理论力学-动能定理
理论力学——动能定理
W12 M z dj
j1
j2
Mz可视为作用在刚体上的力偶
例1 如图所示滑块重P=9.8 N,弹 簧刚度系数k=0.5 N/cm,滑块在A 位置时弹簧对滑块的拉力为2.5 N, 滑块在20 N的绳子拉力作用下沿光 滑水平槽从位置A运动到位置B,求 作用于滑块上所有力的功的和。
第十三章 动能定理
• • • • •
力的功 质点和质点系的动能 动能定理 普遍定理的综合应用举例 功率· 功率方程· 机械效率
引言
前两章是以动量和冲量为基础,建立了质点或质 点系运动量的变化与外力及外力作用时间之间的关系。 本章以功和动能为基础,建立质点或质点系动能的改 变和力的功之间的关系,即动能定理。不同于动量定 理和动量矩定理,动能定理是从能量的角度来分析质 点和质点系的动力学问题,有时是更为方便和有效的。 同时,它还可以建立机械运动与其它形式运动之间的 联系。
13.1 力的功
13.1.2 变力的功 设质点M在变力F的作用下沿曲线运动,如图。 力 F 在微小弧段上所作的功称为力的元功 , 记为 dW, 于是有
δW F cos d s
力在全路程上作 的功等于元功之和 M M1
ds dr
M'
F
M2
W F cos ds
0
s
上式称为自然法表示的功的计算公式。
I 为AB杆的瞬心
v IA
系统分析
v l sin
v
C
T总 TA TAB
3 TA Mv 2 4
TAB
T总
2
A
1 2 I I AB 2
1 9 M 4m v 2 12
理论力学-动能定理
vr2
质点系的动能与刚体的动能
质点系的动能——例 题 1
通过本例可以看出,确定系统动能时,注意以下几 点是很重要的:
系统动能中所用的速度必须是绝对速度。 正确应用运动学知识,确定各部分的速度。 需要综合应用动量定理、动量矩定理与动能定理。
质点系的动能与刚体的动能
刚体的动能
v0
r
C1
C2
d
坦克或拖拉机履带单位 长度质量为ρ ,轮的半径 为 r ,轮轴之间的距离为d, 履带前进的速度为v0 。
求:全部履带的总动能。
质点系的动能与刚体的动能——例 题 2
y´
v0 C1
d
r C2
解:把履带看成一质点系
在 C1 C2 上建立平动坐标系
C1x´y´,则牵连运动为水平平
移,牵连速度为 v0。
● 平移刚体的动能
刚体平移时,其上各点在同一瞬时具有相同的速度, 并且都等于质心速度。因此,平移刚体的动能
T
i
12mivi2
1 2
(
mi )vC2
1 2
mvC2
上述结果表明,刚体平移时的动能,相当于将 刚体的质量集中于质心时的动能。
质点系的动能与刚体的动能
刚体的动能
● 定轴转动刚体的动能
* 机器中有相对滑动的两个零件之间的摩擦力是内力,作负功。
* 有势力的内力作功,如系统内的弹簧力作功。
力的功
不作功的力
* 刚体的内力不作功
刚体内任何两点间的距离始终保持不变,所以刚体的内力所作 功之和恒等于零。
* 理想约束约束反力不做功
光滑的固定支承面、轴承、光滑的活动铰链、销钉和活动支座 都是理想约束。理由是它们的约束力不作功或作功之和等于零。
理论力学第12章动能定理
合力之功定理
合力所作的元功等于各分力的元功的代数和;合力在质点
任一段路程中所作的功,等于各分力在同一路段中所作的功的 代数和。
W
M2 M1
FR
dr
M2 M1
Fi
dr
Wi
5
四、几种常见力的功
1、重力的功
Fx Fy 0
W12
z2 z1
mgdz
mg(z1
z2 )
Fz mg
W 12 mgh
即: dT Wi 质点系动能定理的微分形式
T2 T1
W 12
质点系动能定理的积分形式
质点系动能的改变量,等于作用于质点系上的所有力在同一运 动过程中所作的功的代数和。——质点系积分形式动能定理
16
关于功的讨论
1.质点系内力的功
W
F drA F'drB
F drA F drB
vi vC vir
于是有:
T
1 2
mvC2
12mivi2r
质点系的动能等于质点系随同质心C的平动的动能与质点系相对于 质心C运动的动能之和。——柯尼希定理。
13
三.刚体的动能
1.平动刚体
T
1 2
mi
vi
2
1M 2
vC 2
2.定轴转动刚体
T
1 2
mi vi 2
1 2
(
miri2 ) 2
V k 2 δ 为质点在位置M时的弹簧的变形量。
2
三. 机械能守恒定律
