随机变量和数学期望

合集下载

随机变量与数学期望

随机变量与数学期望
② 当X与Y独立
③ 随机变量的矩母函数和其分布函数之间存在一一 对应4.9.1 (马尔科夫不等式)若X为一个非负随 机变量,则对于任意a>0,
命题4.9.2 (切比雪夫不等式)假设X为期望为, 方差为2,则对于任意k>0,
4.9 切比雪夫不等式和大数定律
例4.5.2 某厂找到并修复电力中断所需的时间 (小时)是一个随机变量,称为X,其密度函数
如果当故障持续时间为x,修复的费用为x3,那 么这种故障的预期费用是多少?
方法一:先求Y=X3的密度函数,再求Y期望; 方法二:利用命题4.5.1(计算较简单)。
4.5 期望的性质
数学期望的性质
① 线性性质:若a和b是常数,则 ② 随机变量和的期望:
不能求方差,因为那里各项不独立。
4.7 协方差和相关系数
相关系数的定义
相关系数的性质(证明方法类似于第2章样本相 关系数)
Corr(X,Y)=1或-1,当且仅当X和Y线性相关,即 P(Y=a+bX)=1 (当b>0, 相关系数为1; 当b<0, 相 关系数为-1)。
4.7 协方差和相关系数
4.9 切比雪夫不等式和大数定律
问题:若从均值为的总体中取n个样本(n充 分大),那么样本均值 与总体均值有什么 关系?
定理4.9.1 (弱大数定律)令X1, X2, …为一列独 立同分布的随机变量,且其期望为E[Xi]= , 方差有限。则对于任意>0,
说明:样本均值可用于估计总体均值。
4.9 切比雪夫不等式和大数定律
连续型随机变量独立等价性条件(密度函数):
4.3 随机变量的联合分布
例4.3.4 设X和Y为相互独立的随机变量且有相同的密 度函数,
试求随机变量X/Y的密度函数。 解:

高中数学中的随机变量与期望值计算

高中数学中的随机变量与期望值计算

高中数学中的随机变量与期望值计算随机变量是概率论与数理统计中的重要概念,它描述了随机试验的结果。

在高中数学中,我们经常会遇到与随机变量相关的问题,并需要计算其期望值。

本文将探讨随机变量的概念、期望值的计算方法以及其在实际问题中的应用。

一、随机变量的概念随机变量是一种将随机试验结果与数值联系起来的函数。

它可以是离散的,也可以是连续的。

离散随机变量的取值只能是一系列可数的数值,如掷骰子的点数;而连续随机变量的取值可以是任意的实数,如测量某物体的长度。

随机变量的概率分布函数描述了它的取值与对应概率之间的关系。

对于离散随机变量,概率分布函数可以用概率质量函数表示;对于连续随机变量,概率分布函数可以用概率密度函数表示。

二、期望值的计算方法期望值是随机变量的平均值,它表示了随机变量在大量试验中的平均表现。

在高中数学中,我们常用数学期望来表示期望值。

对于离散随机变量,期望值的计算公式为:E(X) = Σ(x * P(X=x))其中,x表示随机变量的取值,P(X=x)表示随机变量取值为x的概率。

对于连续随机变量,期望值的计算公式为:E(X) = ∫(x * f(x))dx其中,f(x)表示随机变量的概率密度函数。

三、期望值的性质期望值具有一些重要的性质,这些性质在实际问题中具有重要的应用价值。

1. 线性性质:对于任意常数a和b,有E(aX + b) = aE(X) + b。

这个性质使得我们可以简化复杂问题的计算过程。

2. 期望值与函数的关系:如果Y是随机变量X的函数,那么E(Y) = E(g(X)) =Σ(g(x) * P(X=x))或E(g(X)) = ∫(g(x) * f(x))dx。

