经典PV操作讲解和练习题

合集下载

PV操作经典例题

PV操作经典例题

P就是请求资源,V就是释放资源。

问题1 一个司机与售票员的例子在公共汽车上,为保证乘客的安全,司机和售票员应协调工作:停车后才能开门,关车门后才能行车。

用PV操作来实现他们之间的协调。

S1:是否允许司机启动汽车的变量S2:是否允许售票员开门的变量driver()//司机进程{while (1)//不停地循环{P(S1);//请求启动汽车启动汽车;正常行车;到站停车;V(S2); //释放开门变量,相当于通知售票员可以开门}}busman()//售票员进程{while(1){关车门;V(S1);//释放开车变量,相当于通知司机可以开车售票P(S2);//请求开门开车门;上下乘客;}}注意:busman() driver() 两个不停循环的函数问题2 图书馆有100个座位,每位进入图书馆的读者要在登记表上登记,退出时要在登记表上注销。

要几个程序?有多少个进程?(答:一个程序;为每个读者设一个进程)(1)当图书馆中没有座位时,后到的读者在图书馆为等待(阻塞)(2)当图书馆中没有座位时,后到的读者不等待,立即回家。

解(1 )设信号量:S=100; MUTEX=1P(S)P(MUTEX)登记V(MUTEX)阅读P(MUTEX)注销V(MUTEX)V(S)问题3 有一座东西方向的独木桥;用P,V操作实现:(1)每次只允许一个人过桥;(2)当独木桥上有行人时,同方向的行人可以同时过桥,相反方向的人必须等待。

(3)当独木桥上有自东向西的行人时,同方向的行人可以同时过桥,从西向东的方向,只允许一个人单独过桥。

(此问题和读者与写者问题相同,东向西的为读者,西向东的为写者)。

(1)解设信号量MUTEX=1P (MUTEX)过桥V (MUTEX)(2)解设信号量:MUTEX=1 (东西方互斥)MD=1 (东向西使用计数变量互斥)MX=1 (西向东使用计数变量互斥)设整型变量:CD=0 (东向西的已上桥人数)CX=0 (西向东的已上桥人数)从东向西:P (MD)IF (CD=0){P (MUTEX) }CD=CD+1V (MD)过桥P (MD)CD=CD-1IF (CD=0){V (MUTEX) }V (MD)从西向东:P (MX)IF (CX=0){P (MUTEX) }CX=CX+1V (MX)过桥P (MX)CX=CX-1IF (CX=0){V (MUTEX) }V (MX)(3) 解:从东向西的,和(2)相同;从西向东的和(1)相同。

操作系统PV操作经典一百题

操作系统PV操作经典一百题
cobegin
procedure reader_i
begin // i=1,2,?.
P(rwmutex); //读者、写者互斥
P(rmutex);
V(rwmutex); // 释放读写互斥信号量,允许其它读、写进程访问资源
读数据;
V(rmutex);
end
procedure Writer_j
我们需要分两种情况实现该问题:
读优先: 要求指一个读者试图进行读操作时,如果这时正有其他读者在进行操作,他可直接开始读操作,而不需要等待。
写优先: 一个读者试图进行读操作时,如果有其他写者在等待进行写操作或正在进行写操作,他要等待该写者完成写操作后才开始读操作。
The P,V code Using Pascal
3)写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)
如果读者数是固定的,我们可采用下面的算法:
rwmutex:用于写者与其他读者/写者互斥的访问共享数据
rmutex: 该信号量初始值设为10,表示最多允许10个读者进程同时进行读操作
var rwmutex, rmutex : semaphore := 1, 10 ;
操作系统P V题解
第一章 The P,V Theorem
在操作系统理论中有一个非常重要的概念叫做P,V原语。在我们研究进程间的互斥的时候经常会引入这个概念,将P,V操作方法与加锁的方法相比较,来解决进程间的互斥问题。实际上,他的应用范围很广,他不但可以解决进程管理当中的互斥问题,而且我们还可以利用此方法解决进程同步与进程通信的问题。
Figure 1.1: producer-consumer problem

第11课PV操作练习

第11课PV操作练习

P(S1); 将缓冲区R中记 从T中取出记录 录拷贝到缓冲区 放入文件G中; T中; V(S2);
此种解法是否正确: GET: P(S1); 从文件F取记录 放入缓冲区R中; V(S2); COPY: P(S2); 将缓冲区R中记 录拷贝到缓冲区 T中; V(S3); PUT: P(S3); 从T中取出记录 放入文件G中; V(S1);
P145 GET: P(S2); 从文件F取记录 放入缓冲区R中; V(S1); COPY: PUT:
信号量S1,S2 初始值S1=0;S2=0
P(S1); 将缓冲区R中记 从T中取出记录 录拷贝到缓冲区 放入文件G中; T中; V(S2);
此种解法是否正确: GET: P(S1); 从文件F取记录 放入缓冲区R中; V(S2); COPY: P(S2); 将缓冲区R中记 录拷贝到缓冲区 T中; V(S3); PUT: P(S3); 从T中取出记录 放入文件G中; V(S1);
课堂练习