T1 V1 T2 V2 机械能守恒.T+V称为机械能
质点系在仅有势力作用下运动时,其机械能保持不变。
质点系在非有势力作用下运动,机械能不守恒。在质点系的 运动过程中,机械能和其他形式的能量之和仍保持不变,这 就是能量守恒定律。
理论力学动能定理
12
2
mi ri 2
即
T
1 2
J z 2
(3)平面运动刚体的动能
速度瞬心为P
T
1 2
J
p 2
1 2
(JC
md 2 ) 2
得
T
1 2
mvC2
1 2
JC
2
即:平面运动刚体的动能等于随质心平移的动能
与绕质心转动的动能之和。
§14-3 动能定理
1、质点的动能定理
将 m d F 两端点乘 dt dr ,
1.势力场
力场 F F x, y, z 如:重力场、弹性力场、万有引力场
势力场: 物体在力场内运动,作用于物体的力的功只 与力作用点的始、末位置有关,与路径无关。
2.势能:在势力场中,质点从点M运动到任选的点M0,
有势力所作的功。
V M0 F dr M
M 0 称零势能点
4.摩擦力的功
(1) 动滑动摩擦力的功
W
M1M2F
ds
M1M
2
f
'Nds
N=常量时, W= –f´N S, 与质点的路径有关。
(2) 圆轮沿固定面作纯滚动时,滑动摩擦力的功 正压力 N ,摩擦力 F 作用于速度瞬心C,瞬心的元位移
dr vCdt0 W Fdr FvCdt0
dt
得 m d F dr
由于 m d d(1 m2 ), F dr w,
2 因此 d(1 m 2 ) w
2
上式称为质点动能定理的微分形式,即质点
动能的微分等于作用在质点上力的元功。
理论力学第13章动能定理
在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词
理论力学-11-动能定理及其应用ppt课件
M k
其中k为扭簧的刚度系数。当杆从角度θ1转到角度θ 2时所 作的功为 12 12 2 W k dk k 1 2 1 2 1 2 2
11.1 力的功 3、内力的功
内力作功的情形 日常生活中,人的行走和奔跑是腿的肌肉内力作功; 弹簧力作功等等;摩擦力做功损耗能量。 刚体的内力不作功 刚体内任何两点间的距离始终保持不变,所以刚体 的内力所作功之和恒等于零。
11.1 力的功
W F d r F dx + F dy + F dz 12 i i x y z W
M 2 M 2 M 2 M 1 M 1 M 1
由此得到了两个常用的功的表达式: 重力的功 对于质点:
z
M1 z1
F F 0 x y
重力的元功为
F P mg z=
r = k ( r l ) d r 0 r
r0——沿位矢方向的单位矢量 A k 2 2 2 W W r l r l 12 1 0 2 0 A 1 2
1 、 2 ——弹簧在初始位置和最终位置的变形量 。
k 2 2 W ( ) 12 1 2 2
vO O
C*
FN
W F d r F v d t 0 F C C
约束力为无功力的约束称为理想约束
11.1 力的功
总结: 内力不能改变质点系的动量和动量矩,但 它可能改变质点系的能量; 外力能改变质点系的动量和动量矩,但不 一定能改变其能量。
第11章 动能定理及其应用
11.2 质点与质点系的动能
弹性力作的功只与弹簧在初始和终止位置的变形量有关。
理论力学动能定理解析
对于线性弹簧,在此位置的弹簧力 F k
因此,弹簧力的功为
W12
1 2
k (12
2 2
)
B B1
FB1
FB
1
2
FA1
A1
FA
FA2
A
A2
B2 FB2
(3) 质点系的外力(主动力)的功
① 质点系的重力的功
设质点系内任一质点的质量为mi,当它由初位置点Ai
(xi1, yi1, zi1) 运动到末位置点Bi (xi2 , yi2 , zi2 )
在势力场中,质点从点M运动到任选的点M0,有势 力所作的功称为质点在点M相对于点M0的势能。以V表 示为
M0
M0
V F dr (Fxdx Fydy Fzdz)
M
M
点M0的势能等于零,称为零势能点。在势力场中, 势能的大小是相对于零势能点而言的。零势能点可以 任意选取,对于不同的零势能点,在势力场中同一位 置的势能可有不同的数值。
1 2
mvC2
Te
是质点系随质心平移的动能,亦 可称为牵连运动动能;
1 2
mi
vr2i
Tr
是质点系相对质心转动的动能,亦可 称为相对运动动能;
T
1 2
