3-5正交试验设计及结果分析
3.5具有交互作用的正交试验设计
6
7 8
2
2 2
1
2 2
2
1 1
2
1 2
1
2 1
2
2 1
1
1 2
124
79 61
K1 K2 k1 k2 极差R 主次顺序 优水平 优组合
279 386 69.75 96.50 26.75
339 326 84.75 81.50 3.25
233 432 58.25 108.00 49.75
二元表 353
例1 有4块试验田,土质情况基本一样,种植同样的作物。
现将氮肥、磷肥采用不同的方式分别加在4块地里,收获后算 出平均亩产,如下表所记。
氮肥、磷肥交互作用的效果=氮肥、磷肥的总效果- (只加氮肥的效果+只加磷肥的效果)
相关概念
因素间的联合搭配对试验指标产生的影响作用称为交 互作用,通常将A因素与B因素的交互作用记作: A×B,称为1级交互,通常的称在一次试验中同时与 A因素发生交互作用的因素的个数为交互级数。
具有交互作用的正交试验验设计
1 、交互作用
通过前面的学习我们已经知道采用正交试验设计方法可以 明显减少多因素试验的试验次数,同时也能在一定程度上得到
能够满足工程应用的试验结果。
但是,在前面的讨论中我们都是基于一个假设展开的,即在所 有被考虑的对试验结果有影响的各因素之间对试验结果的影响是相 互独立的,但是工程实践告诉我们这种情况很少出现,因此正交试 验设计过程中考虑各因素的相互作用将显得十分必要,首先让我们 来看个有关交互作用的例子:
① 选用正交表,作表头设计 由于本试验有3个两水 平的因素和两个交互作用需要考察,各项自由度之和 为: 3×(2-1)+2×(2-1)×(2-1)=5 , 因 此可 选 用 L8(27) 来安排试验方案。 正交表L8(27)中有基本列和交互列之分,基本列就 是各因素所占的列,交互列则为两因素交互作用所占 的列。可利用L8(27)二列间交互作用列表来安排各因素 和交互作用。
第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
试验优化设计
主讲:刘建永
材 料 工 程 系 Department of Materials Engineering
第三章 正交试验设计
正交试验数据 方差分析与贡献率分析
正交试验结果的方差分析
1.离差平方和的计算
总离差平方和:
项目 因素A 因素B 因素C 误差 总和
平方和SS SSA SSB SSC SSE SST
自由度DF a- 1 a- 1 a- 1 a- 1 n-1
纯平方和 SSA- fA×MSE SSB- fB×MSE SSC- fC×MSE fT×MSE SST
贡献率 ρA ρB ρC ρE
其中: 纯平方和= SS因- f因×MSE 贡献率ρ因等于纯平方和与SST的比值 贡献率最大的几个因素是重要因素,与误差贡献率差不多的认为不 重要。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
y 31 54 38 53 49 42 57 62 64 T=450 yi2 =23484 ST=984
∑
方差分析表 把上述计算表中得到的平方和与自由度移至一张方差分 析表中继续进行计算。 例 3.3 的方差分析表 来源 平方和 S 自由度 f 均方和 MS 因子 A 因子 B 因子 C 误差 e T 618 114 234 18 984 2 2 2 2 8 309 57 117 9 F比 34.33 6.33 13.00
正交试验设计和分析
所以一般地,有 N dfi dfi j 1
i
i, j
如三原因四水平 43 旳正交试验至少应安排
34 1 1 10 次以上旳试验。
如三原因四水平 43 并涉及第一、二个原因旳交互 作用旳正交试验至少应安排旳试验次数为
34 1 4 14 1 1 19
又如安排 43 23 旳混合水平旳正交试验至少应安排
试验次数N旳拟定原则
N 由 dfT N 1 拟定。
其中: dfT dfi dfi j dfE ,
i
i, j
dfi dfi j 是可求出旳,而 dfE 是未知旳,
i
i, j
所以一般地,由 N dfi dfi j 1 拟定 N,
i
i, j
故 N 不是唯一旳。
当不考虑交互作用时:可取 N S q 1 1
所以要选择 LN 2S 型旳表,且不考虑交互作用时, S 4 ,而 L8 27 是满足条件旳最小旳正交表, 所以选用正交表 L8 27
若考虑A与B、A与C旳交互作用,则
S 6 ,L8 27 依然是满足条件旳最小旳正交表, 所以还可选用正交表 L8 27
注:也可由试验次数应满足旳条件来选择正交表。
正交表旳记号及含义
正交表是一种尤其旳表格,是正交设计旳基本工具。
我们只简介它旳记号、特点和使用措施。
记号及含义
L 正交表旳代号
S 正交表旳列数
(最多能安排旳原因个数,
涉及交互作用、误差等)
LN qS
q 各原因旳水平数
N 正交表旳行数
(各原因旳水平数相等)
(需要做旳试验次数)
如 L8 27 表达
7 2 2 1 1 2 2 1 275
8 2 2 1 2 1 1 2 375
正交试验设计
4
上一张 下一张 主 页 退 出
表5-1
5
上一张 下一张 主 页 退 出
注:任意两列旳交互作用列为另外两 列
附:正交表L9(34)
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1ห้องสมุดไป่ตู้
