无线鼠标键盘电路图

合集下载

光电鼠标电路剖析及简单维修

光电鼠标电路剖析及简单维修

光电鼠标电路剖析及简单维修发布者:1770309616发布时间:2012-3-114:18关键词:光电鼠标,电路剖析,维修光电鼠标的电路一般都比较简单,大多由二块集成电路组成。

一块稍大的是COMS感光IC,另一块一般为鼠标专用IC。

感光CMOS芯片通过鼠标移动产生的光线变化而得到位置信号,送到鼠标IC的X、Y输入端。

而鼠标IC再收集左、右,滚轮键及滚轮前滚、后滚等信息随着CL K时钟信号一起送到PS2或USB口中去。

一、USB光电鼠标。

图1为使用GL603-USB鼠标IC芯片及安捷伦的H2000(400CPI、每秒1500次扫描)为光电感应芯片的电路图。

二、PS2接口鼠标图2为使用PAN101-208(第三代光电IC产品,800CPI光学分辨率,2000次扫描/秒)为光电感应芯片,84510系列芯片为鼠标IC的PS2接口光电鼠标电路。

光电鼠标IC一般来说都比较可靠。

坏的多是按键开关或是鼠标线。

鼠标线四根芯中,如果VCC或GND断线时,会出现光电鼠底面感光处无红光发出,鼠标无法使用的故障。

当CL K或DATA断线时,出现鼠标虽然有红光发出,但光标不动及所有按键无反应的故障。

如果出现某个按键失灵时,基本是这个按键开关坏了。

更换线及开关时,可以从旧的机械鼠上拆下来代用。

如果光电鼠标出现某个方向移动时光标变得很慢,很可能是反射的凸镜脏了,清洗即可。

高性能光电鼠标原理及电路图高精度光学引擎新贵自由豹210关键字:光学引擎无线鼠标新贵的自由豹210无线鼠标应用了“九九互联,九九过界”技术,在定位和连接方面都有着出色的表现。

新贵自由豹210无线鼠标线条硬朗,设计十分现代,并有亚黑和酒红两种配色可供选择,满足不同用户的需求。

这款鼠标内置高精度光学引擎,具有良好的兼容能力,可在木桌、玻璃等多种表面上正常工作,最高分辨率达到了1600dpi,并支持800/1200/1600dpi三档调节,适合不同尺寸的显示器。

在安装驱动后,还能对按键功能、移动灵敏度等进行自由设定。

无线鼠标电路图

无线鼠标电路图

MosArt semiconductor corporation
5
ATA1168 RF Optical Mouse SOC
5. Assembly and Outline drawing
Assembly
Recommended PCB Mechanical Drawing (Unit: mm)
Assembly Drawing (Unit: mm)
ATA1168
RF Optical Mouse SOC
(27Mhz)
Specification 2.0
MosArt
SEMICONDUTOR CORP.
2008 All rights reserved
ATA1168 RF Optical Mouse SOC
Content
1. General Description ....................................................... 1 2. Features.......................................................................... 2 3. Block Diagram ............................................................... 3 4. Package type and pin description .................................. 4 5. Assembly and Outline drawing ...................................... 6 6. Function Description ..................................................... 8 7. Electrical Characteristics............................................. 10 8. Reference Application circuit....................................... 11

无线鼠标系统电路设计方案大全(三款电路设计原理详细)

无线鼠标系统电路设计方案大全(三款电路设计原理详细)

无线鼠标系统电路设计方案大全(三款电路设计原理
详细)
 无线鼠标系统电路设计方案(一)
 设计的无线鼠标,以CC2430为控制芯片构成发射电路和接收电路。

发射电路负责采集与发送鼠标按键的移动信息,接收电路负责信息接收、处理并与计算机通信。

 1、发射部分的电路设计
 发射部分的硬件电路由鼠标移动光学传感器ADNS5030、鼠标按键、无线发射模块CC2430(软件设置为发送模式)构成。

 由光学传感器ADNS5030检测鼠标的移动信息,将采集到的信息经过SPI 串行接口传递给CC2430处理并发送出去。

发射部分的电路图见图
2。

ADNS-5030光学传感器,功耗低且尺寸小,能高速检测鼠标运动。

它包含图像采集系统(IAS)、数字信号处理器(DSP)和串行总线端口。

IAS将采集的图像通过数字信号处理,计算鼠标在dx和dy方向的相对位移值,决定移动的方向及距离。

无线遥控鼠标电路设计

无线遥控鼠标电路设计

摘要本论文设计了一套无线遥控鼠标硬件电路,通过设计将光电鼠标的左右移动动作和对左键或右键选中的操作转换成开关信号,用方波电路产生的方波信号代替原鼠标内光敏传感器的脉冲信号,用相应的开关动作可以实现鼠标光标移动和鼠标的单、双击操作。

而用发射和接收电路代替原来的鼠标线,可以实现鼠标的遥控。

本设计是基于PT2262编码电路以及PT2272解码电路实现无线遥控鼠标电路的设计,可实现鼠标的长距离遥控,遥控距离为1~50米,其中的电路设计包括发射模块(含编码电路)、接收模块(含解码电路)、方波发生电路、开关电路和控制门电路等电路的设计及它们之间的连接、匹配。

PT2262编码电路中,振荡器中心的频率的调整,主要靠调整微调电容V2的值来实现,该电容容量可变范围为2~10μPF,振荡器频率可变范围约为260~300MHZ。

此外,本论文详细介绍了系统编码的过程及解码的过程、鼠标按键方案设计、简易光电鼠标原理图,以及本设计具有的优越性能、缺陷及改进的方案。

关键词鼠标,遥控,编码电路,解码电路ABSTRACTThis paper designed a wireless remote control mouse hardware circuits, optical mice will be designed by the action and movement around the left or right-selected into the operation of switching signals, with the square-wave circuit to replace the original square-wave signals Photosensitive mouse, the sensor pulse, the switch with the corresponding action can be achieved mouse cursor movement and the mouse single, double-click operation. And with transmitting and receiving circuit lines instead of the original mouse, the mouse can achieve the remote control.The design is based on the PT2262 coding circuit and decoding circuit PT2272 wireless mouse remote control circuit is designed to achieve the long-distance remote control mouse, remote control distance of 1 to 50 meters, of which the circuit design including the launch module (including coding circuit), receiver Modules (including decoding circuit), square-wave circuit, the circuit switching and control circuits, such as the gate circuit design and the connection between them, match. PT2262 coding circuit, the frequency oscillator Centre adjustments, relying mainly on fine-tuning capacitor V2 adjustment to achieve the value of the variable capacitor capacity of the range of 2 ~ 10 PF, the oscillator frequency variable area of about 260 ~ 300 MHZ.In addition, the paper details of the system of encoding and decoding process of the process, the mouse button design, simple optical mice schematics, as well as the advantages of this design can, defects and improve the programme.Key words mouse,remote control,coding circuit,decoding circuit目录摘要 (I)ABSTRACT (V)一绪论 (6)1.1无线鼠标研究的背景和意义 (6)1.2 无线鼠标研究的现状 (6)1.3系统研究发展的趋势 (7)1.4无线遥控技术的发展及相关理论 (8)1.4.1业余无线电常识 (8)1.4.2电波的传播方式 (9)1.4.3业余无线电波段的传播规律 (10)1.5本系统研究的内容 (13)二系统方案设计 (14)2.1设计的方案及系统框图 (14)2.1.1方案的提出 (14)2.1.2发射模块和接收模块的电路的实现方案 (15)2.2 无线光机鼠标方案 (19)2.3 方案的论证 (20)2.4 方案的选定 (21)2.5 光电鼠标电路 (21)三系统的硬件设计 (24)3.1 系统硬件电路设计方框图 (24)3.2 系统硬件设计的概述 (24)3.2.1 遥控发射电路 (24)3.2.2无线接收和译码电路 (26)3.2.3 编码解码芯片PT2262/PT2272芯片原理简介 (26)3.2.4 PT2262芯片介绍 (27)3.2.5 PT2272芯片介绍 (28)3.2.6 位脉冲宽度 (30)3.2.7 PT2262/2272芯片的地址编码设定和修改 (31)3.3 鼠标按键的方案 (32)3.4方波电路的设计 (33)3.5 控制门电路 (34)3.6 硬件电路图 (35)四系统的组装与调试 (377)4.1所用的仪器、仪表 (37)4.2调试方法和步骤 (37)4.3 误差分析 (37)五改进建议 (39)六结论 (40)七结束语 (4141)参考文献 (42)附录A:PT2262编码电路 (43)附录B:PT2272解码电路 (44)附录C:所用元件列表 (45)致谢 (46)一绪论1.1无线鼠标研究的背景和意义在电子技术日益发展的今天, 由于配件价格的不断下调,人们逐渐从2D中脱离出来,逐渐迈向了3D,而正在一些厂家大打价格战,有些有远见的厂家从价格战中脱离出来,于是科技含量较高的无线技术应运而生。