mvC2
1 2
mi
vr2i
或 Ta Te Tr
(2) 刚体的动能
(a)平移刚体的动能
T
1 m
2i
vi2
1 2
vC2
mi
即
T
1 2
mvC2
(1) 重力场中的势能
重力场中,以铅垂轴为z轴,z0处为零势能点。质点于 z坐标处的势能V等于重力mg由z到z0处所作的功,即
理论力学--第十二章 动能定理
由
M z Ft R
W M z d
从角 1 转动到角 2 过程中力
F 的功为
W12 M z d
1
2
若
Mz
常量
则 W12
M z ( 2 1 )
4. 平面运动刚体上力系的功 力系全部力的元功之和为
W Wi
当质心由 C1 ~ C2 ,转角由 1
2、弹性力的功 弹簧刚度系数k(N/m)
弹性力
F k (r l0 )er
A2
弹性力的功为
W12
A1
A2
F dr
k (r l0 )er dr
A1
因
1 r 1 er dr dr d(r r ) d(r 2 ) dr r 2r 2r
例3 均质细杆长为l,质量为m,上端B靠在光滑的墙上, 下端A用铰与质量为M半径为R且放在粗糙地面上的圆 柱中心相连,在图示位置圆柱作纯滚动,中心速度为 v,
杆与水平线的夹角=45o,求该瞬时系统的动能。
B C
v
A
T总 TA TAB
3 TA Mv 2 4
I为AB杆的瞬心
P
B
C
v PA
S
W=0
N
dW F1 dr1 F dr2
' 2
F1 φ 1 dr1 dr2
F2
F1( dr1cos1 dr2cos2 )
0
约束力做功之和等于零。
φ2
(3)光滑铰链支座
(4)固定端约束
}
约束力不作功
F
dr
F’
(5)光滑铰链(中间铰链)
理论力学 动能定理
第11章动能定理即质点系的动能等于其随质心平BCθABθCPA2rOr C力的功2rOr CAP2rOr CAP2rOr CAPs汽车驱动问题能量角度:汽缸内气体爆炸力是内力,不改变汽车的动量,但使汽车的动能增加。
动量角度:地面对后轮的摩擦力是驱动力,使汽车的动量增加,但不做功,不改变汽车的动能。
内力不能改变质点系的动量和动量矩,但可以改变能量;外力能改变质点系的动量和动量矩,但不一定能改变能量。
例题11-8水平悬臂梁AB,B端铰接滑轮B,匀质滑轮质量m1,半径r;绳一端接滚,轮C,半径r,质量m2视为质量集中在边缘;绳另端接重物D,质量m3。
求重物加速度。
CωDv BωCv 解:末位置是一般位置hconst 01==T T =2T 2321D v m 221B B J ω+221CP J ω+运动学关系rr v v B C C D ωω===2121rm J B =2222222rm r m r m J P=+=2321222121Dv m m m T ⎟⎠⎞⎜⎝⎛++=gh m W 312=CωDv BωCv h1212W T T =−gh m T v m m m D 30232122121=−⎟⎠⎞⎜⎝⎛++对t 求导h g m vv m m m D D &&33210)221(=−++Dv h =&D D a v=&gm m m m a D 3213221++=例11-9匀质圆盘和滑块的质量均为m。
圆盘的半径为r。
杆平行于斜面,其质量不计。
斜面的倾斜角为θ。
圆盘、滑块与斜面的摩擦因数均为μ。
圆盘在斜面上作纯滚动。
试求滑块下滑加速度。
1212W T T =−01=T 2222212121mvJ mv T A ++=ω解()sF F mgs mgs W B A +−+=θθsin sin 12θμcos mg F F B A ==取导221,mrJ v r A ==ω2245mvT =()θμθcos sin 2452−=gs v a v v s==&&,()θμθcos sin 54−=g a F A 是静摩擦力,理想约束,不作功。
理论力学13-动能定理
动能定理是理论力学中重要的定理之一,描述了物体动能的变化与外力做功 的关系。它为解决各种实际问题提供了有力的工具。
动能的定义与计算方法
动能定义
动能是物体由于运动而具有的能量。
动能计算方法
动能等于物体质量与速度平方的乘积乘以常数1/2。
举例
例如,一个质量为m的物体速度为v,它的动能为Ek=1/2mv^2。
碰撞实验
通过观察简谐摆的运动过程, 可以验证动能定理在实验中 的有效性和准确性。
利用碰撞实验可以验证动能 定理在不同碰撞情况下的适 用性。