3
2
8
3
2
1
3
9
3
3
2
1
6
3
上一张 下一张 主 页 退 出
1.2 正交设计旳基本特点
❖ 用部分试验来替代全方面试验,经过对部分 试验成果旳分析,了解全方面试验旳情况。
❖ 当交互作用存在时,有可能出现交互作用旳 混杂。即忽视了部分交互作用来降低试验次 数。
如对于上述3原因3水平试验,若不考虑交
互作用,可利用正交表L9(34)安排,试验方
代表正交表;
❖ L右下角旳数字“8”表达有8行,用这张正交 表安排试验包括8个处理(水平组合);
❖ 括号内旳底数“2” 表达原因旳水平数,括 号内2旳指数“7”表达有7列,
❖ 用这张正交表最多能够安排7个2水平原因。 8
上一张 下一张 主 页 退 出
表5-2
9
上一张 下一张 主 页 退 出
L8(27)二列间交互作用列表
第五章 正交试验设计
正交试验法及实例分析
1、试验方案设计
试验目的与要求 试验指标 选因素
确定水平
选择合适正交表
表头设计
列试验方案
试验结果分析
2、试验结果分析
(1)直接比较。从直观上比较所有实验工况下的实验结果,选取最好的 一项实验工况作为优化选择。 (2)优水平组合,提出预测优处理。即把所有的正交实验结果进行简单 计算,得出各个因子对参考量的影响程度,从而进行优化组合,为后 续的研究工作提供参考。 (3)极差分析。求出各个水平的平均值,选取最大值减去最小值,得出 极差。极差大说明此因子在不同水平的作用下产生的差异大,属于重 要因子,极差小说明此因子在不同水平的作用下对实验结果影响不大, 属于次要因子。再根据优水平进行组,提出预测的优化处理。
2、试验指标
采用正交试验设计的方法,研究在各个因素作用下中庭 空间排风量的大小,从而得到对混合通风影响最大的因素。
3、选因素
热源非对称性集中分布时,由于此时中庭内部的风速及温度 分布存在偏移,且相对于热源对称分布时中庭内部的气流分布不 是很理想,因此,在各个热源分布形式的情况下,分别考虑在中 庭顶部出口和热源层加上风机。热源层加上风机的窗口为住户和 中庭空间连接的内窗口,安装于此的风机定义为内窗风机。此外, 在热源层上加入风机时还必须考虑所放风机的位置。 因此共有4个因素,热源分布形式、顶部风机风量、内窗风 机风量以及内窗风机位置。
②任两列之间各种不同水平的所有可能组合都出现,且对出现 的次数相等
2、基本特点
① 整齐可比性:是指每一个因素的各水平间具有可比性。
② 均匀分散:是指用正交表挑选出来的各因素水平组合在全 部水平组合中的分布是均匀的 。
③ 简单易行
3、正交表的分类
三、正交试验设计的基本程序
正交试验设计例题解析
正交试验设计例题解析正交试验设计是一种有效的实验设计,可以用来衡量因素在相互作用下对实验结果的影响。
它可以组织许多实验变量,以提供准确、精确和可重复的结果。
正交试验设计可以用来分析不同变量的相互作用,以推断出实验结果的影响因素。
正交试验设计的基本思想是对每种因素的每种可能状态进行实验,以找出实验结果的有利和不利因素。
这种实验使用正交表(也称为正交试验表)来组织不同的实验因素和变量。
正交表是一种特殊的矩阵,其中每一行代表一种不同的实验因素,每一列代表一种不同的变量值。
从这种角度来看,正交试验设计是一种多元实验设计,可以用来测试多种可能的变量和变量值之间的交互作用。
一般来说,正交试验设计另外分为因变量实验设计和独立变量实验设计两种类型。
在因变量实验设计中,目的是评估单个因变量在不同水平的自变量变化情况下的变化情况。
在独立变量实验设计中,则旨在评估多个自变量之间的交互作用对因变量的影响。
正交试验设计的另一个重要特点是它可以帮助实验者控制和减少变量之间的相互作用。
这一优点使得实验者可以更精确地针对某些变量进行分析,而不必担心其他变量的可能影响。
此外,正交试验设计还可以帮助实验者识别哪些变量对实验结果的影响最大,以及哪些变量对实验结果的影响最小。
这可以帮助实验者更好地了解实验结果,从而更有效地进行实验。
此外,正交试验设计还可以帮助实验者减少实验成本。
实验者可以识别实验中最重要的变量,将其他变量放在一边,从而减少实验费用的支出。
正交试验设计的主要缺点是它有时会产生较小的变量之间的非线性相关性。
此外,它还需要实验者拥有很强的统计学知识,以便正确解释实验结果。
最后,正交试验设计需要大量的时间和财力,以完成变量之间的精确实验。
总而言之,正交试验设计是一种有效的实验设计,其优点使得它能够识别出自变量和因变量之间的交互作用,并减少实验成本。
然而,它也有其缺点,因此实验者需要了解它的优势和劣势,以确定它是否适合指定的实验。
正交试验设计及其结果的直观分析(单指标 双指标)
综合平衡法
综合平衡法是,先对每个指标分别进行单指标的直观分析,得到 每个指标的影响因素主次顺序和最佳水平组合,然后根据理论知 识和实际经验,对各指标的分析结果进行综合比较和分析,得出 较优方案。
例 在用乙醇溶液提取葛根中有效成分的试验中,为了提高葛根 中有效成分的提取率,对提取工艺进行优化试验,需要考察三向 指标:提取物得率(为提取物质量与葛根质量之比)、提取物中 葛根总黄酮含量、总黄酮中葛根素含量,三个指标都是越大越好, 根据前期探索性试验,决定选取3个相对重要的因素:乙醇浓度、 液固比(乙醇溶液与葛根质量之比)和提取剂回流次数进行正交 试验,它们各有3个水平,具体数据如表6-9所示,不考虑因素间 的交互作用,是进行分析,找出较好的提取工艺条件。