2.4 GHz无线鼠标键盘接收器的设计

2.4 GHz无线鼠标键盘接收器的设计

针对RF无线鼠标传输速度慢、传输距离有限的缺点,提出了一种2.4.GHz无线鼠标键盘接收器的设计方案。

采用USB多媒体键盘编码器HT82K95E和射频收发器nRF24L01进行设计,以HT82K95E为核心,完成HID设备的枚举过程。

控制器利用普通I/O口模拟SPI 总线,完成了与无线收发模块的数据交换。

采用nRF24L01无线通信协议中的EnhancedShockBurst收发模式,数据低速输入,但高速发射,从而实现了鼠标键盘复合设备与主机间的无线通信功能。

试验结果表明,由于采用了2.4GHz无线技术,该无线鼠标键盘接收器能够有效传输距离可达10 m,大大降低功耗,增强了抗干扰性能。

随着无线通信技术的不断发展,近距离无线通信领域出现了蓝牙、RFID、WIFI等技术。

这些技术不断应用在嵌入式设备及PC外设中。

2.4 GHz无线鼠标键盘使用24~2.483 5GHz 无线频段,该频段在全球大多数国家属于免授权使用,这为无线产品的普及扫清了最大障碍。

用户可迅速地进入与世界同步的无线设计领域,最大限度地缩短设计和生产时间,并且具有完美性能,能够替代蓝牙技术。

1 系统硬件结构2.4GHz无线鼠标键盘接收器主要实现鼠标、键盘等HID类设备在PC机上的枚举识别过程和接收无线鼠标或键盘发送的数据(包括按键值、鼠标的上下左右移动等),并将接收到的数据通过USB接口传送给PC机,实现鼠标键盘的无线控制功能。

接收器主要由USB接口部分、MCU和无线接收部分组成。

系统硬件框图如图l所示。

1. 1 USB接口部分系统采用HOLTEK公司生产的8位USB多媒体键盘编码器HT82K95E作为系统核心。

鼠标、键盘等HID类设备为低速设备,所以接收器要能同时实现鼠标和键盘数据同PC机的双向传输。

MCU首先必须具有低速的USB接口,并且最少支持3个端点(包括端点O)。

综合考虑选用了HT82K95E作为本系统的主控芯片。

本系统的USB接口部分电路图如图2所示,其中电阻R100、R101、R102、R103、R104和电容C102、C114和C115用于EMC。

无线遥控鼠标电路设计

无线遥控鼠标电路设计

无线遥控鼠标电路设计一、引言二、功能需求分析1.远程传输鼠标移动信号:用户通过无线遥控器控制鼠标移动,需要将移动信号传输给电脑。

2.按键控制电脑鼠标左右键:用户通过无线遥控器的按键来控制电脑鼠标的左右键操作。

3.光学传感器:鼠标需要具备光学传感器来感知光滑表面,并将移动信号传输给电脑。

三、硬件设计1.遥控器设计a.无线模块:使用无线收发模块,如蓝牙模块或者无线射频模块,来实现与接收端的无线通信。

b.控制电路:设计遥控器的按键电路,将按键信号通过无线模块发送给接收端。

c.电源管理电路:为遥控器提供适当的电源供电,如使用电池或者充电电池。

2.接收端设计a.无线模块:使用与遥控器相匹配的无线收发模块,以接收遥控器发送的信号。

b.微控制器:使用微控制器来处理接收到的信号,进行相应的鼠标操作。

B接口:通过USB接口将处理后的鼠标信号传输给电脑。

d.光学传感器:设计接收端的光学传感器电路,感知鼠标在表面的移动情况,并将移动信号传输给微控制器。

四、软件设计1.遥控器端软件a.编写遥控器端的按键控制软件,将按键操作转换为相应的无线信号。

2.接收端软件a.编写接收端的无线通信软件,接收遥控器发送的信号,并将数据传输给微控制器。

b.编写鼠标操作软件,根据接收到的信号来模拟鼠标的移动和点击操作。

五、测试与优化在完成硬件和软件设计后,需要对整个系统进行测试和优化。

测试时需要验证遥控器的按键操作是否能够正确发送信号并控制鼠标移动和点击,同时需要测试光学传感器的灵敏度和准确性。

对于存在的问题和不足进行优化和改进,确保最终系统的稳定性和性能。

六、总结通过以上的电路设计和软件编写,我们可以实现一个基于无线通信技术的遥控鼠标系统。

该系统能够提供更加便捷的鼠标操作方式,增强用户体验。

在实际应用中,还可以进一步扩展功能,如增加滚轮操作、手势识别等,满足用户不同的需求。

PS2键盘(鼠标)接线图

PS2键盘(鼠标)接线图

键盘接线黄、红、白、绿对应的针脚黄3 红4 白6 绿2 USB的针脚定义如下图(注:图示仅供参考,可能有错)USB对应的线与针脚间的连接红4 白3 绿2 黑1这样弄清楚了各个针脚的意义,我们就可以进行改造了根据针脚定义我们对应的做出以下表格:首先取下旧鼠标上面的USB连线,直接从与鼠标电路板相连的地方剪断就行了;然后拨开线头,接下来取下键盘上的PS/2连线,并记住不同颜色的线的焊接点,同样可以从焊点处剪断;找来电烙铁,根据上表将USB线头依次焊接到键盘的焊点上,使用电烙铁需要注意,不要损伤电路板和芯片,注意避免和键盘后边的透明塑料线板接触。