滚动小球实验
通过观察滚动小球的动能变 化,可以验证动能定理在滚 动运动中的应用。
结论和要点
结论
动能定理是描述物体动能变化与外力做功关系的重要定理。
要点
动能定理的表达式是功等于动能的变化量,可以通过实验验证。
动能定理的提出及其重要性
1 提出背景
动能定理最早由牛顿提出,是牛顿运动定律的一部分。
2 重要性
动能定理能够精确描述物体动能的变化与外力做功的关系,对研究运动学和动力学等科 学领域具有重要意义。
动能定理的表达式及推导过程
动能定理表达式 推导过程 推导公式
功等于动能的变化量 根据牛顿第二定律和功的定义推导得出 W = ΔK = (1/2)mvf^2 - (1/2)mvi^2
动能定理在实际问题中的应用
1
碰撞问题
2
动能定理在研究碰撞问题中起到关 键作用,如弹性碰撞和非弹性碰撞。
3
机械能守恒
动能定理与势能定理结合可以帮助 解决机械能守恒的问题。
动能定理与其他物理定律的 关系
动能定理与动量定理、能量守恒定 律等相互关联,共同构成了理论力 学的核心部分。
理论力学课件:动能定理
动能定理
【例12-8】 C618车床的主轴转速n=42r/min时,其切削力
P=14.3kN,若工件直径d=115mm,电动机到主轴的机械效率
η=0.76。求此时电动机的功率为多少?
解 由式(12-12)得切削力P 的功率:
动能定理
12.5 势力场 势能及机械能守恒定理
动能定理
动能定理
12.4 功率 功率方程
1.功率
在单位时间内力所做的功称为功率。它是衡量机器工作
能力的一个重要指标。
δW 是dt时间内力的元功,则功率为
动能定理
由于元功为δW =Ft·ds,因此
即,力的功率等于切向力与力作用点速度的乘积
力矩的元功为δW =M·dφ,则
即,力矩的功率等于力矩与物体转动角速度的乘积。
动能定理
动能定理
12.1 力的功
12.2 质点 质点系的动能
12.3 质点与质点系的动能定理
12.4 功率 功率方程
12.5 势力场 势能及机械能守恒定理
12.6 动力学普遍定理及综合应用
思考题
动能定理
12.1 力 的 功
工程实际中,一物体受力的作用所引起运动状态的变化,
不仅取决于力的大小和方向,而且与物体在力的作用下经过
的功。
动能定理
图12-15
动能定理பைடு நூலகம்
【例12-4】 在图12-16中,为测定摩擦系数f,把矿车置于
斜坡上的A 点处,让其无初速下滑。当它达到B 点时,靠惯性
又往前滑行一段路程,在C 点处停止。求摩擦系数f0,已知S1、
S2 和h。
图12-16
动能定理
理论力学动能定理
的等效力(其力矢为力系的主矢)在质心的位移上所作
的功。
③ 作用在定轴转动刚体上的力的功
作用在定轴转动刚体上的力系的元功为
dW dWi ω M z (Fi )dt M z (Fi )d M z d
作用在定轴转动刚体上的力系的功等于力系向转轴 简化的等效力偶(其力偶矩为力系对转轴的主矩)在刚 体的角位移上所作的功。
drAB
B
drAB // FB
y
drAB可以分解为平行于FB与垂直于FB的两部分,即
drAB drAB // drAB
内力元功之和
dW i FB drAB FB (drAB// drAB ) FBdrAB //
当A、B的距离变化时,内力的元功之和不等于零。
工程中常用的弹簧力的功就是内力的功。设弹簧的
② 作用在平移刚体上的力的功
设力F在质点系上的作用点的速度为v,则在时间dt
内,力F的元功为
dW F dr F vdt
刚体平移时,在任一瞬时刚体上的各点的速度相同, 则作用在刚体上的力系的元功为
dW Fi dri Fi vdt Fi drC FR drC
例如质点系在重力场中各质点的z坐标为 时为零势能点位置,则各质点z坐标为 时的势能为
z10 , z20 ,, zn0
z1 , z2 , , zn
V mi g ( zi zi 0 )
质点系的重力势能可写为
V mg ( zC zC 0 )
(4) 有势力的功
设某个有势力的作用点在质点系的运动过程中,从 点M1到点M2,该力所作的功为W12。若取M0为零势能点, 则从M1到M0和从M2到M0有势力所作的功分别为M1和M2 位置的势能V1和V2。因有势力的功与轨迹形状无关,而 由M1经过M2到达M0时,有势力的功为
理论力学动能定理
