美和雅致美的建筑。

相关文档
最新文档