独木桥问题。某条河上只有一座独木桥, 以便行人过桥,现在河的两边都有人要过 桥,按照下面的规则过桥,为了保证过桥 安全,请用P,V操作分别实现正确的管理。 过桥的规则: 每次只允许一个人过桥
课堂练习

独木桥问题。某条河上只有一座独木桥, 以便行人过桥,现在河的两边都有人要过 桥,按照下面的规则过桥,为了保证过桥 安全,请用P,V操作分别实现正确的管理。 过桥的规则: 同一方向的可连续过桥,某方向有人过桥 时另一方向的人要等待。
课堂练习

独木桥问题。某条河上只有一座独木桥, 以便行人过桥,现在河的两边都有人要过 桥,按照下面的规则过桥,为了保证过桥 安全,请用P,V操作分别实现正确的管理。 过桥的规则: 当独木桥上有自东向西的行人时,同方向 的行人可以同时过桥,从西向东的方向, 只允许一个人单独过桥。

pv原语练习题

pv原语练习题

pv原语练习题PV原语是指用于同步并发进程之间的操作,用来保证多个进程之间的顺序执行。

本文将介绍PV原语的定义、使用方法和一些练习题。

一、PV原语定义PV原语包括两个操作:P操作 (Proberen)和V操作 (Verhogen)。

P 操作用于申请资源,V操作用于释放资源。

当一个进程要申请某个资源时,需要执行P操作,如果资源未被占用,则申请成功,进程可以继续执行;如果资源已被占用,则进程被阻塞,直到资源被释放。

当一个进程不再需要某个资源时,需要执行V操作来释放资源。

二、PV原语使用方法PV原语通常与信号量 (Semaphore) 结合使用。

信号量表示可用的资源数量,可以为整数或者布尔值。

当某个进程要使用资源时,需要首先检查信号量的值,如果为正数或者True,则执行P操作并将信号量减1;如果为零或者False,则执行P操作的进程被阻塞。

当进程不再需要资源时,执行V操作并将信号量加1。

三、PV原语练习题1. 生产者-消费者问题PV原语经常用于解决生产者-消费者问题。

请使用PV原语编写代码解决以下生产者-消费者问题:假设有一个空的缓冲区,可以容纳n个物品。

生产者进程可以向缓冲区中放入物品,消费者进程可以从缓冲区中取出物品。

要求实现以下功能:- 生产者进程将物品放入缓冲区时,如果缓冲区已满,则生产者进程被阻塞。

- 消费者进程从缓冲区中取出物品时,如果缓冲区为空,则消费者进程被阻塞。

- 多个生产者和消费者进程可以同时运行,但缓冲区中的物品不能超过n个。

2. 哲学家就餐问题另一个著名的并发编程问题是哲学家就餐问题。

请使用PV原语编写代码解决以下哲学家就餐问题:五位哲学家坐在圆桌旁,每个哲学家需要左右两侧的一把叉子才能进餐。

每个哲学家总共会进行思考和进餐两种活动,思考时不需要占用叉子,进餐时需要同时占用左右两把叉子。

设计一个算法,使得五位哲学家可以循环地进行思考和进餐,且不会发生死锁现象。

3. 生产者-消费者问题的改进在生产者-消费者问题中,可以利用PV原语的改进版本来实现更高效的同步。

pv操作例题详细解释

pv操作例题详细解释

pv操作例题详细解释【最新版】目录1.PV 操作简介2.PV 操作例题3.例题详细解释正文一、PV 操作简介PV 操作,全称为过程 - 变量操作,是一种在计算机程序设计中用于处理过程和变量之间关系的操作方法。

PV 操作广泛应用于各种编程语言中,如 C、C++、Java 等。

通过 PV 操作,程序员可以实现对变量的读取、修改、锁定等操作,以确保程序在多线程环境下的正确性和可靠性。

二、PV 操作例题假设有一个简单的程序,需要实现一个功能:当一个整数变量 x 的值在 0 到 100 之间时,输出“x 的值在 0 到 100 之间”。

如果 x 的值小于 0 或大于 100,则输出“x 的值不在 0 到 100 之间”。

请使用 PV 操作实现这个功能。

三、例题详细解释为了实现这个功能,我们可以使用 C 语言中的 PV 操作。

具体实现如下:```c#include <stdio.h>#include <pthread.h>int x = 0;int flag = 0;void thread_function(){pthread_mutex_lock(&mutex); // 加锁if (x < 0 || x > 100) { // 判断 x 的值是否在 0 到 100 之间flag = 1; // 设置标志位}pthread_mutex_unlock(&mutex); // 解锁}int main(){pthread_t thread;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread, NULL, thread_function, NULL); // 创建线程pthread_join(thread, NULL); // 等待线程结束if (flag == 1) {printf("x 的值不在 0 到 100 之间");} else {printf("x 的值在 0 到 100 之间");}pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```在这个例子中,我们使用了一个互斥锁(mutex)来保护对变量 x 的访问。