这个性质使得我们可以通过函数的期望值来计算随机变量的期望值。

3. 期望值的不变性:如果随机变量X和Y具有相同的概率分布函数,那么E(X) = E(Y)。

这个性质使得我们可以通过寻找具有相同概率分布的随机变量来简化问题的计算。

四、期望值的应用期望值在实际问题中有广泛的应用。

高中高三数学《随机变量和数学期望》教案、教学设计

高中高三数学《随机变量和数学期望》教案、教学设计
(2)在讲解数学期望在实际问题中的应用时,采用案例分析、小组讨论等方式,让学生在具体情境中感受数学期望的作用,提高他们的应用能力。
(3)针对不同难度的练习题,进行分层教学,使学生在逐步克服难点的过程中,提高自己的数学素养。
3.教学策略和手段:
(1)运用信息技术,如多媒体、网络资源等,为学生提供丰富的学习材料,提高课堂教学效果。
2.教学过程:
(1)教师发放练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生疑问。
(3)教师选取部分学生作品进行展示,分析解题思路和技巧,并进行点评。
(五)总结归纳
1.教学内容:对本节课所学内容进行总结,巩固学生对随机变量和数学期望的理解。
2.教学过程:
(1)教师引导学生回顾本节课所学的主要内容,如随机变量的概念、分类、表示方法,数学期望的定义、性质和计算方法等。
4.小组合作完成一道综合应用题,要求学生在解决实际问题的过程中,运用随机变量和数学期望的知识。此题目旨在培养学生的合作意识和运用数学工具解决实际问题的能力。
5.针对课堂所学内容,教师编制一份测试卷,包括选择题、填空题、解答题等,全面检测学生对本章知识的掌握程度。
作业布置要求:
1.学生应在规定时间内独立完成作业,遇到问题可请教同学或老师,培养自主解决问题的能力。
(2)以小组合作的形式,让学生探讨随机变量的表示方法,如分布列、概率密度函数等,培养他们的合作意识和解决问题的能力。
(3)通过典型例题,引导学生掌握数学期望的定义和性质,学会运用数学期望进行计算。
2.对于难点内容的教学设想:
(1)针对分布列和概率密度函数的理解,设计直观的图表和动画,帮助学生形象地理解抽象概念。
4.引导学生关注社会热点问题,运用所学知识为社会发展贡献力量,培养他们的社会责任感和使命感。

3.3期望的性质与随机变量函数的期望

3.3期望的性质与随机变量函数的期望
寿命超过1年的概率 =不需调换的概率
P X 1
因此出售一台设备净赢利Y 的分布律为
Y
100
1 e 4
4
100 300
1 1 e 4
- 1 4
p
E (Y ) = 100e
- 1
- 200 (1 - e
)
33.64 (元).
发行彩票的创收利润 某一彩票中心发行彩票10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个, 奖金各 5千元; 三等奖10个, 奖金各1千元; 四等奖100 个, 奖金各1百元; 五等奖1000个, 奖金各10元. 每张彩票的成本费为0.3元, 请计算彩票发行单 位的创收利润. 解: 设每张彩票中奖的金额为随机变量X, 则
二、 随机变量函数的数学期望
1. 问题的提出
数学期望 X g(X) 数学期望 E(X)
E( X ) =
E ( X ) xk pk
k
ò
+
-
xf (x )dx
E轾 g (X ) = 臌
g(x)是连续函数, g(X) 是 随机变量, 如: aX+b, X2等 等.
2. 随机变量函数数学期望的计算 如何计算随机变量函数的数学期望?
例 设随机变量 X 的概率分布为 1 2 3 X
1 求 E ( ) , E ( X 2 2). X 1 1 1 解: E ( ) 1 0.1 0.7 0.2 0.52 X 2 3
P
0.1
0.7
0.2
E ( X 2)
2
(1 2) 0.1 (2 2) 0.7 (3 2) 0.2 6.7
X 10000 p 1 105

随机变量的数学期望和方差

随机变量的数学期望和方差

随机变量的数学期望和方差随机变量是概率论中的重要概念,用来描述一个随机事件可能取到的不同值及其对应的概率。

对于一个随机变量而言,数学期望和方差是常用的统计量,用于描述随机变量的平均水平和离散程度。

一、数学期望数学期望是随机变量的平均值,表示了随机变量在大量重复实验中的长期平均表现。

通常用E(X)或μ来表示,其中X为随机变量。

对于离散型随机变量,数学期望的计算公式为:E(X) = ΣxP(X=x)其中,x为随机变量X可能取到的值,P(X=x)为其对应的概率。

以掷骰子为例,假设随机变量X表示掷骰子的点数,点数可能取到1、2、3、4、5、6,每个点数的概率相等。

则计算掷骰子的数学期望为:E(X) = 1/6 × 1 + 1/6 × 2 + 1/6 × 3 + 1/6 × 4 + 1/6 × 5 + 1/6 × 6 = 3.5对于连续型随机变量,数学期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)为随机变量X的概率密度函数。