光滑铰链(中间铰链)、刚性二力杆及不可伸长的细 绳作为系统内的约束时,约束力作功之和等于零。 滑动摩擦力作负功。
当轮子在固定面上只滚不滑时,滚动摩擦力不作功。
变形元件的内力(气缸内气体压力、弹簧力等)作功; 刚体所有内力作功的和等于零。
例2 卷扬机如图,鼓轮在常力偶M的作用下将圆柱上拉。已 知鼓轮的半径为R1,质量为m1,质量分布在轮缘上;圆柱 的半径为R2,质量为m2,质量均匀分布。设斜坡的倾角为α, 圆柱只滚不滑。系统从静止开始运动,求圆柱中心C经过路 程S 时的速度。 解:以系统为研究对象, 受力如图。系统在运动过程中 所有力所作的功为
vC 1 R1
2 1
1 2 J c m2 R2 2
vC 2 R2
m2g
FS
FN
于是
2 vC T2 (2m1 3m2 ) 4
FOy M O C m1g FOx
由 T2 T1 W12 得
m2g
FS
FN
2 vC s (2m1 3m2 ) 0 M m2 g sin s 4 R1
1 2 d mv W 2
--质点动能定理微分式
即:质点动能的增量等于作用于质点上外力所作的 元功。
1 1 2 2 积分后得: mv2 mv1 W 2 2 或: T2 T1 W
即:在一段路程中,质点动能的改变量等于作用于质 点上外力在路程上所作的功。
二、质点系的动能定理
的联系,这是一种能量传递的规律。
§13-1 力的功
一、力的功
力的功是力在一段路程内对物体作用的积累效应
的度量。力做功的结果是使物体的机械能发生变化
1、常力功的计算
理论力学课件 第十二章 动能定理
FRO
r1 r2 O
mg
解:取整体为研究对象,受力分析如图所示。 v1
A
v2
B
系统对O点的动量矩为
m1 g
m2 g
LO m1v1r1 m2v2r2 J0 (m1r12 m2r22 JO )
系统所受全部外力对O点的动量矩为
MO (F e ) m1gr1 m2gr2
质点系的动量矩定理为 dLO dt
WFN 0
WF F s fmgs cos 30 8.5 J
WF
1 2
k
(12
2 2
)
100 (0 0.52) 2
12.5 J
W Wi 24.5 0 8.512.5 3.5 J
12.2 质点和质点系的动能
12.2.1 质点的动能
设质量为m的质点,某瞬时的速度为v,则质点质量与其速度平方乘积的
路径无关。若质点下降,重力的功为正;若质点上升,重力的功为负。
对于质点系,重力的功等于各质点的重力功的和,即
上式也可写为
W12 mi g(zi1 zi2) W12 mg(zC1 zC2 )
2.弹力的功
设有一根刚度系数为k,自由长为l0的弹 簧, 一端固定于点O, 另一端与物体相连接,
如图所示。求物体由M1移动到M2过程中,弹 力F所做的功。
W12
M2 M1
(Fx
d
x
Fy
d
y
Fz
d
z)
12.1.3 常见力的功
1.重力的功
z M1 M
mg
设质点M的重力为mg,沿曲线由M1运动到
M2
M2,如图所示。因为重力在三个坐标轴上的
投影分别为Fx=Fy=0,Fz=-mg,故重力的功为
理论力学第十二章 动能定理
§12-1 力的功
II. 弹性力的功
一端固定的弹簧与一质点M相连接,弹簧的原始长 度为l0,在弹性变形范围内,弹簧弹性力F的大小与其 变形量δ成正比,即
F=kδ
当质点M由M运动时,弹性力的功仍按上式计算,即弹性力的功也 只决定于弹簧初始位置与终了位置的变形量,而与质点的运动轨迹无关。
由于功只有正负值, 不具有方向意义,所 以功是代数量。
§12-1 力的功
II. 变力的功
设质点M在变力F作用下作曲线运动,当质点从M1 沿曲线运动到M2时,力F所做的功的计算可处理为: (1)整个路程细分为无数个微段dS;(2)在微小路程上, 力 F 的 大 小 和 方 向 可 视 为 不 变 ; (3)dr 表 示 相 应 于 dS 的微小位移,当dS足够小时,∣dr∣=dS。根据功的 定义,力F在微小位移dr上所做的功(即元功)为
直角坐标形式为
力F在曲线路程 上所做的功等于该力在各微段的元功之和,即
§12-1 力的功
Ⅲ. 合力的功
合力在任一路程上所做的功等于各分力在同一路程上所作功的代数和。即
常见力的功
I. 重力的功
设有一重力为G的质点,自位置M1沿某曲线运动至M2 ,
上式表明,重力的功等于质点的重量与其起始位置与终了位置 的高度差的乘积,且与质点运动的轨迹形状无关.