操作系统PV操作习题

操作系统PV操作习题

操作系统PV操作习题操作系统PV操作习题-----------------------------------------------------1、引言在操作系统中,PV操作(也称作P操作和V操作)是用于进程同步的一种常见机制。

P操作用于获取或申请资源,V操作用于释放资源。

本文将为您提供一些关于PV操作的习题,以帮助您巩固相关的概念和原理。

2、PV操作基本概念2.1 P操作描述P操作的基本概念和含义,以及在实际应用中的具体场景。

2.2 V操作解释V操作的基本概念和含义,并举例说明其在实际问题中的应用。

3、PV操作习题集3.1 习题一、生产者-消费者问题描述一个典型的生产者-消费者问题,并通过使用P操作和V操作对其进行解决。

3.2 习题二、读者-写者问题解释一个典型的读者-写者问题,并使用PV操作来实现对该问题的解决。

3.3 习题三、哲学家就餐问题描述哲学家就餐问题的场景,并说明如何采用PV操作来解决这一问题。

4、常见PV操作错误4.1 死锁解释什么是死锁以及为什么会发生死锁现象,同时提供一些避免死锁的方法。

4.2 饥饿描述什么是饥饿,以及一些可能导致饥饿的常见原因,并提供解决饥饿问题的一些策略。

5、附录本文档附带以下附件:- 习题的解答和详细说明- 相关的代码示例6、法律名词及注释在本文档中,涉及的法律名词及其注释如下:- PV操作:即P操作和V操作,用于进程同步的一种机制。

- 生产者-消费者问题:一种经典的并发控制问题,涉及到生产者和消费者之间的资源竞争。

- 读者-写者问题:一种并发控制问题,涉及到多个读者和写者对共享资源的访问。

- 哲学家就餐问题:一种经典的并发控制问题,涉及到多个哲学家通过共享的餐具进行就餐。

pv操作例题

pv操作例题

pv操作例题(原创实用版)目录1.PV 操作概述2.PV 操作的实例3.PV 操作的解题技巧4.总结正文一、PV 操作概述PV 操作是计算机编程中的一种操作,主要用于处理并发读写问题。

PV 操作是基于 C 语言的线程操作,通过 PV 操作,可以实现线程之间的同步和互斥。

PV 操作主要包括 P 操作和 V 操作两个方面。

P 操作用于线程申请资源,如果资源已经被其他线程占用,则线程需要等待。

V 操作用于线程释放资源,当有其他线程正在等待该资源时,V 操作会唤醒等待的线程。

二、PV 操作的实例下面通过一个简单的实例来介绍 PV 操作的使用方法。

假设有两个线程,线程 A 负责生产产品,线程 B 负责消费产品。

由于产品库存有限,需要通过 PV 操作来实现线程之间的同步和互斥。

1.定义一个 PV 结构体,包括 P 操作和 V 操作的 sem_t 结构体。

```ctypedef struct {sem_t p;sem_t v;} PV;```2.初始化 PV 结构体。

```cPV pv = {0};```3.线程 A 执行 P 操作申请资源。

```cpv.p = sem_wait(&pv.p);```4.线程 A 执行生产操作。

```c// 生产产品操作```5.线程 A 执行 V 操作释放资源。

```csem_post(&pv.v);```6.线程 B 执行 P 操作申请资源。

```cpv.p = sem_wait(&pv.p);```7.线程 B 执行消费操作。

```c// 消费产品操作```8.线程 B 执行 V 操作释放资源。

```csem_post(&pv.v);```三、PV 操作的解题技巧在实际编程过程中,PV 操作的解题技巧主要包括以下几点:1.根据实际需求,合理地设置 PV 操作的资源。

2.确保 PV 操作的同步和互斥性,避免死锁现象的发生。

3.在编写 PV 操作时,要注意线程之间的切换和调度。

操作系统PV操作经典例题与答案

操作系统PV操作经典例题与答案

操作系统PV操作经典例题与答案1. 推广例子中的消息缓冲问题。

消息缓冲区为k个,有1个发送进程,n个接收进程,每个接收进程对发送来的消息都必须取一次若有m个发送进程呢?Send:SB=k; //信号量,标记当前空余缓冲区资源。

i = 0; //标记存放消息的缓冲区位置while (true) {P(SB);往Buffer [i]放消息;V(SM);i = (i+1) % k;};Receive:j = 0; //标记取产品的缓存区位置SM=0;//信号量,标记初始没有消息ReadCount=0;//读进程计数器Mutex =1;//读进程互斥信号量SW=0; //信号量,读进程在此信号量等待while (true) {P(SM);从Buffer[j]取消息;ReadCount++If(ReadCount<n){< p="">V(SM);P(SW)}else{V(SB);j = (j+1) % k;for(int g=1; g< ReadCount;g++)V(SW);ReadCount=0;}};2.第二类读者写者问题:写者优先条件:1)多个读者可以同时进行读2)写者必须互斥(只允许一个写者写,也不能读者写者同时进行)3)写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)rc=0, //正在读者计数器wc, //写计数器rw, //读等计数器R //等待读信号量W //等待写信号量读者:while (true) {P(mutex);if (wc >0){rw++P (R);}rc++;If(rw>0&&wc=0){V(R)rw--}V(mutex);读P(mutex);rc --;if (rc==0){If(wc>0)V(w)}V(mutex);};写者:while (true) {P(mutex);wc ++;if((wc >1)||(rc>0)){P(W)}V(mutex);写P(mutex);Wc --;if(wc>0)V(W);Else if(rw>0)V(R)rw--V(mutex);};3.理发师睡觉问题理发店里有一位理发师,一把理发椅和N把供等候理发的顾客坐的椅子如果没有顾客,则理发师便在理发椅上睡觉。