二、方差方差是随机变量取值与其数学期望的偏差的平方的平均值,用于衡量随机变量的离散程度。

通常用Var(X)或σ^2来表示,其中X为随机变量。

对于离散型随机变量,方差的计算公式为:Var(X) = Σ(x-E(X))^2P(X=x)以掷骰子为例,假设随机变量X表示掷骰子的点数,其数学期望为3.5。

则计算掷骰子的方差为:Var(X) = (1-3.5)^2 ×1/6 + (2-3.5)^2 ×1/6 + (3-3.5)^2 ×1/6 + (4-3.5)^2 ×1/6 + (5-3.5)^2 ×1/6 + (6-3.5)^2 ×1/6 = 2.9167对于连续型随机变量,方差的计算公式为:Var(X) = ∫(x-E(X))^2f(x)dx方差的平方根被称为标准差,用于度量随机变量的离散程度。

数学期望的计算公式

数学期望的计算公式

数学期望的计算公式数学期望是概率论中的重要概念,用于描述随机变量在大量试验中的平均值。

数学期望常用于统计分析和决策模型的建立。

本文将介绍数学期望的计算公式,并举例说明其应用。

一、离散型随机变量的数学期望计算公式对于离散型随机变量X,其取值有限且可数,其概率分布可以用概率质量函数P(X=x)表示。

则X的数学期望E(X)计算公式如下:E(X) = Σ[xP(X=x)]其中,Σ表示求和运算,x表示随机变量X的取值,P(X=x)表示随机变量X取值为x的概率。

例如,假设有一个骰子,其有6个面,每个面的点数分别为1、2、3、4、5、6,且每个面的点数出现的概率相等。

我们可以通过计算骰子的数学期望来获取平均点数的预期值。

设随机变量X表示骰子的点数,则X取值为1、2、3、4、5、6的概率均为1/6,因此骰子的数学期望E(X)的计算如下:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5因此,通过计算可得,骰子的数学期望为3.5。

二、连续型随机变量的数学期望计算公式对于连续型随机变量X,其取值在某个区间上,其概率分布可以用概率密度函数f(x)表示。

则X的数学期望E(X)计算公式如下:E(X) = ∫[xf(x)]dx其中,∫表示积分运算,x表示随机变量X的取值,f(x)表示随机变量X的概率密度函数。

例如,假设有一个服从均匀分布的随机变量X,其取值范围在0到1之间。

我们可以通过计算随机变量X的数学期望来预测其取值的平均数。

设随机变量X的概率密度函数为f(x),则在0到1之间,f(x)的取值为1。

因此,X的数学期望E(X)的计算如下:E(X) = ∫[x * 1]dx = ∫xdx = 1/2因此,通过计算可得,随机变量X的数学期望为1/2。

综上所述,对于离散型随机变量和连续型随机变量,其数学期望的计算公式分别为Σ[xP(X=x)]和∫[xf(x)]dx。

第11讲 数学期望

第11讲 数学期望

P
Exi=1.24
0.8
0.16
0.04
Ex=Ex1+...+Ex9=91.24=11.16
再多准备10%, 则约需为他们准备13发子弹
例9
一民航送客车载有20位旅客自机场开出, 旅客有10
个车站可以下车. 如到达一个车站没有旅客下车就不停 车. 以X表示停车的次数, 求E(X)(设每位旅客在各个车 站下车是等可能的, 并设各旅客是否下车相互独立). 解 引入随机变量
0.25a=0.5, 即a=2, k=3
某商店对某种家用电器的销售采用先使用后付款的方 例4 式, 记使用寿命为X(以年计), 规定: X1, 一台付款1500元;
1<X2, 一台付款2000元;
2<X3, 一台付款2500元;
X>3, 一台付款3000元.
设寿命X服从指数分布, 概率密度为
第四章
数字特征
第一节 数学期望
一、随机变量的数学期望
二、随机变量函数的数学期望
三、数学期望的性质
通常求出随机变量的分布并不是一件容易的事, 而人们更关心的是用一些数字来表示随机变量的 特点, 这些与随机变量有关的数字, 就是随机变 量的数字特征. 最常用的数字特征为数学期望, 方差和相关系数.
一、随机变量的数学期望
0 0