第十二章 动能定理
主要研究内容
力的功 功率与机械效率 动能 动能定理
§12-1 力的功
功的概念
功是度量力的作用的一个物理量。它反映的是力在一段路程上对物体作用 的累积效果,其结果是引起物体能量的改变和转化。力的功包含力和路程 两个因素。
I. 常力的功
设有大小和方向都不变的力F作用在物体上,力的 作用点向右作直线运动。则此常力F在位移方向的投 影Fcosα与位移的大小S的乘积称为力F在位移S上所 做的功,用W表示,即 W=S·Fcosa 。可知,当a<90 度时,功W为正值,即力F做正功;当a>90度时,功 W为负值,即力F做负功;当a=90度时,功为零,即 力与物体的运动方向垂直,力不做功。
理论力学(12.3)--动能定理
第十二章常见问题
问题一 正确计算功和动能,分析哪些力不作功,哪些力作功。
问题二 在理想约束下只考虑主动力的功。
如果有摩擦,只需记入摩擦力的功。
问题三 功是力与受力物体上力作用点位移的点积,不是力与力在空间位移的点积。
问题四 作用于纯滚动圆盘与静止地面接触点的法向约束力和摩擦力(不含滚动摩阻)不作功。
问题五 如果动能定理的积分形式用函数形式表示,则将其对时间求导即可求得加速度和角加速度,当然也可以用动能定理的微分形式或功率方程。
问题六 多数动力学问题可优先考虑动能定理求得加速度和角加速度,然后再利用动量及动量矩定理求得力。
问题七 对某些动力学问题,在求解时注意分析是否存在动量守恒和动量矩守恒。
问题八 求解动力学问题,一般要补充运动学关系。
理论力学:动能定理
9. 动能定理动能:是描述质系运动强度的一个物理量,任一质点在某瞬时的动能为212i i m v 。
质点动能定理的微分形式:作用于质点上力的元功等于质点动能的微分。
质点动能定理的积分形式:作用于质点上的力在有限路程上的功等于质点动能的改变量。
力的元功:力在一无限小位移中力所做的功。
力在有限路程上的功:力在此路程上元功的定积分21d M M W =⋅⎰F r 。
理想约束:约束力的元功的和等于零的约束。
质系动能定理的微分形式:在质系无限小的位移中,质系动能的微分等于作用于质系全部力所做的元功之和,即d δF T W =∑。
质系动能定理的积分形式:质系在任意有限路程的运动中,起点和终点动能的改变量,等于作用于质系的全部力在这段路程中所做功的和,即21i T T W -=∑。
质点系的动能:组成质点系的各质点动能的算术和,即2112ni i i T m v ==∑。
柯尼西定理:平面运动刚体的动能等于随质心平动的动能与绕通过质心的转轴转动的动能之和。
功率:在单位时间内所做的功。
力场:如质点在某空间内任一位置都受有一个大小和方向完全由所在位置确定的力作用,具有这种特性的空间就称为力场。
势力场或保守力场:如质点在某一力场内运动时,力场力对于质点所做的功仅与质点起点与终点位置有关,而与质点运动的路径无关,则这种力场称为势力场或保守力场。
质点在势力场内所受的力称为势力或保守力。
势能:在势力场中,质点由某一位置M 运动到选定的参考点M 0的过程中,有势力所做的功,以V 表示,即0x d d d d M M y z MMV F x F y F z =⋅=++⎰⎰F r 。
保守系统:具有理想约束,且所受的主动力皆为势力的质系。
机械能:质系在某瞬时的动能与势能的代数和。
机械能守恒定律:保守系统在运动过程中,其机械能保持不变。
即,质系的动能和势能可以互相转化,但总的机械能保持不变。
理论力学11动能定理
F dr Xdx Ydy Zdz)
力 F 在曲线路程 M1M 2 中作功为
M2
M2
W F cosds F ds (自然形式表达式)
M1
M1
M2
F dr
(矢量式)
M1
M2
Xdx Ydy Zdz (直角坐标表达式)
9
M1
三.合力的功
质点M 受n个力 F1,F2 ,,Fn 作用合力为 R Fi 则合力 R
F d (rA rB ) F d (BA)
只要A、B两点间距离保持不变,内力的元功和就等于零。
不变质点系的内力功之和等于零。刚体的内力功之和等于零。
不可伸长的绳索内力功之和等于零。