如果没有电烙铁,可以拨开线头直接连接,然后用绝缘胶布封好。

这样做也相对简单,但是不美观。

好了,现在试试看,你有USB 键盘了吧?好用吧?别忘了在BIOS里边将USB keyboard support设置为Enable啊。

否则用不了别怪我有了键盘改造的经验,顺便说一下鼠标的改造。

让我们可以彻底抛弃PS/2接口。

找来一个双飞雁2D鼠标,打开鼠标。

同样有4根线颜色分别为蓝、白、绿、橙,用万能表测试了一下,发现针脚定义与键盘完全相同,可以参照键盘。

对应的电线和针脚连接为:蓝3 红6 绿2 橙4当然USB接线和针脚也和刚才的一样了。

修改的时候也和修改键盘一样就行了。

不过需要注意的是鼠标的连线和电路板不是焊点,而是插槽,这样修改起来或许更方便。

具体的接线对应下表:以上就是关于键盘和鼠标PS/2接口改造为USB接口的方法。

通过这些改造我们就可以完全抛弃陈旧的PS/2而换上大红大紫的USB接口了。

最后需要提醒的是,朋友们在修改的时候最好自己用万能表测试一下,因为不同的鼠标和键盘可能用线的颜色不太一样,本文的目的就是教给大家基本方法。

无线鼠标键盘接收器的设计

无线鼠标键盘接收器的设计

2.4GHz无线鼠标键盘接收器的设计最高的质量最低的成本——节省70%PCB返修成本查看最近90天中添加的最新产品最新电子元器件资料免费下载派睿电子TI有奖问答 - 送3D汽车鼠标IR 推出采用焊前金属的汽车级绝缘栅双极晶体管全球电子连接器生产商—samtec 最新断路器保护套摘要:针对RF 无线鼠标传输速度慢、传输距离有限的缺点,提出了一种2.4 GHz 无线鼠标键盘接收器的设计方案。

采用USB 多媒体键盘编码器HT82K95E 和射频收发器nRF24L01 进行设计,以HT82K95E 为核心,完成HID 设备的枚举过程。

控制器利用普通I/O 口模拟SPI 总线,完成了与无线收发模块的数据交换。

采用nRF24L01 无线通信协议中的Enhanced ShockBurst 收发模式,数据低速输入,但高速发射,从而实现了鼠标键盘复合设备与主机间的无线通信功能。

试验结果表明,由于采用了2.4 GHz 无线技术,该无线鼠标键盘接收器能够有效传输距离可达10 m,大大降低功耗,增强了抗干扰性能。

随着无线通信技术的不断发展,近距离无线通信领域出现了蓝牙、RFID、WIFI 等技术。

这些技术不断应用在嵌入式设备及PC 外设中。

2.4 GHz 无线鼠标键盘使用2.4~2.483 5 GHz无线频段,该频段在全球大多数国家属于免授权使用,这为无线产品的普及扫清了最大障碍。

用户可迅速地进入与世界同步的无线设计领域,最大限度地缩短 设计和生产时间,并且具有完美性能,能够替代蓝牙技术。

1 系统硬件结构:2.4 GHz 无线鼠标键盘接收器主要实现鼠标、键盘等HID 类设备在PC 机上的枚举识别过程和接收无线鼠标或键盘发送的数据(包括按键值、鼠标的上下左右移动等),并将接收到的数据通过USB 接口传送给PC 机, 实现鼠标键盘的无线控制功能。

接收器主要由USB 接口部分、MCU 和无线接收部分组成。

系统硬件框图如图1 所示。

光电鼠标原理 电路图

光电鼠标原理 电路图

光电鼠标原理电路图光电鼠标是一种基于光电传感器原理工作的鼠标设备。

它使用红外光或者激光来感知鼠标在平面上的运动。

以下是光电鼠标的工作原理和电路图。

工作原理:1. 光电传感器:光电鼠标使用光电传感器来感知鼠标在平面上的运动。

光电传感器包含一个发光二极管(LED)和一个光电二极管。

LED发出红外光或激光束,射向平面表面。

当光束射到平面上的纹理或边缘时,会因反射或散射而发生改变。

2. 光电二极管:光电二极管在光束射到平面上的特定位置时,可以感知到光的变化。

光电二极管会将感知到的光信号转化为电信号。

3. 运动检测:光电鼠标会通过感知光电传感器的输出信号来检测鼠标在平面上的运动。

当鼠标移动时,感知到的光信号会发生变化,进而能够计算出鼠标的运动方向和速度。

4. 数据传输:光电鼠标将检测到的运动信息通过连接线传输到计算机。

计算机根据传输的信息来控制光标在屏幕上的移动。

电路图:(以下是一种基本的光电鼠标电路图示意图,实际电路可能会有所不同)+5V│┌─┼───┐LED1───┤ ├──────┬─→ GND│ │┌─┼───┐Key1───┤ ├──────┤│ │C1────────┘ └──────┤OPAMP1│ │R1│┼─────── OUT注:图中的元件:- LED1: 发光二极管- Key1: 光电二极管- C1: 用于滤波的电容- OPAMP1: 运算放大器- R1: 电阻- OUT: 输出信号总结:光电鼠标利用光电传感器来感知鼠标在平面上的运动,在电路图中使用了发光二极管、光电二极管以及其他相关元件。

这些元件配合在一起,实现了鼠标运动的检测和数据传输。

无线鼠标原理图

无线鼠标原理图

几种鼠标电路图1、USB接口鼠标电路图2、电脑无线鼠标电路图3、光电鼠标电路图4、鼠标电路图5、有线USB 光学游戏鼠标电路图A5020方案6、有线USB激光鼠标电路图7、3键USB 有线激光游戏鼠标电路图A7550+CY63743方案8、自制无线鼠标电路图光电鼠标电路图1、两款光电鼠标电路光电鼠标电路一般由两片集成电路与外围元件组成。

一片稍大的是COMS 感光集成电路,另一片一般为鼠标专用集成电路。

CMOS 感光芯片通过检测光电部件因鼠标移动产生的光线变化而得到位置信号,送到鼠标专用集成电路的X、Y 输入端。

而鼠标专用集成电路再检测左、右按键,滚轮键及滚轮前后转到等信息随着CLK时钟信号一起传输给计算机的PS2 或USB 端口。

USB 光电鼠标电路图①为使用GL603 —USB 鼠标集成电路芯片和H2000(400CPI、每秒1500 次扫描)光电感应芯片的USB光电鼠标电路图。

PS2 接口鼠标电路图②为使用PAN101 - 208 (800CPI 光学分辨率,2000 次扫描/ 秒) 光电感应芯片和84510 系列鼠标集成电路芯片的PS2 接口光电鼠标电路。

2、光电鼠标原理与电路图传统光学鼠标的工作原理传统光学鼠标工作原理示意图光学跟踪引擎部分横界面示意图光学鼠标主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎(Optical Engine)以及控制芯片组成.光学鼠标通过底部的LED灯,灯光以30度角射向桌面,照射出粗糙的表面所产生的阴影,然后再通过平面的折射透过另外一块透镜反馈到传感器上。

当鼠标移动的时候,成像传感器录得连续的图案,然后通过“数字信号处理器”(DSP)对每张图片的前后对比分析处理,以判断鼠标移动的方向以及位移,从而得出鼠标x, y方向的移动数值。