综合评分法
综合评分法是根据各个指标的重要程度,对得出的实验结果进行分 析,给每一个实验评出一个分数,作为这个实验的总指标,然后根 据这个总指标(分数),利用单指标试验结果的直观分析法作进一 步的分析,确定较好的实验方案,显然,这个方法的关键是如何评 分,下面介绍几种评分方法:
1.对每好实验结果的各个指标统一权衡,综合评价,直接给出每一号 试验结果的综合分数(依靠试验者或专家的理论知识和实践经验)
度
隶属度
1
1 1 1 1 2.96 65.70
1.00
1
1.00
2
1 2 2 2 2.18 40.36
0
0
0
3
1 3 3 3 2.45 54.31
0.35
0.55 0.47
4
2 1 2 3 2.70 41,09
0.67
0.03 0.29
5
2 2 3 1 2.49 56.29
正交实验设计及结果分析报告
正交实验设计及结果分析报告(二)引言概述:正交实验设计是一种重要的统计方法,用于系统地研究多个因素对实验结果的影响。
本报告旨在继续探讨正交实验设计,并通过对结果的分析来进一步验证实验设计的有效性和可行性。
本报告将分为五个大点进行阐述,包括实验设计的优势、正交设计的基本原理、正交设计中的参数设定、模型建立与分析、以及结果的解释与验证。
正文内容:1.实验设计的优势1.1提高实验效率:正交实验设计可以将多个因素同时考虑,并将因素的组合设计为试验方案,从而减少试验次数,提高实验效率。
1.2确定关键因素:正交实验设计通过系统地考虑多个因素及其组合方式,可以帮助研究人员确定对实验结果最为关键的因素。
1.3提高可靠性:正交实验设计具有统计学严谨的基础,能够提高实验结果的可靠性和可重复性。
2.正交设计的基本原理2.1正交表的构造:正交表是正交实验设计的基础工具,通过构造正交表,可以实现各个因素水平的均衡分布,从而减少误差的影响。
2.2剔除交互作用:正交设计通过设置正交表中的交互作用项为0,将多个因素的相互作用剔除,使得试验结果更加直接和可解释。
2.3方差分析原理:正交设计采用方差分析方法对结果进行分析,通过检验因素的显著性和误差的可接受程度,得出结果是否具有统计学意义。
3.正交设计中的参数设定3.1因素的选择:根据实验目的和已知因素,选择对结果影响较大的因素作为试验因素,并确定其水平个数。
3.2正交表的选择:根据因素的个数和水平个数,选择合适的正交表进行试验设计,确保每个水平均匀分布。
3.3重复次数的确定:根据实验结果的稳定性和误差容忍度,确定试验的重复次数,以提高结果的可靠性。
4.模型建立与分析4.1建立线性模型:根据试验数据,建立线性回归模型,将各个因素的水平值与结果进行关联,用于后续的参数估计和显著性检验。
4.2参数估计与显著性检验:通过最小二乘法估计模型参数,并进行显著性检验,判断因素是否对结果产生显著影响。
正交实验结果如何进行数据分析
正交实验如何数据分析我们把在试验中考察的有关影响试验指标的条件称为因素(也叫因子),把在试验中准备考察的各种因索的不同状态(或配方)称为水平。
在研究比较复杂的工程问题中,往往都包含着多个因素,而且每个因素要取多个水平。
对于包含五个因素、五个水平的工程项目,理论计算必须进行55=3125次试验。
显然,所需要的试验次数太多了,工作量太大。
实践告诉我们,合理安排试验和科学分析试验,是试验工作成败的关键。
试验方案设计的好,试验次数就少,周期也短,这样不仅节省了大量人力、物力、财力和时间,而且可以得到理想的结果。
相反,如果试验设计安排的不好,即使进行了很多次试验,浪费了大量材料、人力和时间,也不一定能够得到预期的结果。
正交试验法,就是在多因素优化试验中,利用数理统计学与正交性原理,从大量的试验点中挑选有代表性和典型性的试验点,应用“正交表”科学合理地安排试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法。
正交试验法也叫正交试验设计法,它是用“正交表”来安排和分析多因素问题试验的一种数理统计方法。
这种方法的优点是试验次数少,效果好,方法筒单,使用方便,效率高。
由于试验次数大大减少,使得试验数据处理非常重要。
我们可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。
用正交表安排的试验具有均衡分散和整齐可比的特点。
均衡分散,是指用正交表挑选出来的各因素和各水平组合在全部水平组合中的分布是均衡的。
整齐可比是说每一因素的各水平间具有可比性。
最简单的正交表L4(23)如表-1所示。
记号L4(23)的含意如下:“L”代表正交表;L下角的数字“4”表示有4横行(简称为行),即要做四次试验;括号内的指数“3”表示有3纵列(简称为列),即最多允许安排的因素个数是3个;括号内的数“2”表示表的主要部分只有2种数字,即因素有两种水平l与2,称之为l 水平与2水平。
表L4(23)之所以称为正交表是因为它有两个特点:1、每一列中,每一因素的每个水平,在试验总次数中出现的次数相等。
正交试验设计
全面试验,其试验方案如表6-4所示。
图6-2
表6-4
正交设计就是从选优区全面试验点(水平组合)中挑选 出有代表性的部分试验点(水平组合)来进行试验。图6-2
L 中标有试验号的九个“(·)”,就是利用正交表9 (34 ) 从27个试
验点中挑选出来的9个试验点。即:
(1)A1B1C1 (5)A2B2C3 (9)A3B3C2 上述选择 ,保证了A因素的每个水平与B因素、C因素 (2)A2B1C2 (6)A3B2C1 (3)A3B1C3 (7)A1B3C3 (4)A1B2C2 (8)A2B3C1
极差分析法-R法
Rj 因素主次
2. 判断
优水平 优组合
6.3.2 方差分析法
极差分析法简单明了,通俗易懂,计算工作量少便于推 广普及。但这种方法不能将试验中由于试验条件改变引起 的数据波动同试验误差引起的数据波动区分开来,也就是 说,不能区分因素各水平间对应的试验结果的差异究竟是 由于因素水平不同引起的,还是由于试验误差引起的,无 法估计试验误差的大小。
6.2.2 正交试验方案:
试验目的与要求
试验指标 正交试验设计
的基本程序包括 试验方案设计及 试验结果分析两 部分。 表头设计 列试验方案 试验结果分析 因素、水平确定 选择合适正交表 选因素、定水平
(1) 明确试验目的,确定试验指标
试验设计前必须明确试验目的,即本次试验要解决 什么问题。试验目的确定后,对试验结果如何衡量,即 需要确定出试验指标。
L8 (27 )中(1, 1), (1, 2), (2, 1), (2, 2)各出现两次; 例如 L9 (34 )中 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3),
正交试验设计及其统计析
05
结论
正交试验设计的优势与局限性
高效
通过合理地减少试验次数,提高试验 效率。
全面
能够全面地探索各个因素之间的交互 作用。
正交试验设计的优势与局限性
• 可靠:基于统计理论,结果具有较高的可 靠性。
正交试验设计的优势与局限性
适用范围有限
适用于因素数量和水平数目不太多的情况。
对数据要求较高
需要大量的数据进行分析,且数据质量要高。
促进科学决策
通过正交试验设计和统计分析,能够 为企业或研究机构提供科学依据,促 进科学决策和优化方案制定。
02
正交试验设计的基本原理
正交表的选择与设计
正交表的选择
交互作用和误差控制
根据试验因素的数量、水平数和试验 次数,选择合适的正交表。
考虑因素间的交互作用和误差控制, 确保试验结果的准确性和可靠性。
试验因素和水平的确定
明确试验目的,确定试验因素和水平, 确保试验结果具有实际意义。
Hale Waihona Puke 试验方案的制定试验操作步骤
根据正交表,确定每个试验方案的试验操作步骤。
数据记录
预先设计好数据记录表格,以便准确记录每个试 验方案下的数据。
试验重复
考虑试验的重复性,以提高结果的稳定性和可靠 性。
试验结果的收集
数据整理
方差分析
方差分析的原理
方差分析用于检验各因素对试验指标 的影响是否显著,通过比较各因素的 方差贡献,判断其对试验指标的影响 程度。
方差分析的应用
在正交试验设计中,方差分析可用于 确定显著影响因素,并进一步优化试 验条件。
回归分析
回归分析的原理
回归分析通过建立数学模型描述各因素与试验指标之间的数量关系,并预测不同因素水平下试验指标 的变化趋势。
3-5正交试验设计及结果分析
1.3.2.1 正交性
(1)任一列中,各水平都出现,且出现的次数相等 例:L8(27)中不同数字只有1和2,它们各出现4次; L9(34)中不同数字有1、2和3,它们各出现3次 。
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素 各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。 根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。 所谓均衡分散,是指用正交表挑选出来的各因素水平组 合在全部水平组合中的分布是均匀的 。 。
正 交 试 验 设 计
对于单因素或两因素试验,因其因素少 ,试验的设 计 、实施与分析都比较简单 。但在实际工作中 ,常常
需要同时考察3个或3个以上的试验因素 ,若进行全面试
验 ,则试验的规模将很大 ,往往因试验条件的限制而 难于实施 。正交试验设计就是安排多因素试验 、寻求 最优水平组合的一种高效率试验设计方法。
绘制 因素 指标 趋势 图
计算各列偏差平方 和、自由度
列方差分析表, 进行F 检验
优水平
因素主次顺序 结
3
分析检验结果, 写出结论
优组合
论
上一张 下一张 主 页
一般为了便于试验结果的分析,定性指标可按相关的标 准打分或模糊数学处理进行数量化,将定性指标定量化。
正交试验设计和分析
试验统计方法
正交试验设计和分析
第三节:正交试验设计的基本程序 第三节 正交试验设计的基本程序 二.选择合适的正交表 :
确定试验因素水平后,接下来的工作就是选择一张合适的正交表。所选的 正交表必须符合以下条件: 1.对等水平试验。所选正交表的水平数与试验因素的水平数应一致,正交 表的列数应大于或等于因素及所要考察的交互作用所占的列数。 2.不等水平试验,所选混合型正交表的某一水平的列数应大于或等于相应 水平的因素的个数。 选择正交表是一个很重要的问题,太小,试验因素和交互作用就可能放不 下;太大,试验次数过多。原则是:在能安排试验因素和要考察的交互作 用的前提下,尽可能选用小号正交表,以减少试验次数,最好有一列空列, 以考察试验误差,否则必须进行重复试验以考察试验误差。 此例是三因素三水平试验,因此选 L9 (3 4 ) 比较合适。