信号量的PV操作(例题]

信号量的PV操作(例题]

???信号量的PV操作是如何定义的?试说明信号量的PV操作的物理意义。

参考答案:P(S):将信号量S减1,若结果大于或等于0,则该进程继续执行;若结果小于0,则该进程被阻塞,并将其插入到该信号量的等待队列中,然后转去调度另一进程。

V(S):将信号量S加1,若结果大于0,则该进程继续执行;若结果小于或等于0,则从该信号量的等待队列中移出一个进程,使其从阻塞状态变为就绪状态,并插入到就绪队列中,然后返回当前进程继续执行。

PV操作的物理含义:信号量S值的大小表示某类资源的数量。

当S>0时,其值表示当前可供分配的资源数目;当S<0时,其绝对值表示S信号量的等待队列中的进程数目。

每执行一次P操作,S值减1,表示请求分配一个资源,若S≥0,表示可以为进程分配资源,即允许进程进入其临界区;若S<0,表示已没有资源可供分配,申请资源的进程被阻塞,并插入S的等待队列中,S的绝对值表示等待队列中进程的数目,此时CPU将重新进行调度。

每执行一次V操作,S值加1,表示释放一个资源,若S>0,表示等待队列为空;若S≤0,则表示等待队列中有因申请不到相应资源而被阻塞的进程,于是唤醒其中一个进程,并将其插入就绪队列。

无论以上哪种情况,执行V操作的进程都可继续运行。

1、设公共汽车上,司机和售票员的活动分别是:司机的活动:启动车辆;正常行车;到站停车;售票员的活动:关车门;售票;开车门;在汽车不断地到站、停车、行驶过程中,这两个活动有什么同步关系?用P、V操作实现它们的同步。

设两个信号量S和C,初值为S=0;C=0;司机: L1:正常行车售票员: L2:售票到站停车 P(S)V(S)开车门P(C)关车门启动开车 V(C)GO TO L1 GO TO L22、请用PV操作实现他们之间的同步关系:(1)桌上一个盘子,只能放一只水果。

爸爸放苹果,妈妈放桔子,儿子只吃桔子,女儿只吃苹果。

(2)桌上一个盘子,只能放一只水果。

例题以及习题pv操作3

例题以及习题pv操作3

【实战3】理发师问题理发店有一位理发师、一把理发椅及三把供等候理发的顾客坐的椅子。

如果没有顾客,理发师就去睡觉。

如果顾客来时所有的椅子都有人,那么顾客就离去。

如果理发师在忙而有空闲的椅子,那么顾客就会坐在其中的一个空闲的椅子上。

如果理发师在睡觉,顾客会唤醒他。

请利用信号量(semaphores),写个程序来协调理发师和顾客进程。

【浙江大学2007】int count=0;//记录理发店里的顾客数量semaphore mutex=1;//用于互斥访问count变量所用的信号量semaphore barber_chair=0;//semaphore wait_chair=3;//顾客等待时可坐的椅子semaphore ready=0;//坐在等候椅子上等待理发的顾客数量Barber(){//理发师进程while(1){wait(ready);//是否有顾客在等待理发,没有则阻塞signal(barber_chair);//请等待时间最长的顾客坐到理发椅上signal(wait_chair);//坐到理发椅上的顾客让出一个等待时可坐的椅子barbering//给顾客理发}}Customer(){//顾客进程i{wait(mutex);if(count>=4){//如果理发店已经有四个顾客了signal(mutex);leave //走人}else{//理发店里顾客不足4个count++;//更新顾客人数signal(mutex);}wait(wait_chair);//先请求坐等待时坐的椅子signal(ready);//告诉理发师又有一位顾客准好了,等待理发wait(barber_chair);//再请求坐理发椅be barberedwait(mutex);count--;//更新店里的顾客人数signal(mutex);}}【练习1】 如图所示,有多个PUT 操作同时向BUFF1放数据,有一个MOVE 操作不断地将BUFF1的数据移到BUFF2,有多个GET 操作不断地从BUFF2中将数据取走。