再通过SPI传给鼠标的微型控制单元(Micro Controller Unit)。

鼠标的处理器对这些数值处理之后,传给电脑主机。

2.4G 无线鼠标原理图

2.4G 无线鼠标原理图

ADNB-7051-EV and ADNB-7052-EV Low Power Laser Mouse Bundles Data SheetDescriptionThe Avago Technologies ADNB-7051-EV and ADNB-7052-EV low power laser mouse bundles are the laser-illuminated system enabled for cordless application. Powered by Avago Technologies LaserStream™ technology, the mouse can operate on many surfaces that proved difficult for traditional LED-based optical navigation. Its low power architecture is capable of sens-ing mouse motion while prolonging battery life, two performance areas essential in demanding cordless applications.ADNB-7051-EV and ADNB-7052-EV Low Power Laser Mouse Bundles include: Bundle PartNumber Part Number DescriptionADNB-7051-EV ADNS-7050Low Power Laser Mouse SensorADNV-6340Single-Mode Vertical-Cavity SurfaceEmitting Laser (VCSEL)ADNS-6120Laser Mouse Round LensADNS-6230-001Laser Mouse VCSEL Assembly Clip Bundle PartNumber Part Number DescriptionADNB-7052-EV ADNS-7050Low Power Laser Mouse SensorADNV-6340Single-Mode Vertical-Cavity SurfaceEmitting Laser (VCSEL)ADNS-6130-001Laser Mouse Trim LensADNS-6230-001Laser Mouse VCSEL Assembly Clip The ADNS-7050 sensor along with the ADNS-6120 or ADNS-6130-001 lens, ADNS-6230-001 clip and ADNV-6340 VCSEL form a complete and compact laser mouse tracking system. There is no moving part, which means high reliability and less maintenance for the end user. In addition, precision opti-cal alignment is not required, facilitating high volume assembly.This document will begin with some general information and usage guide-lines on the bundle set, followed by individual detailed information on ADNS-7050 laser mouse sensor, ADNV-6340 VCSEL, ADNS-6120 or ADNS-6130-001 lens and ADNS-6230-001 clip.Overview of Laser Mouse Sensor AssemblyFigure 1. 2D Assembly drawing of ADNB-7052-EV (top and cross-sectional view). 232D Assembly Drawing of ADNB-7051/52-EV, PCBs and Base PlateFigure 2. Exploded view drawing.Shown with ADNS-6130-001 Laser Mouse Lens, ADNS-6230-001 VCSEL As-sembly Clip and ADNV-6340 VCSEL. The components interlock as they are mounted onto defined features on the base plate.The ADNS-7050 laser mouse sensor is designed for mounting on a through hole PCB, looking down. There is an aperture stop and features on the package that align to the lens.The ADNV-6340 VCSEL is recommended for illumination, provides a laser diode with a single longitudinal and a single transverse mode. It is particu-larly suited as lower power consumption and highly coherent replacement of LEDs. It also provides wider operation range while still remaining within single-mode, reliable operating conditions.The ADNS-6120 or ADNS-6130-001 Laser Mouse Lens is designed for use with ADNS-7050 sensor and the illumination subsystem provided by theassembly clip and the VCSEL. Together with the VCSEL, the lens provides the directed illumination and optical imaging necessary for proper operation of the Laser Mouse Sensor. ADNS-6120 and ADNS-6130-001 are precision molded optical components and should be handled with care to avoid scratching of the optical surfaces. ADNS-6120 also has a large round flange to provide a long creepage path for any ESD events that occur at the open-ing of the base plate.The ADNS-6230-001 VCSEL Assembly Clip is designed to provide mechanical coupling of the ADNV-6340 VCSEL to the ADNS-6120 or ADNS-6130-001lens. This coupling is essential to achieve the proper illumination alignment required for the sensor to operate on a wide variety of surfaces.Avago Technologies provides an IGES file drawing describing the base platemolding features for lens and PCB alignment.ADNV-6340 (VCSEL)CUSTOMER SUPPLIED VCSEL PCB* or ADNS-6120 FOR ROUND LENSCUSTOMER SUPPLIED BASE PLATE WITH RECOMMENDED FEATURES PER IGES DRAWING4Figure 3. Recommended PCB mechanical cutouts and spacing.9.Tune the laser output power from the VCSEL to meet the Eye Safe Class I Standard as detailed in the LASER Power Adjustment Procedure.10.Install the mouse top case. There must be a feature in the top case (or other area) to press down onto the sensor to ensure the sensor and lens are interlocked to the correct vertical height.Assembly Recommendation1.Insert the sensor and all other electrical components into the applica-tion PCB (main PCB board and VCSEL PCB board).2.Wave-solder the entire assembly in a no-wash solder process utilizing a solder fixture. The solder fixture is needed to protect the sensor during the solder process. It also sets the correct sensor-to -PCB distance, as the lead shoulders do not normally rest on the PCB surface. The fixture should be designed to expose the sensor leads to solder while shielding the optical aperture from direct solder contact.3.Place the lens onto the base plate.4.Remove the protective kapton tape from the optical aperture of the sensor. Care must be taken to keep contaminants from entering the aperture.5.Insert the PCB assembly over the lens onto the base plate. The sensor aperture ring should self-align to the lens. The optical position refer-ence for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.6.Remove the protective cap from the VCSEL.7.Insert the VCSEL assembly into the lens.8.Slide the clip in place until it latches. This locks the VCSEL and lens together.Design Considerations for Improving ESD PerformanceFor improved electrostatic discharge performance, typical creepage and clearance distance are shown in the table below. Assumption: base plate construction as per the Avago Technologies supplied IGES file and ADNS-6130-001 trim lens (or ADNS-6120 round lens).Typical Distance Millimeters Creepage 12.0Clearance2.1Note that the lens material is polycarbonate and therefore, cyanoacrylate based adhesives or other adhesives that may damage the lens should NOT be used.DIMENSIONS IN MILLIMETERS (INCHES).5Figure 4. Sectional view of PCB assembly highlighting optical mouse components.Figure 5a. Schematic diagram for 3-button scroll wheel corded mouse.EEPROM for Laser Eye Safety for Sun+ ALPC6NotesThe supply and ground paths should be laid out using a star methodology.Level shifting is required to interface a 5V micro-controller to the ADNS-7050. If a 3V micro-controller is used, the 74VHC125 component shown may be omitted.LASER Drive ModeThe laser is driven in pulsed mode during normal operation. A calibration mode is provided which drives the laser in continuous (CW) operation. Eye SafetyThe ADNS-7050 and the associated components in the schematic of Figure 5 are intended to comply with Class 1 Eye Safety Requirements of IEC 60825-1. Avago Technologies suggests that manufacturers perform testing to verify eye safety on each mouse. It is also recommended to review possible single fault mechanisms beyond those described below in the section “Single Fault Detection”. Under normal conditions, the ADNS-7050 generates the drive current for the laser diode (ADNV-6340).In order to stay below the Class 1 power requirements, LASER_CTRL0 (register 0x1a), LASER_CTRL1 (register 0x1f), LSRPWR_CFG0 (register 0x1c) and LSRPWR_CFG1 (register 0x1d) must be programmed to appropriate values. The system comprised of the ADNS-7050 and ADNV-6340, is designed to maintain the output beam power within Class 1 requirements over components manufacturing tolerances and the recommended temperature range when adjusted per the procedure below and imple-mented as shown in the recommended application circuit of Figure 5. For more information, please refer to Eye Safety Application Note AN 5230. LASER Power Adjustment Procedure1.The ambient temperature should be 25°C ±5°C.2.Set VDD to its permanent value.3.Set the Range bit (bit 7 of register 0x1a) to 0.4.Set the Range_C complement bit (bit 7 of register 0x1f) to 1.5.Set the Match_bit (bit 5 of register 0x1a) to the correct value for the bindesignation of the laser being used.6.Set the Match_C_bit (bit 5 of register 0x1f) to the complement of theMatch_bit.7.Enable the Calibration mode by writing to bits [3,2,1] of register 0x1A sothe laser will be driven with 100% duty cycle.8.Write the Calibration mode complement bits to register 0x1f.9.Set the laser current to the minimum value by writing 0x00 to register0x1c, and the complementary value 0xFF to register 0x1d.10.Program registers 0x1c and 0x1d with increasing values to achieve anoutput power as close to 506uW as possible without exceeding it. If this power is obtained, the calibration is complete, skip to step 14.11.If it was not possible to achieve the power target, set the laser current tothe minimum value by writing 0x00 to register 0x1c, and the comple-mentary value 0xff to register 0x1d.12.Set the Range and Range_C bits in registers 0x1a and 0x1f, respectively,to choose to the higher laser current range.13.Program registers 0x1c and 0x1d with increasing values to achieve anoutput power as close to 506uW as possible without exceeding it. 14.Save the value of registers 0x1a, 0x1c, 0x1d, and 0x1f in non-volatilememory in the mouse. These registers must be restored to these values every time the ADNS-7050 is reset.15.Reset the mouse, reload the register values from non-volatile memory,enable Calibration mode, and measure the laser power to verify that the