功的计算公式中力作用点的含义应包括三方面: (1)受力点:受力物体(分析对象)上直接受到力的那个点; (2)加力点:施力物体上加力的那个点,该瞬时与受力点的接触点; (3)力点:力作用点的空间位置。 任何瞬时这三个点都是重合的,但在很多情况下,这三个点具有不同的运 动和轨迹。 功的正确计算: dr 和 v应当为受力点的位移和速度。
即 dT Wi 质点系动能定理的微分形式 将上式沿路径 M1M 2 积分,可得
T2 T1 W 质点系动能定理的积分形式
在理想约束的条件下,质点系的动能定理可写成以下的形式
dT W (F) ; T2 T1 W (F)
5
若将质点系中的受力分为外力、内力,则有外力功和内力功
T2 T1 W12
W12 i
ri 2 ri1
F (e)
i
dri
i
ri 2 ri1
F (i)
i
dri
理论力学第13章-动能定理
k C
G
W1 G h 9.8 5 49N c m (a)
(b)
弹性力的功:1 0, 2 AC BC AB 2 202 52 40 1.23c m
W2
k 2
2 1
2 2
40 2
0 1.232
30.3N c m
所有力的功 W W1 W2 49 30.3 18.7N c m 0.187J
13 动能定理
13.1 力的功、功率 13.1.1 功的表达式 力的功( Work )是力在一段路程上对物体作用的累
积效果,其结果将导致物体能量的变化。
设质量为 m 的质点 M,受力 F 作用,质点在惯
性参考系中运动的元位移为 d r。
力的元功 :力F 在元位移上 累积效果
dW F dr
(13-1)
与其角速度平方的乘积之半。
根据平行轴定理
JP JC M d2
M 为刚体的质量,d = P C ,J C 为对于质心的转动惯量。
T 1 2
JC M d2
2
1 2
JC
2
1 2
M
d
2
因为 d vC
T
1 2
M
v
2 C
1 2
JC
2
(13-21)
即作平面运动的刚体的动能,等于随质心平动的动能与
绕质心转动的动能的和。
P
M
z
dj
dt
M
z
(13-15)
即力矩的功率,等于力矩与刚体转动角速度的乘积。
功率计量单位为焦耳/秒 ( J / s ),瓦 ( W ):
1W 1J/s 1N m/s
(2)机械效率。P输入、P输出、P损耗 分别表示输入功
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l0
)2
(r2
l0 )2 ]
其中, 1 、 2 是弹簧初始位置 和最终位置的变形量。
弹性力的功与路径无关。
力的功
作用在刚体上力与力偶的功
定轴转动刚体上作用力的功
刚体以角速度ω绕定轴 z 转动,其上 A 点作用
有力 F ,则
F F cos
ds Rd
则力F 的元功为
W F d r F R d Mz ( F )d
i
mi (ri )2
12(
2
i
miri2 )
1 2
J z
2
柔性约束也是理想约束。因为它们只有在拉紧时才受力,这时 与刚性杆一样,内力作功之和等于零。
力的 功 不作功的力
* 纯滚动时,滑动摩擦力(约束力)不作功
vO O
C* F
FN
C* 为瞬时速度中心,在这一 瞬时C*点的速度为零。作用在 C*点的摩擦力F 所作元功为
dWF F drC
F vC dt 0 约束力不做功的约束称为理想约束
对于质点: W12 mg z1 z2
其中:z1 、z2分别是质点在初位置和末位置的z 坐标
对于质点系: W12 mg zC1 zC2
其中:zC1、 zC2分别是质点系质心在初位置和末位置的z 坐
标 重力的功与路径无关。
力的功
几种常见力的功
弹性力的功
W12
k(
2
2 1
2)
2
k 2 [(r1
T
i
1 2mi
vi2
1 2
(
mi )vC2
1 2
mvC2
上述结果表明,刚体平移时的动能,相当于将 刚体的质量集中于质心时的动能。
质点系的动能与刚体的动能
刚体的动能
● 定轴转动刚体的动能
刚体以角速度 绕定轴 z 转动时,其上-点的速度
为:
vi ri
因此,定轴转动刚体的动能为
T 1 2
理论力学
第三篇 动力学
第12章 动能定理
第12章 动能定理
动能是物体因为运动而具有的机械能,它是作功 的一种能力。动能定理描述质点系动能的变化与力 作功之间的关系。
动力学普遍定理