试 验 指 标
50
60
70 温度
试验统计方法
正交试验设计和分析
第三节:正交试验设计的基本程序 第三节 正交试验设计的基本程序 一.选择因素和水平,建立因素水平表: 因素和水平确定以后,就可建立因素水平表。我们来看一个 例子:为了提高某化工产品的转化率,选择了三个有关的因素, 反应温度(A).反应时间(B),用碱量(C),选取的水平如下:
试验统计方法
正交试验设计和分析
第三节:正交试验设计的基本程序 第三节 正交试验设计的基本程序 一.选择因素和水平,建立因素水平表: 优先选取对试验指标影响大的因素、尚未完全掌握其规律的 因素和未曾考察研究过的因素。水平数以2~4为宜,主要因素 或希望更多了解的试验因素可以多取水平。一般以3为好,水 平的制定应包括因素水平的最佳区域。
由上可以分析得到: (1)温度越高,转化率越高,以90度最好,还应进一步探索温度更高的情况。 (2)反应时间以120分转化率最高。 (3)用碱量以6%转化率最高。 综合起来A3B2C2可能是较好的工艺条件。但是,我们发现这个工艺条件 并不在九次试验之中,它是否好.还要通过实践来检验。我们将选出来的 工艺条件A3B2C2和九次试验中最好的9号试验(A3B3C2)进行比较,试验结果 A3B2C2的转化率是74%,A3B3C2的转化率是65%,说明选出的工艺是比较好 的。可以证明,当因素之间没有交互作用时,用这种方法选出来的工艺条 件就是全面试验中最好的。我们可以按正交表设计的试验方案进行部分试 验,而没有必要进行全面试验。
正交试验设计(内容详尽)
用于探索最佳的药物剂量、治疗方案等。
农业科学研究
用于研究不同肥料、农药、种植方式等对农 作物产量的影响。
化学工业
用于研究不同反应条件对化学反应的影响, 提高产物的收率和质量。
正交试验设计的原则
1 2
均衡分布原则
确保每个因素每个水平的试验条件都有机会出现, 避免结果的片面性。
整齐可比原则
保证试验结果的可比性,以便进行数理统计分析。
案例二:化学反应中的正交试验设计
在化学反应中,正交试验设计用于研究不同反应条件 对产物收率和纯度的影响。
例如,在合成某种药物中间体的过程中,通过正交试 验设计来探究温度、压力、催化剂种类和浓度对产物
收率和纯度的影响。
通过优化反应条件,可以提高产物的收率和纯度,降 低生产成本并提高生产效率。
案例三:生物医学研究中的正交试验设计
安排试验计划
总结词:计划性
详细描述:根据正交表,安排详细的 试验计划。这一步骤包括确定试验的 各个水平、组合方式以及试验的顺序 等。合理的试验计划有助于提高试验 的效率和准确性。
实验结果分析
总结词:分析性
VS
详细描述:在完成试验后,对试验结 果进行统计分析。这一步骤包括数据 的整理、处理、分析和解释等。通过 结果分析,可以得出关于试验因素对 试验结果影响的结论,并据此优化试 验方案或进行进一步的研究。
正交试验设计案例分
05
析
案例一:材料科学中的正交试验设计
材料科学中,正交试验设计常用于研究不同材 料成分和工艺参数对材料性能的影响。
例如,在钢铁冶炼过程中,通过正交试验设计 来探究不同温度、压力、时间和合金元素对钢 材强度、韧性和耐腐蚀性的影响。
通过对试验结果的分析,可以确定最佳的工艺 参数组合,从而提高产品质量和降低生产成本。
正交试验设计(极差分析)
正交试验设计适用于多因素多水平的情况,对于非等水平的情况可能不适用; 同时,正交试验设计要求因素之间相互独立,如果有交互作用则无法准确反映 各因素对试验结果的影响。
ห้องสมุดไป่ตู้
02 极差分析方法
极差的概念与计算
极差的概念
极差是指一组数据中最大值与最 小值之差,用于描述数据的波动 范围。
极差的计算
极差 = 最大值 - 最小值,通过计 算极差可以了解数据的变化范围 。
05 正交试验设计软件介绍
正交试验设计软件的功能与特点
自动化试验设计
软件可以根据用户需求,自动生 成正交试验方案,大大提高了试
验效率。
数据分析与可视化
软件内置强大的数据分析功能,可 以将试验结果进行极差分析、方差 分析等,并生成各种可视化图表。
多因素分析
支持多因素、多水平的试验设计, 能够全面评估各因素对试验结果的 影响。
折线图
通过折线图展示各因素与试验结果的 关系,可以更直观地看出各因素对试 验结果的影响趋势。
03 正交试验设计的应用场景
工业生产优化
01
02
03
生产工艺优化
通过正交试验设计,对生 产工艺参数进行优化,提 高产品质量和生产效率。
设备性能测试
通过正交试验设计,测试 设备的性能参数,找出最 佳工作条件,延长设备使 用寿命。
详细描述
在机械制造过程中,工艺参数如温度、压力、时间等对产品质量和生产效率有重要影响。通过正交试 验设计,可以确定最佳的工艺参数组合,从而提高产品质量和生产效率。
案例三:农业生产中的肥料配比实验
总结词
通过正交试验设计,优化肥料配比,提 高农作物产量和品质。
VS
3-5正交试验设计及结果分析
上一张 下一张 主 页
整齐可比是指每一个因素的各水平间具有可比性。因为正 交表中每一因素的任一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它因素的效应都彼此抵 消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、A3 条件下各有 B 、C 的 3个不同水平,即:
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素 各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。 根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。 所谓均衡分散,是指用正交表挑选出来的各因素水平组 合在全部水平组合中的分布是均匀的 。 。
2
正交试验设计的基本程序
对于多因素试验,正交试验设计是简单常用的一种试
验设计方法,其设计基本程序如图所示。正交试验设计的
基本程序包括试验方案设计及试验结果分析两部分。
2.1 试验方案设计 (1) 明确试验目的,确定试验指标 试验设计前必须明确试验目的,即本次试验要解决什么 问题。试验目的确定后,对试验结果如何衡量,即需要确 定出试验指标。试验指标可为定量指标,也可为定性指标。
3
上一张 下一张 主 页
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较A因素不同水平时,B因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水 平间具有综合可比性。同样,B、C因素3个水平间亦具有 综合可比性。
3
上一张 下一张 主 页
正交试验设计及数据分析
通过对比各试验结果,直接观察各因素对试验指标的影响。
详细描述
根据正交试验结果,将各因素不同水平下的试验结果进行对比,直接观察各因素对试验指标的影响, 判断哪些因素对试验指标有显著影响。
方差分析法
总结词
通过比较各因素不同水平下的方差,判 断各因素对试验指标的影响程度。
VS
详细描述
利用方差分析法,比较各因素不同水平下 的方差,判断各因素对试验指标的影响程 度,确定哪些因素对试验指标有显著影响 。
验效率。
特点
均匀设计具有试验点均匀分散、 试验次数少、信息量丰富等优点, 适用于多因素、多水平的试验设
计。
应用
在化学、物理、工程等领域中, 均匀设计常用于多因素多水平试 验,以寻找最优的工艺参数或配
方。
拉丁方设计
定义
拉丁方设计是一种试验设计方法,其目的是通过合理地安排试验点,使得每个因素在每 个水平上只出现一次,从而消除顺序效应和边缘效应的影响。
在生产过程中,企业可以使用正交试验设计来优化生产工 艺参数,从而提高产品质量、降低生产成本、减少废品率 。例如,在注塑生产中,通过正交试验确定最佳的注射温 度、压力和冷却时间,以获得最佳的产品质量和产量。
案例二:正交试验在农业种植中的应用
总结词
利用正交试验优化农业种植技术,提高作物产量和品质 。
详细描述
03
利用正交试验设计,研究农作物在不同环境条件下的抗逆性表
现,为抗逆育种提供依据。
医药研究
01
药物筛选
临床试验
02
Байду номын сангаас03
毒理学研究
利用正交试验设计,筛选出具有 最佳疗效的药物成分和剂量组合。
通过正交试验,优化临床试验方 案,提高试验效率和数据可靠性。
正交试验法及实例分析
正交试验设计的基本程序包括试验方案设计及试验结果分析两部分。
1、试验方案设计
试验目的与要求
试验指标
选因素
确定水平 列试验方案
选择合适正交表 试验结果分析
表头设计
2、试验结果分析
(1)直接比较。从直观上比较所有实验工况下的实验结果,选取最好的 一项实验工况作为优化选择。 (2)优水平组合,提出预测优处理。即把所有的正交实验结果进行简单 计算,得出各个因子对参考量的影响程度,从而进行优化组合,为后 续的研究工作提供参考。 (3)极差分析。求出各个水平的平均值,选取最大值减去最小值,得出 极差。极差大说明此因子在不同水平的作用下产生的差异大,属于重 要因子,极差小说明此因子在不同水平的作用下对实验结果影响不大, 属于次要因子。再根据优水平进行组,提出预测的优化处理。
是内窗风机,热源分布次之,而内窗风机安装位置的影响较其他三个因子最 小。
因此共有4个因素,热源分布形式、顶部风机风量、内窗风 机风量以及内窗风机位置。
4、水平的确定
②所放风机的位置可选择三个水平,分别为位于建筑的低层、中层、上层。但考 虑到横向气流对中庭内部垂直气流的阻断作用,在建筑低层加上风机意义不大, 因此,只考虑两个高度水平,即建筑的中层和上层,分别定在建筑的第五层和第 九层。
(4)画出趋势图进行直观分析。求出各因子各水平的平均值,依此 画出此实验所有因子的趋势图。趋势图越陡说明因子越重要,趋势 图越平坦说明该因子的影响不大。
(5)方差分析。对于均方很小的因子,可将它作为误差项而进行F检 验。
四、混合通风下中庭内气流特性的模拟
图2 物理模型的平面图、剖面图和立面图
图3 顶部加风机示意图
1、试验目的与要求
通过对热压通风时高层住宅建筑中庭空间内部气流及温度场进行了 数值模拟研究,可知,当热源呈对称性分布时,中庭内部的风速和温度 场都有很好的分布特性。而当热源非对称分布时,中庭内部的温度场分 布不均,有所偏移,也因此对热源上部住户的热舒适产生影响。为了改 善中庭内部温度场及风场的分布,在热压通风的基础上辅以机械通风, 改变中庭内部风场和温度场的分布特性。
正交试验设计与直观分析 正交试验直观分析
正交试验设计与直观分析:正交试验直观分析6.正交实验设计与直观分析一、目的和结论目的:做这个实验是为了什么.结论:从实验分析后得出的结论,相当于总结性的话。