calibration is correct.Good engineering practices such as regular power meter calibration, random quality assurance retest of calibrated mice, etc. should be used to guarantee performance, reliability and safety for the product design.LASER Output PowerThe laser beam output power as measured at the navigation surface plane is specified below. The following conditions apply:1.The system is adjusted according to the above procedure.2.The system is operated within the recommended operating temperaturerange.3.The VDD value is no greater than 300mV above its value at the time ofadjustment.4.No allowance for optical power meter accuracy is assumed.Parameter Symbol Minimum Maximum Units NotesLaser out-LOP716µW Class 1 limit with put power recommendedVCSEL and lens. Disabling the LASERLASER_NEN is connected to the gate of a P-channel MOSFET transistor which when ON connects VDD to the LASER. In normal operation, LASER_NEN is low. In the case of a fault condition (ground or VDD3 at XY_LASER), LASER_NEN goes high to turn the transistor off and disconnect VDD3 from the LASER.Single Fault DetectionADNS-7050 is able to detect a short circuit or fault condition at the XY_LASER pin, which could lead to excessive laser power output. A path to ground on this pin will trigger the fault detection circuit, which will turn off the laser drive current source and set the LASER_NEN output high. When used in combination with external components as shown in the block diagram below, the system will prevent excess laser power for a resistive path to ground at XY_LASER by shutting off the laser. In addition to the ground path fault detection described above, the fault detection circuit is continuously checked for proper operation by internally generating a path to ground with the laser turned off via LASER_NEN. If the XY_LASER pin is shorted to VDD3, this test will fail and will be reported a a fault.7Figure 6. Single fault detection and eye safety feature block diagram.V8ADNS-7050 Laser Mouse Sensor Data SheetTheory of OperationThe ADNS-7050 is based on LaserStream™ Technology, which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement. The ADNS-7050 contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP), and a four wire serial port. The IAS acquires microscopic surface images via the lens and illumination system. These images are pro-cessed by the DSP to determine the direction and distance of motion. The DSP calculates the ∆x and ∆y relative displacement values. An external microcontroller reads the ∆x and ∆y information from the sensor serial port. The microcontroller then translates the data into PS2, USB, or RF signals before sending them to the host PC or game console.Features•Low power architecture•New LaserStream™ technology•Self-adjusting power-saving modes for longest battery life •Speed motion detection up to 20 ips and 8G•Enhanced SmartSpeed self-adjusting frame rate for optimum performance •Motion detect pin output•Internal oscillator – no clock input needed•Selectable 400 and 800 cpi resolution•Wide operating voltage: 2.7 V-3.6 V nominal•Four wire serial port•Minimal number of passive components•Laser fault detect circuitry on-chip for Eye Safety Compliance Applications•Laser mice•Optical trackballs•Integrated input devices•Battery-powered input devicesPinout of ADNS-7050 Optical Mouse SensorPin Name Description1NCS Chip Select (Active Low Input)2MISO Serial Data Output (Master In/Slave Out) 3SCLK Serial Clock Input4MOSI Serial Data Input (Master Out/Slave In) 5MOTION Motion Detect (Active Low Output)6LASER_NEN LASER Enable (Active LOW)7GND Ground8XY_LASER LASER Control9AGND Analog Ground10AVDD Analog Supply Voltage 11AGND Analog Ground12GND Ground13GND Ground14NC No Connection15GND Ground16VDD Supply Voltage17NC No Connection18NC No ConnectionA7050XYYWWZ1 NCS2 MISO3 SCLK4 MOSI5 MOTION6 LASER_NEN7 GND8 XY_LASER9 AGND18 NC17 NC16 VDD15 GND14 NC13 GND12 GND11 AGND10 AVDDFigure 7. Package outline drawing (top view).910Figure 8. Package outline drawing.CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.NOTES:1. DIMENSIONS IN MILLIMETERS (INCHES).2. DIMENSIONAL TOLERANCE: ± 0.1 mm.3. COPLANARITY OF LEADS: 0.1 mm.4. LEAD PITCH TOLERANCE: ± 0.15 mm.5. CUMULATIVE PITCH TOLERANCE: ± 0.15 mm.6. ANGULAR TOLERANCE: ± 3.0 DEGREES.7. MAXIMUM FLASH: + 0.2 mm.8.CHAMFER (25° X 2) ON THE TAPER SIDE OF THE LEAD.9. * THESE DIMENSIONS ARE FOR REFERENCES ONLY AND SHOULD NOT BE USED TO MECHANICALLY REFERENCE THE SENSOR.PIN 1Figure 9. Block diagram of ADNS-7050 optical mouse sensor.Regulatory Requirements•Passes FCC B and worldwide analogous emission limits when assembled into a mouse with shielded cable and following Avago Technologies recommendations.•Passes IEC-1000-4-3 radiated susceptibility level when assembled into a mouse with shielded cable and following Avago Technologies recom-mendations.•Passes EN61000-4-4/IEC801-4 EFT tests when assembled into a mouse with shielded cable and following Avago Technologies recommendations.•UL flammability level UL94 V-0.•Provides sufficient ESD creepage/clearance distance to avoid discharge up to 15 kV when assembled into a mouse according to usage instruc-tions above.P O W E R A N D C O N T R O LS E R I A L P O R T A N D R E G I S T E R SIMAGE ARRAYDSP OSCILLATORLASER DRIVE GNDAGNDXY_LASER AVDDVDDNCS ADNS-7050SCLK MOSI MISO MOTIONLASER_NENAbsolute Maximum RatingsParameter Symbol Minimum Maximum Units NotesStorage Temperature T S-4085ºCLead Solder Temp260ºC For 10 seconds, 1.6 mm below seating plane. Supply Voltage V DD-0.5 3.7VESD2kV All pins, human body model MIL 883 Method 3015 Input Voltage V IN-0.5V DD + 0.5V All PinsLatchup Current Iout20mA All PinsRecommended Operating ConditionsParameter Symbol Minimum Typical Maximum Units NotesOperating Temperature T A040ºCPower Supply Voltage V DD 2.7 2.8 3.6V Including noisePower Supply Rise Time V RT1µs0 to 2.8 V100msSupply Noise (Sinusoidal)V NA100mVp-p10 kHz - 50 MHzSerial Port Clock Frequency f SCLK1MHz Active drive, 50% duty cycle Distance from Lens Reference Z 2.18 2.40 2.62mm Results in ±0.2 mm minimum DOF. Plane to Surface See Figure 10.Speed S20in/secFigure 10. Distance from lens reference plane to surface, Z.DDParameter Symbol Minimum Typical Maximum Units NotesMotion Delay t MOT-RST23ms From SW_RESET register write to valid motion, assuming after Reset motion is presentShutdown t STDWN50ms From Shutdown mode active to low currentWake from Shutdown t WAKEUP23ms From Shutdown mode inactive to valid motion.Notes: A RESET must be asserted after a shutdown.Refer to section “Notes on Shutdown and Forced Rest”,also note t MOT-RSTForced Rest Enable t REST-EN1s From RESTEN bits set to low currentWake from Forced Rest t REST-DIS1s From RESTEN bits cleared to valid motionMISO Rise Time t r-MISO150300ns C L = 100 pFMISO Fall Time t f-MISO150300ns C L = 100 pFMISO Delay after SCLK t DLY-MISO120ns From SCLK falling edge to MISO data valid, no loadconditionsMISO Hold Time t hold-MISO0.51/f SCLKµs Data held until next falling SCLK edgeMOSI Hold Time t hold-MOSI200ns Amount of time data is valid after SCLK rising edge MOSI Setup Time t setup-MOSI120ns From data valid to SCLK rising edgeSPI Time between t SWW30µs From rising SCLK for last bit of the first data byte, to rising Write Commands SCLK for last bit of the second data byte.SPI Time between Write t SWR20µs From rising SCLK for last bit of the first data byte, to rising and Read Commands SCLK for last bit of the second address byte.SPI Time between Read t SRW500ns From rising SCLK for last bit of the first data byte, to falling and Subsequent t SRR SCLK for the first bit of the address byte of the next Commands command.SPI Read Address-Data t SRAD4µs From rising SCLK for last bit of the address byte, to falling Delay SCLK for first bit of data being read.NCS Inactive after t BEXIT500ns Minimum NCS inactive time after motion burst before next Motion Burst SPI usageNCS to SCLK Active t NCS-SCLK120ns From NCS falling edge to first SCLK rising edgeSCLK to NCS Inactive t SCLK-NCS120ns From last SCLK rising edge to NCS rising edge, for valid MISO (for Read Operation)data transferSCLK to NCS Inactive t SCLK-NCS20µs From last SCLK rising edge to NCS rising edge, for valid MOSI (for Write Operation)data transferNCS to MISO High-Z t NCS-MISO500ns From NCS rising edge to MISO high-Z stateMOTION Rise Time t r-MOTION150300ns C L = 100 pFMOTION Fall Time t f-MOTION150300ns C L = 100 pFTransient Supply Current I DDT45mA Max supply current during a V DD ramp from 0 to 2.8 VDDParameter Symbol Minimum Typical Maximum Units NotesDC Supply Current in I DD_RUN410mA Average current, including LASER current. No load on Various Modes I DD_REST10.5 1.8MISO, MOTION.I DD_REST20.150.4I DD_REST30.050.15Peak Supply Current40mAShutdown Supply Current I DDSTDWN112µA NCS, SCLK = VDDMOSI = GNDMISO = Hi-ZInput Low Voltage V IL0.5V SCLK, MOSI, NCSInput High Voltage V IH V DD – 0.5V SCLK, MOSI, NCSInput Hysteresis V I_HYS100mV SCLK, MOSI, NCSInput Leakage Current I leak±1±10µA Vin = VDD -0.6 V, SCLK, MOSI, NCSXY_LASER Current I LAS0.8mA V xy_laser≥ 0.3 VLP_CFG0 = 0xFFLP_CFG1 = 0x00LASER Current I LAS_FAULT300uA XY_LASER R leakage < 75 kOhms to GND(Fault Mode)Output Low Voltage,V OL0.7V Iout = 1 