动量定理 动量矩定理 动能定理
矢量形式
标量形式
求解实际问题时,往往需要综合应用动量定理、 动量矩定理和动能定理。
力的功
vD
mvrcos 2m m0
T
1 2
m(vD2
vr2 )
1 2
m(vD2
vr2
2vDvrcos )
1 2
m0vD2
2m(2m m0 ) m2cos2 2(2m m0 )
vr2
质点系的动能与刚体的动能
刚体的动能
● 平移刚体的动能
刚体平移时,其上各点在同一瞬时具有相同的速度, 并且都等于质心速度。因此,平移刚体的动能
力的功
内力作功的情形
质点系的内力总是成对出现的,且等值、反向、共线。因此, 质点系的内力对质点系的动量和动量矩没有影响。
? 那么,质点系的内力对质点系作不作功呢
事实上,在许多情形下,物体的运动是由内力作功而引起的。 当然也有的内力确实不作功。
* 人的行走和奔跑是腿的肌肉内力作功。
* 所有的发动机从整体考虑,其内力都作功。
M z (F ) F R ——力 F 对轴 z 的矩
于是,力在刚体上由 1 转到 2 时所作的功为
W12
2 1
M
z
(
F
)
d
力的功
作用在刚体上力的功、力偶的功 定轴转动刚体上外力偶的功
若力偶矩矢量为 M ,则力偶所作之功为
W M zd
W12
2 1
M
zd
其中Mz 为力偶矩矢 M 在 z 轴上的投影,即力偶对转轴 z 的矩。
方向无关。质点系的动能与刚体源自动能质点系的动能——例 题 1
设重物A、B的质量为mA= mB= m, 三角块D 的质量为 m0 ,置于光滑地 面上。圆轮C 和绳的质量忽略不计。
系统初始静止。
v 求:当物块A以相对速度
系统的动能。
r 下落时
解:重物A、B的运动可以看成质点的运动,
三角块D做平动,也可以看成质点的运动。
* 机器中有相对滑动的两个零件之间的摩擦力是内力,作负功。
* 有势力的内力作功,如系统内的弹簧力作功。
力的 功 不作功的力
* 刚体的内力不作功
刚体内任何两点间的距离始终保持不变,所以刚体的内力所作 功之和恒等于零。
* 理想约束约束反力不做功
光滑的固定支承面、轴承、光滑的活动铰链、销钉和活动支座 都是理想约束。理由是它们的约束力不作功或作功之和等于零。
开始运动后,系统的动能为
T
1 2
mAvA2
1 2
mBvB2
1 2
m0vD2
其中 vA vD vAr ; vB vD vBr
质点系的动能与刚体的动能
质点系的动能——例 题 1
v A vD v Ar vB vD vBr
或者写成
v
2 A
vD2
vr2
?
vB2 vD2 vr2 2vDvr cos (vD vr cos)2 (vr sin )2
理想约束的约束反力不做功
第12章 动能定理
质点系的动能与刚体的动能 质点系的动能 刚体的动能
质点系的动能与刚体的动能
质点系的动能
物理学中对质点的动能的定义为
T 1 mv2 2
质点系的动能为质点系内各质点动能之和。
T
i
1 2mi
vi2
动能是度量质点系整体运动的另一物理量。动能
是正标量,其数值与速度的大小有关,但与速度的
力的功
力的功定义
M1
变力 Fi 的元功
δW Fi dri Fi ds cosFi,dri
M2
Fxdx Fydy Fzdz
力 Fi 在其作用点的轨迹上从 M1 点到 M2 点所作的功:
W12
M2 M1
Fi
d
ri
M2 M1
(
Fxdx
Fydy
Fzdz)
力的功
几种常见力的功
重力的功
质点系的动能与刚体的动能
质点系的动能——例 题 1
T
1 2
mAvA2
1 2
mBvB2
1 2
m0vD2
v
2 A
vD2
vr2
vB2 vD2 vr2 2vDvr cos (vD vr cos)2 (vr sin )2
注意到,系统水平方向上动量守恒,故有
mAvAx mBvBx mDvDx 0 mvD m(vD vrcos) m0vD 0
力的功定义
常力对直线运动质点所作的功: W F s F s cos
变力 Fi 的元功
M1
δW Fi dri Fi ds cosFi,dri
M2
Fxdx Fydy Fzdz
需要注意的是,一般情形下,元功并不是功函数的全微 分,所以,一般不用dW表示元功,而是用W表示。 W仅仅 是Fi•dri 的一种记号。