二、结果和指标结果:从实验中得出的数据或现象,记录下来。
指标:用来衡量试验效果的质量指标。
三、因素和水平因素:实验中不同考察条件,比如温度,PH,浓度等。
水平:实验中因素所取的考察点。
四、处理和单位处理:实验中所要操纵的自变量的变化。
五、重复和平行同时做的同一样品试验是平行试验,不同时做的不同样品试验是重复六、试验设计的原则 1、重复:同时做的同一样品试验是平行试验,不同时做的不同样品试验是重复 2、随机化:试验单元随机进入试验中,试验顺序等随机 3、区组化:使试验中对结果有影响但不是重点监测的因素保持一致(局部一致),使试验结果无显著影响。
4、对照:优化实验可以没有对照空白对照、条件对照、方法对照七、试验类型 1、单因素序贯试验设计 2、全面设计 3、正交试验设计正交实验设计:利用正交表科学地安排与分析多因素试验的方法 u 正交表:三种分析方法:直观分析、方差分析、回归分析 1) 等水平正交表:各因素的水平数是相等的。
特点:l 表中任一列,不同的数字出现的次数相同。
l 表中任意两列,各种同行数字对出现的次数相同 2) 混合水平正交表:重点考察的因素可多取一些水平,其他因素的水平数可适当减少。
重要性质:l 表中任一列,不同的数字出现的次数相同。
l 每两列,同行两个数字组成的各种不同的水平搭配出现的次数是相同的,但不同的两列间组成的水平搭配种类及出现次数是不完全相同的。
各因素的水平数不完全相同的正交表:正交表L8(41ⅹ24)实验号列号 1 2 3 4 5 11 1 1 1 12 1 2 2 2 23 2 1 1 2 24 22 2 1 1 53 1 2 1 2 6 3 2 1 2 1 74 1 2 2 1 8 4 2 1 1 2 u 正交实验设计的基本步骤: ²明确实验目的,确定评价指标²挑选因素,确定水平²选正交表,进行表头设计 n 选正交表: 水平数与正交表对应的水平数一致 l 因素数小于等于正交表列数 l 选较小的表 n表头设计:一个因素占有一列;不同因素占不同列(随机排列)²明确设计方案,进行实验,得到结果²对试验结果进行统计分析²进行验证试验,作进一步分析 4、正交试验设计的优点 1) 能均匀地挑选出代表性强的少数试验方案 2) 由少数试验结果,可以退出较优的方案 3) 可以得到试验结果之外的更多信息正交实验设计结果的直观分析法 1)、单指标正交试验设计及结果的直观分析选正交表表头设计明确实验方案按规定的方案做实验,得出试验结果计算极差,确定因素的主次顺序优方案的确定进行验证试验,作进一步的分析 2)、多指标正交试验设计及结果的直观分析 3)、交互作用 4)、混合水平单指标正交试验设计及其结果的直观分析根据试验指标的个数,可把正交试验设计分为单指标试验设计与多指标试验设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一张 下一张 主 页
整齐可比是指每一个因素的各水平间具有可比性。因为正 交表中每一因素的任一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它因素的效应都彼此抵 消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、A3 条件下各有 B 、C 的 3个不同水平,即:
的每条线上也恰有一个试验点。 9个试验点均衡地分布于整个立方体内 ,有很强的代表 性,能够比较全面地反映选优区内的基本情况。
3
上一张 下一张 主 页
退 出
1.3
正交表及其基本性质
1.3.1 正交表 由于正交设计安排试验和分析试验结果都要用正交表, 因此,我们先对正交表作一介绍。 下表是一张正交表,记号为L8(27),其中“L”代表正
正交表的三个基本性质中,正交性是核心, 是基础,代表性和综合可比性是正交性的必然结 果。
3
上一张 下一张 主 页
退 出
1.4
正交表的类别
1、等水平正交表 各列水平数相同的正交表称为等水 平正交表。如L4(23)、L8(27)、L12(211)等各列中的水平为2,
称为2水平正交表;L9(34)、L27(313)等各列水平为3,称为 3水平正交表。
3
上一张 下一张 主 页
退 出
(2)任两列之间各种不同水平的所有可能组合都出现,
且对出现的次数相等
例: L8(27)中(1, 1), (1, 2), (2, 1), (2, 2)
各出现两次;L9(34) 中 (1, 1),
(1, 2),
(1, 3),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出 现1次。即每个因素的一个水平与另一因素的各个水平所 有可能组合次数相等,表明任意两列各个数字之间的搭配 是均匀的。
表 头 设 计 列号 因素 1 A 2 B
3
3 C
L12(2×35)
3
上一张 下一张 主 页
退 出
常用的等水平正交表:
2 水 平 正 交 表 : L 8 ( 2 ), L1 2 ( 2 ), L1 6 ( 2 ), ...... 3 水 平 正 交 表 : L 9 (3 ), L1 8 (3 ), L 2 7 (3 ), ...... 4 水 平 正 交 表 : L1 6 ( 4 ), L 3 2 ( 4 ), L 6 4 ( 4 ), ...... 5 水 平 正 交 表 : L 2 5 (5 ), L 5 0 (5 ), L1 2 5 (5 ), ......