x
mxλe λydy
x

1 1 λx (m n) (m n) e nx. λ λ
1 1 λx E(Q) (m n) (m n) e nx. λ λ d 令 E(Q) (m n)e λx n 0, dx 得 而 1 n x ln . λ mn d2 λx E(Q) λ(m n)e 0, 2 dx

期望方差协方差

期望方差协方差

随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)),(-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。

高三数学下册《随机变量和数学期望》教案、教学设计

高三数学下册《随机变量和数学期望》教案、教学设计
-计算该随机变量的分布列、数学期望和方差。
-撰写一份小组报告,阐述研究过程、结果及意义。
4.写一篇学习心得,要求学生反思本节课的学习内容,包括以下要点:
-随机变量和数学期望在实际问题中的应用。
-学习过程中遇到的困难和解决方法。
-对随机变量和数学期望的理解,以及如何将其运用到生活中。
作业要求:
1.学生需按时完成作业,保持作业整洁、字迹清晰。
五、作业布置
为了巩固学生对随机变量和数学期望的理解,以及提升他们解决实际问题的能力,特布置以下作业:
1.请学生完成教材第chapter页的习题,包括以下题目:
-第1题:理解随机变量的概念,并能正确表示给定随机现象的随机变量。
-第2题:根据实际情境,推导并分析随机变量的分布列。
-第3题:计算给定随机变量的数学期望,并解释其物理意义。
高三数学下册《随机变量和数学期望》教案、教学设计
一、教学目标
(一)知识与技能
1.理解随机变量的概念,掌握离散型随机变量及其分布列的性质,能正确运用随机变量描述实际问题。
2.掌握数学期望的定义,理解数学期望的物理意义,能运用数学期望计算随机变量的平均取值。
3.学会运用方差描述随机变量的取值波动程度,理解方差的性质和意义,能计算简单随机变量的方差。
2.教学过程:
(1)教师引导:通过本节课的学习,我们知道随机变量是用来描述随机现象的数学模型,分布列反映了随机变量取值的概率分布,而数学期望和方差则分别反映了随机变量取值的集中趋势和波动程度。
(2)学生分享:邀请学生分享他们在学习过程中的心得体会,以及如何运用所学知识解决实际问题。
(3)教师总结:强调本节课的重点和难点,鼓励学生在课后继续巩固所学知识,为后续学习打下基础。

随机变量函数的数学期望

随机变量函数的数学期望
甲,乙双方的数学期望相同,表示他们的准确度相同.由于乙的方 差小,表示乙射手比甲射手好
(二) 方差的性质
1、常数的方差等于0
证明: D(c) E(c Ec)2 E(c c)2 0
2、随机变量和常数之和的方差就等于这个随机变量的方差。 证明:
D( c) E[ c E( c)]2 E[ c E c]2 E( E )2 D
§4.1 数学期望与方差
一.数学期望
随机变量x及它所取的数和相应频率的乘积和,称为x的平 均数(属于加权平均)也称为随机变量的数学期望或均值.
(一)离散型随机变量的数学期望
定义1 离散型随机变量X 有概率函数 P(X=xk)=Pk (k=1,2,....)
若级数 xk pk 绝对收敛,则称这个级数为X 的数学期望 k 1
ba 2
2
可见均匀分布的数学期望为区间的中值.
2.随机变量函数的数学期望
定理1 设Y是随机变量X的函数,Y=g(X)(g是连续函数)
(若1)若 Xg是(x离k ) 散pk绝型对 随机收变敛量,则,它E的(Y分) 布E律[g为( XP{)X] =xk}=gp(kx. k
K=1,2,..