典型例题PV操作

典型例题PV操作
试写出读者“进入”和“注销”之间的同步算法。
答:读者的动作有两个,一是填表进入阅览室读书,这时要考虑阅览室里是否有座位;二是读者阅读完毕,需要注销登记再离开阅览室,这时的操作要考虑阅览室里是否有读者存在。读者在阅览室读书时,由于没有引起资源的变动,不算动作变化。
因此,设置算法所涉及的三个信号量:empty资源信号量——表示阅览室里的空座位的数目,初值为100;full资源信号量——表示阅览室里有人的座位的数目(或表示阅览室里的读者的数目),初值为0;mutex互斥信号量——表示对登记表这个临界资源的互斥访问,初值设为1。
使用信号量机制对读者“进入”阅览室和“注销”登记之间的同步算法描述如下:
Semaphoreempty,full,mutex;//首先定义两个资源信号量empty、full和一个互斥信号量mutex
empty.value=100;full.value=0;mutex.value=1;
cobegin
process getin() //读者“进入”阅览室的进程过木桥;wait(SB);
countB:=countB-1;
if (countB=0) then signal(mutex);
signa(SB);
end
parend
end
2、有一阅览室,共有100个座位。为了很好利用它,读者进入时必须先在登记表上进行登记。该表表目设有座位号和读者姓名;离开时再将其登记项摈除。试用P、V操作描述进程之间的同步或算法。
Var SA,SB,mutex:semaphore:=1,1,1;
CountA,countB:integer:=0,0:
begin
parbegin
processA: begin

pv操作例题

pv操作例题

pv操作例题
摘要:
1.PV 操作概述
2.PV 操作例题解析
3.PV 操作在实际工程中的应用
正文:
一、PV 操作概述
PV 操作是指在过程控制系统中,通过设定值和反馈信号的比较,计算出偏差,然后根据偏差大小和方向,对控制量进行调整,以达到控制系统目标值的一种控制方法。

PV 操作是过程控制系统中最常见的控制方式,广泛应用于各种工业生产过程中。

二、PV 操作例题解析
假设有一个储罐,需要控制其液位在100m至120m之间。

我们可以通过PV 操作来实现这个目标。

1.设定值:设定液位目标值为110m。

2.反馈信号:液位计测量的实际液位。

3.计算偏差:将实际液位与设定值进行比较,得到偏差。

4.调整控制量:根据偏差的大小和方向,调整进液阀门的开度,使液位上升或下降,直到达到设定值。

三、PV 操作在实际工程中的应用
在实际工程中,PV 操作通常与其他控制策略相结合,如PID 控制、自适
应控制等,以提高控制系统的稳定性和精度。

例如,在锅炉燃烧控制系统中,可以通过PV 操作控制燃料的供给,以维持锅炉的温度在设定值范围内。

同时,根据锅炉的负荷变化,可以通过PID 控制调整PV 操作的参数,以提高控制系统的响应速度和稳定性。

总之,PV 操作作为过程控制系统的基本控制方法,在实际工程中发挥着重要作用。

操作系统_PV操作_经典习题1

操作系统_PV操作_经典习题1

1、司机-售票员问题
2、理发师问题
理发店里有一位理发师,一把理发椅和N把供等候理发的顾客坐的椅子。

如果没有顾客,则理发师便在理发椅上睡觉。

当一个顾客到来时,他必须先唤醒理发师。

如果顾客到来时理发师正在理发,则如果有空椅子,可坐下来等;否则离开。

3、物流问题
在某个物流系统中,有一个位于上海的集装箱中转枢纽,这些集装箱又被装上其他运输工具继续各自的行程。

根据整体物流规划,从沿长江一线进入枢纽的集装箱,要从这里直接吊装到上
海至旧金山的定期集装箱班轮上。

而从沪杭高速公路进入枢纽的集装箱,要从这里换装到专门在京沪高速公路上行驶的集装箱运输车上。

现在需要设计为该物流系统上海集装箱中转枢纽使用的物流软件,为简化问题,假设该中转枢纽的场地每次只能接收一个方向来的同一批次的集装箱。

经典PV操作问题详解(最全面的PV资料)[精品]

经典PV操作问题详解(最全面的PV资料)[精品]

经典P、V操作问题详解*****************一、基本概念1. 信号量struct semaphore{int value; // 仅且必须附初值一次,初值非负PCBtype* wait_queue; // 在此信号量上阻塞的进程队列} S; // 信号量实例为S2. P、V操作P(S){S := S-1;if (S<0)调用进程自己阻塞自己,等待在S的等待队列末尾;}V(S){S := S+1;if (S≤0)从S等待队列头释放一进程就绪在就绪队列尾;调用进程继续执行;}3. 使用方法(i). P、V操作成队出现,处理互斥时出现在同一进程中;处理同步时出现在不同进程中。

(ii). 同步P先于互斥P调用,V的顺序无关。

4. 另类P、V操作导致的问题(或信号量的栈实现方法或漏斗法)[习题P174-23]某系统如此定义P、V操作:P(S): S = S-1; 若S<0,本进程进入S信号量等待队列的末尾;否则,继续执行。

V(S): S=S+1; 若S≤0,释放等待队列中末尾的进程,否则继续运行。

(1)上面定义的P、V操作是否合理?有什么问题?(2)现有四个进程P1、P2、P3、P4竞争使用某一个互斥资源(每个进程可能反复使用多次),试用上面定义的P、V操作正确解决P1、P2、P3、P4对该互斥资源的使用问题。