3
上一张 下一张 主 页
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较A因素不同水平时,B因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水 平间具有综合可比性。同样,B、C因素3个水平间亦具有 综合可比性。
设 计 时 选 用 。 2 水 平 正 交 表 除 L8(27) 外 , 还 有 L4(23) 、 L16(215)等;3水平正交表有L9(34)、L27(213)„„等。 1.3.2 正交表的基本性质
1.3.2.1 正交性
(1)任一列中,各水平都出现,且出现的次数相等 例:L8(27)中不同数字只有1和2,它们各出现4次; L9(34)中不同数字有1、2和3,它们各出现3次 。
况。
正因为正交试验是用部分试验来代替全面试验的, 它不可能像全面试验那样对各因素效应、交互作用一一 分析;当交互作用存在时,有可能出现交互作用的混杂。 虽然正交试验设计有上述不足,但它能通过部分试验找
到最优水平组合 ,因而很受实际工作者青睐。
3
上一张 下一张 主 页
退 出
如对于上述3因素3水平试验,若不考虑交互作用,可 利用正交表 L9(34)安排,试验方案仅包含9个水平组合,就 能反映试验方案包含27个水平组合的全面试验的情况,找 出最佳的生产条件。
3
上一张 下一张 主 页
等 水 平 正 交 表
La(bc)
因素个数,列数 正交设计
La(bc)
试验总次数,行数
3
因素水平数
上一张 下一张 主 页
例:选择13)
(A)不考察因素间的交互作用,宜选用L9(34)。 (B)考察交互作用,则应选用L27(313)。 课堂练习: 选择一5个3水平因子及一个2水平因子试验的正交表
的27个节点),工作量大,在有些情况下无法完成 。 若试验的主要目的是寻求最优水平组合,则可利用正交 表来设计安排试验。
3
上一张 下一张 主 页
全 面 试 验 法 示 意 图
3
上一张 下一张 主 页
三因素、三水平全面试验方案
3
上一张 下一张 主 页
退 出
正交试验设计的基本特点是:用部分试验来代替全面 试验,通过对部分试验结果的分析,了解全面试验的情
3
上一张 下一张 主 页
试验目的与要求
试 验 方 案 设 计 流 程
试验指标 选因素、定水平 因素、水平确定 选择合适正交表
表头设计
列试验方案
试验结果分析
3
上一张 下一张 主 页
进行试验,记录试验结果
试 验 结 果 分 析:
试验结果极差分析
试验结果方差分析
计 算 K 值
计 算 k 值
计 算 极 差 R
退 出
例如:设计一个三因素、3水平的试验 A因素,设A1、A2、A3 3个水平;B因素,设B1、B2、B3 3 个水平;C因素,设C1、C2、C3 3个水平,各因素的水平之间 全部可能组合有27种 。 全面试验:可以分析各因素的效应,交互作用,也可选
出最优水平组合。但全面试验包含的水平组合数较多(图示
对于多因素试验,正交试验设计是简单常用的一种试
验设计方法,其设计基本程序如图所示。正交试验设计的
基本程序包括试验方案设计及试验结果分析两部分。
2.1 试验方案设计 (1) 明确试验目的,确定试验指标 试验设计前必须明确试验目的,即本次试验要解决什么 问题。试验目的确定后,对试验结果如何衡量,即需要确 定出试验指标。试验指标可为定量指标,也可为定性指标。
3
上一张 下一张 主 页
退 出
1 正交试验设计的概念及原理
1.1 正交试验设计的基本概念 正交试验设计是利用正交表来安排与分析多因素试验
的一种设计方法。它是由试验因素的全部水平组合中,挑
选部分有代表性的水平组合进行试验的,通过对这部分试 验结果的分析了解全面试验的情况,找出最优的水平组合。
3
上一张 下一张 主 页
1.2 正交试验设计的基本原理
3
上一张 下一张
主 页
正交设计就是从选优区全面试验点(水平组合)中 挑选出有代表性的部分试验点(水平组合)来进行试验。 上图中标有试验号的九个 “(·)”,就是利用正交表
L9(34)从27个试验点中挑选出来的9个试验点。即:
(1)A1B1C1 (4)A1B2C2 (7)A1B3C3 (2)A2B1C2 (5)A2B2C3 (8)A2B3C1 (3)A3B1C3 (6)A3B2C1 (9)A3B3C2
2、混合水平正交表 各列水平数不完全相同的正交表 称为混合水平正交表。如L8(4×24)表中有一列的水平数为 4,有4列水平数为2。也就是说该表可以安排一个4水平因 素和4个2水平因素。再如L16(44×23),L16(4×212)等都混 合水平正交表。
3
上一张 下一张 主 页
退 出
2
正交试验设计的基本程序
第一类正交表不仅可以考察因素对实验指标的影响,还可
以考察因素间交互作用的影响;第二类正交表只能考察各因 素的影响,不能考察因素间的交互作用。 上例中应选择 L27(313)
3
(4) 表头设计
表头设计,就是把试验因素和要考察的交互作用分别安 排到正交表的各列中去的过程。 在不考察交互作用时,各因素可随机安排在各列上; 若考察交互作用,就应按所选正交表的交互作用列表安排各 因素与交互作用,以防止设计“混杂” 。 例:不考察交互作用,可将因素(A)、(B)和(C)、(D) 依次安排在L9(34)的第1、2、3、4列上,见下表所示。
绘制 因素 指标 趋势 图
计算各列偏差平方 和、自由度
列方差分析表, 进行F 检验
优水平
因素主次顺序 结
3
分析检验结果, 写出结论
优组合
论
上一张 下一张 主 页
一般为了便于试验结果的分析,定性指标可按相关的标 准打分或模糊数学处理进行数量化,将定性指标定量化。
(2) 选因素、定水平,列因素水平表 根据专业知识、以往的研究结论和经验,从影响试验指 标的诸多因素中,通过因果分析筛选出需要考察的试验因 素。一般确定试验因素时,应以对试验指标影响大的因素、 尚未考察过的因素、尚未完全掌握其规律的因素为先。试 验因素选定后,根据所掌握的信息资料和相关知识,确定 每个因素的水平,一般以2-4个水平为宜。对主要考察的试 验因素,可以多取水平,但不宜过多(≤6),否则试验次 数骤增。因素的水平间距,应根据专业知识和已有的资料, 尽可能把水平值取在理想区域。
正 交 试 验 设 计
对于单因素或两因素试验,因其因素少 ,试验的设 计 、实施与分析都比较简单 。但在实际工作中 ,常常
需要同时考察3个或3个以上的试验因素 ,若进行全面试
验 ,则试验的规模将很大 ,往往因试验条件的限制而 难于实施 。正交试验设计就是安排多因素试验 、寻求 最优水平组合的一种高效率试验设计方法。
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素 各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。 根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。 所谓均衡分散,是指用正交表挑选出来的各因素水平组 合在全部水平组合中的分布是均匀的 。 。