k x) 2
f
(x)dx

1
a (x3 kx)2 dx

2a a
a2 (15a4 42ka2 35k) E(C)=C.
(2) E( +C)=E +C
证明:对离散型随机变量



E( C) (xi C) p(xi ) xi p(xi ) Cp(xi ) E C
E1 0.2 (80 85 90 95 100) 90 E2 0.2 (85 87.5 90 92.5 95) 90 D1 (80 90)2 0.2 (85 90)2 0.2 (90 90)2 0.2

随机变量的数学期望与方差

随机变量的数学期望与方差

随机变量的数学期望与方差随机变量是概率论和统计学中的重要概念,用来表示随机试验的结果。

在研究随机变量时,我们常常关注它们的数学特征,其中最常用的指标是数学期望和方差。

一、数学期望数学期望是描述随机变量平均取值的一个指标,记作E(X)。

对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X = x))其中,x 表示随机变量可能的取值,P(X = x)表示随机变量取值为 x 的概率。

通过这个公式,我们可以计算出随机变量的平均取值。

例如,假设我们抛一枚公平的硬币,正面为1,反面为0。

随机变量 X 表示硬币正面朝上的次数,那么 X 的所有可能取值及其概率为:X = 0,P(X = 0) = 1/2X = 1,P(X = 1) = 1/2根据数学期望的计算公式,我们可以计算得到该随机变量的数学期望为:E(X) = 0 * 1/2 + 1 * 1/2 = 1/2这意味着,在多次独立重复抛硬币的实验中,硬币正面朝上的平均次数大约为 1/2。

对于连续型随机变量,数学期望的计算公式稍有不同,可以使用积分的方法计算。

二、方差方差是描述随机变量取值分散程度的一个指标,记作Var(X)或σ²。

对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))² * P(X = x))其中,x 表示随机变量可能的取值,E(X)表示随机变量的数学期望,P(X = x)表示随机变量取值为 x 的概率。

通过这个公式,我们可以计算出随机变量的方差。

方差的计算公式可以拆解为方差等于随机变量与数学期望的偏差的平方乘以概率的和。

这意味着方差可以用来衡量随机变量的取值与其期望值之间的差异程度。

例如,我们继续以抛硬币的例子来说明方差的计算过程。

在之前的例子中,我们已经计算出随机变量 X 的数学期望为 1/2。

现在,我们可以使用方差的公式来计算方差:Var(X) = (0 - 1/2)² * 1/2 + (1 - 1/2)² * 1/2 = 1/4这意味着在多次独立重复抛硬币的实验中,硬币正面朝上的次数与其期望值的差异程度可以用方差 1/4 来描述。

4.1.2 随机变量的函数的数学期望及

4.1.2  随机变量的函数的数学期望及

南 昌 大 学4.1.2 随机变量的函数的数学期望及数学期望的性质一、随机变量的函数的数学期望在理论研究和实际应用中经常遇到求随机变量X的函数Y=g(X)的数学期望的问题,按定义应先求出Y=g(X)的分布,然后再利用Y的分布求E(Y),这样做显然比较麻烦。

是否可以不求g (X)的分布而只根据X的分布求得E[g(X)]呢?定理4.1:设 Y = g (X ) 为随机变量 X 的函数,其中 g 为连续的实函数。

1()[()]().k k k E Y E g X g xp +∞===∑ (2) X 是连续型随机变量,其概率密度为 f (x ),若积分∞∞∫()()-g x f x dx +绝对收敛,则有()[()]()().E Y E g X g x f x dx +∞-∞==⎰一、随机变量的函数的数学期望(1) X 是离散型随机变量,其分布律为(k =1,2,…), 若级数1()k k k g x p +∞=∑绝对收敛,则有()k k P X x p ==定理4.2:设 Z = g (X , Y )是二维随机变量 (X , Y ) 的函数,其中 g 为连续的实函数。