mA, MISO, MOTIONMISO, LASER_NEN Iout = 1 mA, LASER_NENOutput High Voltage,V OH V DD – 0.7V Iout = -1 mA, MISO, MOTIONMISO, LASER_NEN Iout = -0.5 mA, LASER_NENInput Capacitance C in10pF MOSI, NCS, SCLKTypical Performance CharacteristicsFigure 11. Mean resolution vs. Z at 800 cpi.Figure 12. Average error vs. distance at 800 cpi .Figure 13. Wavelength responsivity.R E L A T I V E R E S P O N S I V I T YWAVELENGTH (nm)Power Management ModesThe ADNS-7050 has three power-saving modes. Each mode has a different motion detection period, affecting response time to mouse motion (Response Time). The sensor automatically changes to the appropriate mode, depending on the time since the last reported motion (Downshift Time). The parameters of each mode are shown in the following table.Mode Response Time (nominal)Downshift Time (nominal)Rest 116.5 ms 237 ms Rest 282 ms 8.4 s Rest 3410 ms504 sMotion Pin TimingThe motion pin is a level-sensitive output that signals the micro-controller when motion has occurred. The motion pin is lowered whenever the motion bit is set; in other words, whenever there is data in the Delta_X or Delta_Y registers. C learing t he m otion b it (by r eading D elta_X a nd D elta_Y, o r w riting to the Motion register) will put the motion pin high.LASER ModeFor power savings, the VCSEL will not be continuously on. ADNS-7050 will flash the VCSEL only when needed.Synchronous Serial PortThe synchronous serial port is used to set and read parameters in the ADNS-7050, and to read out the motion information.The port is a four-wire port. The host micro-controller always initiates com-munication; the ADNS-7050 never initiates data transfers. SCLK, MOSI, and NCS may be driven directly by a micro-controller. The port pins may be shared with other SPI slave devices. When the NCS pin is high, the inputs are ignored and the output is tri-stated.The lines that comprise the SPI port:SCLK:Clock input. It is always generated by the master (the micro-controller).MOSI:Input data. (Master Out/Slave In)MISO:Output data. (Master In/Slave Out)NCS:Chip select input (active low). NCS needs to be low to activate the serial port; otherwise, MISO will be high Z, and MOSI & SCLK will be ignored. NCS can also be used to reset the serial port in case of an error.Chip Select OperationThe serial port is activated after NCS goes low. If NCS is raised during a transaction, the entire transaction is aborted and the serial port will be reset.This is true for all transactions. After a transaction is aborted, the normal address-to-data or transaction-to-transaction delay is still required before beginning the next transaction. To improve communication reliability, all serial transactions should be framed by NCS. In other words, the port should not remain enabled during periods of non-use because ESD and EFT/B events could be interpreted as serial communication and put the chip into an un-known state. In addition, NCS must be raised after each burst-mode transac-tion is complete to terminate burst-mode. The port is not available for further use until burst-mode is terminated.Write OperationWrite operation, defined as data going from the micro-controller to the ADNS-7050, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a “1” as its MSB to indicate data direction. The second byte contains the data. The ADNS-7050 reads MOSI on rising edges of SCLK.Figure14. Write operation.Figure 15. MOSI setup and hold time.11234567891011121314151621D 0D5D 6D 7A 0A 1A 2A 3A 4A 5A 61A 6D 4D 3D 2D 1SCLK NCSMOSIMOSI DRIVEN BY MICRO-CONTROLLERMISOsetup, MOSISCLKMOSIRead OperationA read operation, defined as data going from the ADNS-7050 to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over MOSI, and has a “0” as its MSB to indicate data direction. The second byte contains the data and is driven by the ADNS-7050 over MISO. The sensor outputs MISO bits on falling edges of SCLK and samples MOSI bits on every rising edge of SCLK.Figure 16. Read operation.Figure 17. MISO delay and hold time.Note: The 0.5/fSCLK minimums high state of SCLK is also the minimum MISO data hold time of the ADNS-7050. Since the falling edge of SCLK is actually the start of the next read or write command, the ADNS-7050 will hold the state of data on MISO until the falling edge of SCLK.Required Timing Between Read and Write CommandsThere are minimum timing requirements between read and write com-mands on the serial port.Figure 18. Timing between two write commands.SCLK NCS SCLK MOSIMISOt WRITE OPERATION WRITE OPERATIONIf the rising edge of the SCLK for the last data bit of the second write command occurs before the required delay (t SWW ), then the first write com-mand may not complete correctly.Figure 19. Timing between write and read commands.If the rising edge of SCLK for the last address bit of the read command occurs before the required delay (t SWR ), the write command may not com-plete correctly.Figure 20. Timing between read and either write or subsequent read commands.During a read operation SCLK should be delayed at least t SRAD after the last address data bit to ensure that the ADNS-7050 has time to prepare the requested data. The falling edge of SCLK for the first address bit of either the read or write command must be at least t SRR or t SRW after the last SCLK rising edge of the last data bit of the previous read operation.Burst Mode OperationBurst mode is a special serial port operation mode that may be used to reduce the serial transaction time for a motion read. The speed improve-ment is achieved by continuous data clocking to or from multiple registers without the need to specify the register address, and by not requiring the normal delay period between data bytes.Burst mode is activated by reading the Motion_Burst register. The ADNS-7050 will respond with the contents of the Motion, Delta_X, Delta_Y, SQUAL,Shutter_Upper, Shutter_Lower, and Maximum_Pixel registers in that or-der. The burst transaction can be terminated anywhere in the sequence after the Delta_X value by bringing the NCS pin high. After sending the register address, the micro-controller must wait t SRAD and then begin read-ing data. All data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the micro-controller must raise the NCS line for at least t BEXIT to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.Figure 21. Motion burst timing.WRITE OPERATION NEXT READ OPERATION• • •READ OPERATIONNEXT READor WRITE OPERATION• • •MOTION_BURST REGISTER ADDRESSREAD FIRST BYTEFIRST READ OPERATION READ SECOND BYTE READ THIRD BYTESCLK• • •Notes on Power-upThe ADNS-7050 does not perform an internal power up self-reset; thePOWER_UP_RESET register must be written every time power is applied.The appropriate sequence is as follows:1.Apply power2.Drive NCS high, then low to reset the SPI port3.Write 0x5a to register 0x3a4.Wait for t WAKEUP5.Write 0xFE to register 0x286.Read from registers 0x02, 0x03, and 0x04 (or read these same 3 bytesfrom burst motion register 0x42) one time regardless of the motion pinstate.During power-up there will be a period of time after the power supply ishigh but before any clocks are available. The table below shows the state ofthe various pins during power-up and reset.State of Signal Pins after VDD is ValidPin On Power-Up NCS High before Reset NCS Low before Reset After Reset NCS Functional Hi Low Functional MISO Undefined Undefined Functional Depends on NCS SCLK Ignored Ignored Functional Depends on NCS MOSI Ignored Ignored Functional Depends on NCS XY_LASER Undefined Undefined Undefined Functional MOTION Undefined Undefined Undefined Functional LASER_NEN Undefined Undefined Undefined FunctionalNotes on Shutdown and Forced RestThe ADNS-7050 can be set in Rest mode through the Configuration_Bits register (0x11). This is to allow for further power savings in applications where the sensor does not need to operate all the time.The ADNS-7050 can be set in Shutdown mode by writing 0xe7 to register 0x3b. The SPI port should not be accessed when Shutdown mode is as-serted, except the power-up command (writing 0x5a to register 0x3a). (Other ICs on the same SPI bus can be accessed, as long as the sensor’s NCS pin is not asserted.) The table below shows the state of various pins during shut-down. To deassert Shutdown mode:1. Write 0x5a to register 0x3a.2. Wait for t WAKEUP.3. Write 0xFE to register 0x28.4. Any register settings must then be reloaded.Pin Status when Shutdown ModeNCS Functional*1MISO Undefined*2SCLK Ignore if NCS = 1*3MOSI Ignore if NCS = 1*4XYLASER High(Off)LASER_NEN High(Off)MOTION Undefined *2*1 NCS pin must be held to 1 (high) if SPI bus is shared with other devices. It is recommended to hold to 1 (high) during Power Down unless powering up the Sensor. It must be held to 0 (low) if the sensor is to be re-powered up from shutdown (writing 0x5a to register 0x3a).*2 Depend on last state.*3 SCLK is ignore if NCS is 1 (high). It is functional if NCS is 0 (low).*4 MOSI is ignore if NCS is 1 (high). If NCS is 0 (low), any command present on the MOSI pin will be ignored except power-up command (writing 0x5a to register 0x3a).Note: There are long wakeup times from shutdown and forced Rest. These features should not be used for power management during normal mouse motion.。