答:(1)不合理:先进后出;可能“无限等待”,即等待队列头的进程得不到释放。

(2)思路:令每个信号量上的等待队列中始终只有一个进程。

解决方案如下:(n个进程)n个进程至多有n-1个等待。

设置n-1个信号量,每个进程阻塞在不同的信号量上,使每个等待队列至多有一个进程等待。

用循环模拟队列。

Semaphore S[n-1]; // S[i]的初值为i+1Procedure_i(){int j;DO_PRE_JOB();for(j=n-2; j>=0; j--)P(S[j]);DO_JOB_IN_CRITICAL_SECTION();for(j=0;j<=n-2;j++)V(S[j]);……}二、经典进程同步问题总述:进程同步问题主要分为以下几类:一(生产者-消费者问题);二(读者写者问题);三(哲学家就餐问题);四(爱睡觉的理发师问题);五(音乐爱好者问题);六(船闸问题);七(红黑客问题)等。

pv操作典型例题

pv操作典型例题

例1 在某展示厅设置一个自动计数系统,以计数器count表示在场的人数,count是动态变化的,若有一个人进入展示厅进程pin对计数器count加1,当有一个人退出展示厅时,进程pout实现计数器减1。

由于进、出所以展示厅的人是随机的,用P-V操作实现。

(并发进程之间的互斥问题)解:定义信号量:S——表示是否有进程进入临界区,初值为1.(表示没有进程进入临界区)begincount: Integer;S: semaphore;count:=0;S:=1;cobeginprocess PinR1: Integer;beginP (S);R1:=count;R1:=R1+1;count:=R1;V(S);end;Process PoutR2: Integer;beginP (S);R2:=count;R2:=R2-1;count:=R2;V (S);end;count;end;例2 与生产者和消费过者相似的问题,把“A进程将记录送入缓冲器”看生产者生产了一件物品且把物品存入缓冲器,把“B进程从缓冲器中取出记录并加工”看作是消费者从缓冲器取出物品去消费,缓冲器中只能放一个记录(一件物品),用P-V操作实现。

(并发进程之间的同步问题)解:定义两个信号量为:sp和sg。

sp:表示生产者是否右以把物品存入缓冲器。

由于缓冲器只能存放一个物品,因此sp的初值为1,即sp:=1。

sg:表示缓冲是否存有物品,它的初值应该为0,即sg:=0,表示缓冲器中还没有物品存在。

生产者和消费者两个进程并发执行时,可按以下的方式实现同步:sp:=1;sg:=0;cobeginprocess producer (生产者进程)beginL1:produce a product;P(sp);Buffer:=product;V(sg);goto L1endprocess consumer(消费者进程)beginL2: P(sg);Take a product;V(sp);consume;goto L1end;coend;例3 如果一个生产者和一个消费共享缓冲器容量为可以存放n件物品时,生产者总可继续存入物品;同时当缓冲器的物品不为“0”时,消费者总可从缓冲器中取走物品,用P-V操作实现。

pv经典例题详解(一)

pv经典例题详解(一)

pv经典例题详解(一)PV经典例题PV(Page Views)是衡量网站流量的指标之一。

下面将介绍一些PV经典例题,帮助大家更好地理解和掌握PV的概念和计算方法。

例题1一个网站在一天之内共有1000名用户访问,每个用户平均浏览了5页,那么该网站当天的PV是多少?解析:PV = 访问次数× 平均浏览页数访问次数 = 1000(题目中已经给定)平均浏览页数 = 5(题目中已经给定)因此,该网站当天的PV为:PV=1000×5=5000例题2一个月内有5000名用户访问了某个网站,其中75%的用户访问了该网站的首页,其余的用户平均浏览了20页。

那么该网站这个月的PV 是多少?解析:PV = 访问次数× 平均浏览页数访问次数 = 首页访问次数 + 其他页面访问次数首先,已知访问了首页的用户数量为5000 × 75% = 3750。

其他页面的平均浏览页数为20页,因此可计算出其他页面访问次数:其他页面访问次数 = (5000 - 3750) × 20 = 25000最后,求得PV:PV=访问次数×平均浏览页数=(3750+25000)×((3750×75例题3某网站一天内的PV为20000,其中20%的访问来自搜索引擎,每个搜索引擎用户平均浏览了8页,其余的用户平均浏览了5页。

那么该网站搜索引擎用户和非搜索引擎用户的数量分别是多少?解析:PV = 搜索引擎用户访问次数×平均浏览页数+ 非搜索引擎用户访问次数×平均浏览页数已知PV=20000,平均浏览页数分别为8页和5页,因此有:搜索引擎用户访问次数×8 + 非搜索引擎用户访问次数×5 = 20000又已知搜索引擎用户的访问比例为20%,因此有:搜索引擎用户访问次数÷(搜索引擎用户访问次数 + 非搜索引擎用户访问次数) = 20%化简上式,得:搜索引擎用户访问次数= 20000 × 20% × (5 ÷ 3)代入第一个式子中,得:(20000 × 20% × (5 ÷ 3))×8 + 非搜索引擎用户访问次数×5 = 20000化简,得:非搜索引擎用户访问次数 = 20000 − (20000 × 20% × (5 ÷ 3))×8) ÷ 5 ≈ 24960最终得到,搜索引擎用户的数量≈ 6667非搜索引擎用户的数量≈ 13333总结PV是衡量网站流量的重要指标,通过掌握PV的计算方法和经典例题,可以更好地了解和掌握PV的概念和计算方法。

P.V操作(典型例题)

P.V操作(典型例题)

有个寺庙,庙中有个小和尚和老和尚若干人,有一只水缸,由小和尚提水入缸给老和尚饮用。

水缸可容10桶水,水取自同一口水井中。

水井径窄,每次仅能容一只水桶取水,水桶总数为3个。

若每次只能入缸一桶水和取缸中一桶水,而且还不可以同时进行。

试用一种同步工具写出小和尚和老和尚入水、取水的活动过程。

4.答:本题为两个进程共享两个缓冲区的问题。

首先考虑本题有几个进程:从井中取水后向缸中倒水此为连续动作,为一个进程;从缸中取水为另一个进程。

其次考虑信号量,有关互斥的有:水井和水缸。

水井一次仅能一个水桶进出,水缸一次入、取水为一桶。

分别设互斥信号量为:mutex1和mutex2控制互斥。

有关同步问题为:三个水桶无论从井中取水还是入出水缸都是一次一个,应为它设信号量count,抢不到水桶的进程只好等待。

水缸满时不可入水,设信号量为empty,控制水量,水缸空时不可出水,设信号量full,控制出水量。

设置信号量初值:mutex1:=mutex2:=1;count:=3;empty:=10;full:=0;Parbegin﹛小和尚打水进程:BeginP(empty);P(count);P(mutex1);从井中打水;V(mutex1);P(mutex2);倒水入缸;V(mutex2);V(count);V(full);End老和尚取水进程:BeginP(full);P(count);P(mutex2);从缸中取水;V(mutex2);V(count);V(empty);End}Parend.2. 假定一个阅览室可供50个人同时阅读。

读者进入和离开阅览室时都必须在阅览室入口处的一个登记表上登记,阅览室有50个座位,规定每次只允许一个人登记或注销登记。

要求:(1)用PV操作描述读者进程的实现算法(可用流程图表示,登记、注销可用自然语言描述);(2)指出算法中所用信号量的名称、作用及初值。

解S1:阅览室可供使用的空座位,其初值为50S: 是否可通过阅览室,其初值为1Process READ_in(i=1…50){到达阅览室入口处;P(S1);P(S);在入口处登记座位号;V(s);进入座位并阅读;}Process READ_out(j=1…50){结束阅读到达阅览室入口处;P(S);在入口处注销座位号;V(S1);V(S)离开入口处;}●N个并发进程公用一个公共变量Q,信号灯进程:main(){begins=1;cobeginp1();p2();…pn();coend}Pi(){P(s)…V(s)}其中i=1、2…n●用户A、B、C打印进程(间接相互制约关系):s初值为1,假设打印机占用1时间片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在计算机操作系统中,PV操作是进程管理中的难点。

首先应弄清PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:
P(S):①将信号量S的值减1,即S=S-1;
②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。

V(S):①将信号量S的值加1,即S=S+1;
②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。

PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。

PV操作属于进程的低级通信。

什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。

信号量的值与相应资源的使用情况有关。

当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。

注意,信号量的值仅能由PV操作来改变。

一般来说,信号量S³0时,S表示可用资源的数量。

执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。

而执行一个V操作意味着释放一个单位资源,因此S
的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。

利用信号量和PV操作实现进程互斥的一般模型是:
进程P1 进程P2 ……进程Pn
………………
P(S); P(S); P(S);
临界区;临界区;临界区;
V(S); V(S); V(S);
……………………
其中信号量S用于互斥,初值为1。

使用PV操作实现进程互斥时应该注意的是:
(1)每个程序中用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。