无线键盘、鼠标工作原理

无线键盘、鼠标工作原理

2.4 GHz无线鼠标键盘接收器的设计∙随着无线通信技术的不断发展,近距离无线通信领域出现了蓝牙、RFID、WIFI等技术。

这些技术不断应用在嵌入式设备及PC外设中。

2.4 GHz无线鼠标键盘使用24~2.483 5 GHz无线频段,该频段在全球大多数国家属于免授权使用,这为无线产品的普及扫清了最大障碍。

用户可迅速地进入与世界同步的无线设计领域,最大限度地缩短设计和生产时间,并且具有完美性能,能够替代蓝牙技术。

1 系统硬件结构∙2.4 GHz无线鼠标键盘接收器主要实现鼠标、键盘等HID类设备在PC机上的枚举识别过程和接收无线鼠标或键盘发送的数据(包括按键值、鼠标的上下左右移动等),并将接收到的数据通过USB接口传送给PC机,实现鼠标键盘的无线控制功能。

接收器主要由USB接口部分、MCU和无线接收部分组成。

系统硬件框图如图l所示。

1. 1 USB接口部分系统采用H OLT EK公司生产的8位USB多媒体键盘编码器HT82K95E作为系统核心。

鼠标、键盘等HID类设备为低速设备,所以接收器要能同时实现鼠标和键盘数据同PC机的双向传输。

MCU首先必须具有低速的USB接口,并且最少支持3个端点(包括端点O)。

综合考虑选用了 HT82K95E作为本系统的主控芯片。

本系统的USB接口部分电路图如图2所示,其中电阻R100、R101、R102、R103、R104和电容C102、C114和C115用于EMC。

由于鼠标和键盘设备属于从设备,所以应在USB-信号线上加1.5 kΩ的上拉电阻。

1.2 MCU部分MCU的复位电路采用由R108和C105组成的RC积分电路实现上电复位功能。

上电瞬间,由于电容电压不能突变,所以复位引脚为低电平,然后电容开始缓慢充电,复位引脚电位开始升高,最后变为高电平,完成芯片的上电复位。

HT82K95E微控制器内部还包含一个低电压复位电路(LVR),用于监视设备的供电电压。

如果设备的供电电压下降到0.9 V~VLVR的范围内并且超过1 ms的时间,那么LVR就会自动复位设备。

无线鼠标原理图

无线鼠标原理图

几种鼠标电路图1、USB接口鼠标电路图2、电脑无线鼠标电路图3、光电鼠标电路图4、鼠标电路图5、有线USB 光学游戏鼠标电路图A5020方案6、有线USB激光鼠标电路图7、3键USB 有线激光游戏鼠标电路图A7550+CY63743方案8、自制无线鼠标电路图光电鼠标电路图1、两款光电鼠标电路光电鼠标电路一般由两片集成电路与外围元件组成。

一片稍大的是COMS 感光集成电路,另一片一般为鼠标专用集成电路。

CMOS 感光芯片通过检测光电部件因鼠标移动产生的光线变化而得到位置信号,送到鼠标专用集成电路的X、Y 输入端。

而鼠标专用集成电路再检测左、右按键,滚轮键及滚轮前后转到等信息随着CLK时钟信号一起传输给计算机的PS2 或USB 端口。

USB 光电鼠标电路图①为使用GL603 - USB 鼠标集成电路芯片和H2000(400CPI、每秒1500 次扫描) 光电感应芯片的USB 光电鼠标电路图。

PS2 接口鼠标电路图②为使用PAN101 - 208 (800CPI 光学分辨率,2000 次扫描/ 秒) 光电感应芯片和84510 系列鼠标集成电路芯片的PS2 接口光电鼠标电路。

2、光电鼠标原理与电路图传统光学鼠标的工作原理传统光学鼠标工作原理示意图光学跟踪引擎部分横界面示意图光学鼠标主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎(Optical Engine)以及控制芯片组成。