若有多个分支,要认真检查其成对性。

(2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。

(3)互斥信号量的初值一般为1。

利用信号量和PV操作实现进程同步
PV操作是典型的同步机制之一。

用一个信号量与一个消息联系起来,当信号量的值为0时,表示期望的消息尚未产生;当信号量的值非0时,表示期望的消息已经存在。

用PV操作实现进程同步时,调用P操作测试消息是否到达,调用V操作发送消息。

使用PV操作实现进程同步时应该注意的是:
(1)分析进程间的制约关系,确定信号量种类。

在保持进程间有正确的同步关系情况下,哪个进程先执行,哪些进程后执行,彼此间通过什么资源(信号量)进行协调,从而明确要设置哪些信号量。

(2)信号量的初值与相应资源的数量有关,也与P、V操作在程序代码中出现的位置有关。

(3)同一信号量的P、V操作要成对出现,但它们分别在不同的进程代码中。

PV操作(二)
【例1】生产者-消费者问题
在多道程序环境下,进程同步是一个十分重要又令人感兴趣的问题,而生产者-消费者问题是其中一个有代表性的进程同步问题。

下面我们给出了各种情况下的生产者-消费者问题,深入地分析和透彻地理解这个例子,对于全面解决操作系统内的同步、互斥问题将有很大帮助。

(1)一个生产者,一个消费者,公用一个缓冲区。

定义两个同步信号量:
empty——表示缓冲区是否为空,初值为1。

full——表示缓冲区中是否为满,初值为0。

生产者进程
while(TRUE){
生产一个产品;
P(empty);
产品送往Buffer;
V(full);
}
消费者进程
while(True){
P(full);
从Buffer取出一个产品;
V(empty);
消费该产品;
}
(2)一个生产者,一个消费者,公用n个环形缓冲区。

定义两个同步信号量:
empty——表示缓冲区是否为空,初值为n。

full——表示缓冲区中是否为满,初值为0。

设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。

生产者进程
while(TRUE){
生产一个产品;
P(empty);
产品送往buffer(in);
in=(in+1)mod n;
V(full);
}
消费者进程
while(TRUE){
P(full);
从buffer(out)中取出产品;
out=(out+1)mod n;
V(empty);
消费该产品;
}
(3)一组生产者,一组消费者,公用n个环形缓冲区
在这个问题中,不仅生产者与消费者之间要同步,而且各个生产者之间、各个消费者之间还必须互斥地访问缓冲区。

定义四个信号量:
empty——表示缓冲区是否为空,初值为n。

full——表示缓冲区中是否为满,初值为0。

mutex1——生产者之间的互斥信号量,初值为1。

mutex2——消费者之间的互斥信号量,初值为1。

设缓冲区的编号为1~n-1,定义两个指针in和out,分别是生产者进程和消费者进程使用的指针,指向下一个可用的缓冲区。

生产者进程
while(TRUE){
生产一个产品;
P(empty);
P(mutex1);
产品送往buffer(in);
in=(in+1)mod n;
V(mutex1);
V(full);
}
消费者进程
while(TRUE){
P(full);
P(mutex2);
从buffer(out)中取出产品;
out=(out+1)mod n;
V(mutex2);
V(empty);
消费该产品;
}
需要注意的是无论在生产者进程中还是在消费者进程中,两个P操作的次序不能颠倒。

应先执行同步信号量的P操作,然后再执行互斥信号量的P操作,否则可能造成进程死锁。

【例2】桌上有一空盘,允许存放一只水果。

爸爸可向盘中放苹果,也可向盘中放桔子,儿子专等吃盘中的桔子,女儿专等吃盘中的苹果。

规定当盘空时一次只能放一只水果供吃者取用,请用P、V原语实现爸爸、儿子、女儿三个并发进程的同步。

分析在本题中,爸爸、儿子、女儿共用一个盘子,盘中一次只能放一个水果。

当盘子为空时,爸爸可将一个水果放入果盘中。

若放入果盘中的是桔子,则允许儿子吃,女儿必须等待;若放入果盘中的是苹果,则允许女儿吃,儿子必须等待。

本题实际上是生产者-消费者问题的一种变形。

这里,生产者放入缓冲区的产品有两类,消费者也有两类,每类消费者只消费其中固定的一类产品。

解:在本题中,应设置三个信号量S、So、Sa,信号量S表示盘子是否为空,其初值为l;信号量So表示盘中是否有桔子,其初值为0;信号量Sa表示盘中是否有苹果,其初值为0。

同步描述如下:
int S=1;
int Sa=0;
int So=0;
main()
{
cobegin
father(); /*父亲进程*/
son(); /*儿子进程*/
daughter(); /*女儿进程*/
coend

father()
{
while(1)
{
P(S);
将水果放入盘中;
if(放入的是桔子)V(So);
else V(Sa);
}
}
son()
{
while(1)
{
P(So);
从盘中取出桔子;
V(S);
吃桔子;

}
daughter()
{
while(1)
{
P(Sa);
从盘中取出苹果;
V(S);
吃苹果;


思考题:
四个进程A、B、C、D都要读一个共享文件F,系统允许多个进程同时读文件F。

但限制是进程A和进程C不能同时读文件F,进程B和进程D也不能同时读文件F。

为了使这四个进程并发执行时能按系统要求使用文件,现用PV操作进行管理,请回答下面的问题:(1)应定义的信号量及初值:。

(2)在下列的程序中填上适当的P、V操作,以保证它们能正确并发工作:
A() B() C() D()
{ { { {
[1]; [3]; [5]; [7];
read F; read F; read F; read F;
[2]; [4]; [6]; [8];
} } } }
思考题解答:
(1)定义二个信号量S1、S2,初值均为1,即:S1=1,S2=1。

其中进程A和C使用信号量S1,进程B和D使用信号量S2。

(2)从[1]到[8]分别为:P(S1) V(S1) P(S2) V(S2) P(S1) V(S1) P(S2) V(S2)。

相关文档
最新文档