光学鼠标通过底部的LED灯,灯光以30度角射向桌面,照射出粗糙的表面所产生的阴影,然后再通过平面的折射透过另外一块透镜反馈到传感器上。

当鼠标移动的时候,成像传感器录得连续的图案,然后通过“数字信号处理器”(DSP)对每张图片的前后对比分析处理,以判断鼠标移动的方向以及位移,从而得出鼠标x, y方向的移动数值。

再通过SPI 传给鼠标的微型控制单元(Micro Controller Unit)。

鼠标的处理器对这些数值处理之后,传给电脑主机。

4.1.1 键盘、鼠标接口电路原理分析_按图索骥学修电脑主板_[共2页]

4.1.1 键盘、鼠标接口电路原理分析_按图索骥学修电脑主板_[共2页]

◆ 63 ◆ 第4章 接口电路原理分析与检修
4.1 键盘、鼠标接口电路
电脑主板的键盘和鼠标接口,目前绝大多数采用PS/2接口,键盘和鼠标的PS/2接口不但物理外观完全相同(主板中通常用两种不同的颜色来将其区别开,键盘接口为蓝色,鼠标接口为绿色),而且工作原理也是基本相同的,但不能混用,下面具体讲解。

4.1.1 键盘、鼠标接口电路原理分析
键盘、鼠标的PS/2接口是一种6针的圆形接口,其中4针用于传输数据合理供电,2针为空脚。

键盘、鼠标接口的各个针脚排列顺序和作用如图4-1和表4-1所示。

主板中键盘、鼠标的接口主要采用PS/2通信协议(串行通信协议)进行通信的,两端通过时钟脚(CLOCK )同步,并通过数据脚(DATA )交换数据。

主板中键盘、鼠标的接口电路主要有PS/2接口、电容、电感、排阻、跳线等组成。

如图4-1所示为电路原理图。

图4-1 键盘、鼠标接口原理图及引脚识别图
表4-1
键盘、鼠标接口各针脚功能 针脚
第①针脚 第②针脚 第③针脚 第④针脚 第⑤针脚 第⑥针脚 鼠标
数据脚 空脚 接地脚 5V 供电脚 时钟脚 空脚 键盘 数据脚 空脚 接地脚 5V 供电脚 时钟脚 空脚。

单片机无线键盘的电路设计

单片机无线键盘的电路设计

27M 无线键盘的发射与接收的应用电路。

该设计采用EM78P451作为键盘矩阵和通信的信号编码, 以2FSK 调制的方式将27M 调制载波信号发射出去; 接收部分采用MC3361作为接收模块,解调信号经MA6135解码后能与计算机直接通信。

系统程序设计涉及键盘、发送、接收几部分。

主要特点表现在以下几个方面: 采用频移键控(2FSK) , 抗干扰性强; 采用数字电路; 由电池供电, 效率高; 高数据传输; 频率不受限制。

一.27M 无线键盘工作原理与电路设计( 1) 27M 无线键盘的工作原理首先通过键盘按键编址电路产生按键信息, 同时启动编码电路产生带有ID 编码信息和按键信息的二进制编码信号, 再通过27M 无线电发射电路将该信号发射出去。

接收系统电路将接收到的二进制编码信号通过解码电路进行ID 编码确认, 确认后发射, 与接收系统就是一一对应通信了, 从而避免了其它键盘的干扰。

解码电路对所接收的信号进行解码, 解码后的二进制信号输入计算机进行通信。

→→→( 2) 27M 无线键盘发射系统电路的设计发射系统电路主要由信号编码电路和发射电路组成。

发射系统的电路原理见图1。

发射系统的功能是将键盘的按键信息编址, 然后将编址信息编码得到一个编码脉冲信号经2FSK 调制并发射出去。

图1 27M 无线键盘发射电路图①信号编码: 信号编码电路采用编码芯片EM78P451, 该芯片是一个44引脚、采用高速CMOS工艺制造的低功耗8位单片机, 含有4K ×13位片内ROM, 5个双向I/O端口, 8位实时定时/计数器, 11个特殊功能寄存器, 140 ×8位通用寄存器。

该芯片能将按键信息进行编址, 并将编址信息进行编码(包含了ID 码, 对频码和按键码) , 然后将编码后得到的数字脉冲信号输送到发射电路。

② 27M高频发射电路: 27M高频发射电路采用2FSK调制方式, 当有数字脉冲信号输送到发射电路中, 即EM78P451 的P7. 1 脚输出信号。

介绍无线鼠标电路图

介绍无线鼠标电路图

介绍无线鼠标电路图&lt;&lt;版权声明:本文由容源电子网(www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

》该装置编译码电路MC145026/MC145027和射频发射/接收模块TDA1808/TDA1809互相配合,可以在10~120m范围内灵活操纵鼠标,而且制作时无须对原有鼠标的外观及内部电路做改动,使用起来符合操作习惯,方便可靠,非常适合爱好者自制。

&lt;&lt;版权声明:本文由容源电子网(www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

》下,鼠标与电脑的连接线内部有4根电路连接线(该电路装置最多可以接受4条数据线输入,读者可根据自己鼠标的选择)分别是电源正极、电源地、数据线1、数据线2。

&lt;&lt;版权声明:本文由容源电子网(www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

》我们将鼠标连线割断,分别找出这4根线,MC145026编码电路的数据传送端D6和D7接受鼠标数据线1和数据线2传来的数据,并在芯片内部编码后经射频发射模块TDA1808发射出去。

&lt;&lt;版权声明:本文由容源电子网(www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

》射频发射模块TDA1809工作后,将接收到的编码信息输入MC145027译码电路,经其转换后在该芯片数据输出端D6和D7复原原鼠标数据线1和数据线2的信号,并通过原鼠标与电脑的连接线送入计算机。

可以看出,上述电路无须改动鼠标及计算机,无须安装额外的鼠标驱动软件,原有鼠标的功能亦能正常使用。

&lt;&lt;版权声明:本文由容源电子网(www_dziuu_com)整理提供,部分内容来源于网络,如有侵犯到你的权利请与我们联系更正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线鼠标/键盘DIY电路图
此无线鼠标/键盘在制作时无须对原有鼠标的外观及内部电路做任何改动,使用起来符合操作习惯,方便可靠,非常适合爱好者自制。

其工作原理是利用编译码电路MC145026/MC145027和射频发射/接收模块TDA1808/TDA1809互相配合,可以在10~120m范围内灵活操纵鼠标。

一般情况下,鼠标与电脑的连接线内部有4根电路连接线,它们是电源正极、电源地、数据线1、数据线2。

先去电脑城去购买一只PS2插座和1个PS2插头(用废弃的鼠标或键盘插头也可以),然后将接口中的这4根线,与图中所画出的连接起来,利用MC145026编码电路的数据传送端D6和D7接受鼠标数据线1和数据线2传来的数据,并在芯片内部编码后经射
频发射模块TDA1808发射出去。

射频发射模块TDA1809工作后,将接收到的编码信息输入 MC145027译码电路,经其转换后在该芯片数据输出端D6和D7复原原鼠标数据线1和数据线2的信号,将D6、D7、电源正、电源地对应接上PS2插头,然后连接电脑,即可搞定。

可以看出,上述电路无须改动鼠标/键盘及计算机,无须安装额外的驱动软件,原有鼠标/键盘的所有功能亦能正常使用。

此电路(见图 1、图 2)只要所选元件正常,无须调试即可工作。

此电路目的就是起一个无线载体传输的作用,编译码电路是为了防止外界干。

相关文档
最新文档