(1) 当 (X , Y ) 是二维离散型随机变量时,其分布律为 P ( X = x i , Y = y j ) = p ij , i , j =1,2,…,若级数11(,)i j ij j i g x y p +∞+∞==∑∑绝对收敛,则有11()[(,)](,).ij ij j i E Z E g X Y g x y p +∞+∞====∑∑一、随机变量的函数的数学期望()[(,)](,)(,).E Z E g X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰ (2) 当 (X , Y ) 是二维连续型随机变量时,其概率密度为 f ( x , y ),若积分 (,)(,)g x y f x y dxdy +∞+∞-∞-∞⎰⎰绝对收敛,则有例1:设随机变量 X 的分布律为求 E (-2X +1) 。

第二讲 随机变量函数的数学期望、期望的性质

第二讲 随机变量函数的数学期望、期望的性质
3.5
例2 设风速V在(0,a)上服从均匀分布,即密度函数
1 v (0, a ) f (v ) a 0 其它
又设飞机机翼受到的正压力W是V的函数W=kV2, 求W 的数学期望。 解: E (W ) kv 2 f (v )dv


a
0
1 1 2 kv dv ka 3 a
E ( X ) E ( X1 X 2
X10 )
E ( X1 ) E ( X 2 )
E( X10 )
9 20 10 1 8.784 10
即该空港巴士在到达目的地的途中平均停车 8.784次。
例5 求二项分布随机变量 X ~ b( n , p ) 的数学期望 解:二项分布的分布律为
2随机变量函数的数学期望1若离散型随机变量x的分布律为eyegxpgx2若连续型随机变量x的概率密度为fxeyegxgxfxdx设随机变量x的分布律为0202020103102002102201303ex11102002102201303ex35其它又设飞机机翼受到的正压力w是v的函数wkvewkvfvdvkvdv某公司计划开发一种新产品市场并试图确定该产品的产量
(1)若离散ቤተ መጻሕፍቲ ባይዱ随机变量X 的分布律为
P{ X xk } pk
k 1, 2,
k 1
则 E (Y ) E[ g( X )] pk g( xk ) (2)若连续型随机变量X 的概率密度为 f(x) 则 E (Y ) E[ g( X )]

g( x ) f ( x )dx
第三章 随机变量的数字特征
第二讲
随机变量的数学期望(2)
2、随机变量函数的数学期望

(完整版)随机变量的数学期望与方差

(完整版)随机变量的数学期望与方差

第9讲 随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。

2.熟练能计算随机变量的数学期望与方差。

教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。

教学学时:2学时。

教学过程:第三章 随机变量的数字特征§3.1 数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。

然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。

因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。

车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。

这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。

对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。

但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。

定义1 设X 是离散随机变量,它的概率函数是Λ ,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
10
例题
3. 已知随机变量ξ的分布律如下表所示:
x
0
2
π
1
1
1
P(ξ=x)
4
2
4
求随机变量η=cosξ的概率分布律.
解:η的取值为cos01,cos0,cos1.
2
x
1
0
-1
1
1
1
P(η=x)
4
2
4
a
11
练习
4. 已知随机变量ξ的分布律如下表所示:
1
x
9
3
1
9
1
1
1
1
P(ξ=x)
3
6
4
4
求η=log3ξ的分布律.
4.3(1) 随机变量和数学期望
上海市育才中学 李振昕
a
1
复习引入
基本事件:随机实验的一个可能结果. 基本空间:基本事件的集合,也称样本空间,
记作Ω.
例:掷一颗骰子的样本空间为
Ω={ω1, ω2, ω3, ω4, ω5, ω6}. 其则中可基用本基事本件空ω间k表上示的“函掷数一ξ(ω颗k)骰=k子,出k=现1,2k, 点…”,6., 来描述掷一颗骰子时出现的数值.
a
2
定义
一般地,我们把定义在基本空间Ω 上的函数叫做随机变量.
注: 1. 随机变量实质上是函数,区别于通常所 说的变量; 2.随机变量将随机现象与数值联系在一起. 通过随机变量,我们可以将随机事件转化 为实数.
a
3
例题
1. 在旋转一枚均匀硬币的实验中,用随机变 量 ξ 表示所有的基本事件及其概率. 分析:结果只有出现正面或反面, 我们设定出现正面时对应数“1”, 出现反面时对应数“0”. 对于那些初看起来与数值无关的随机现象, 通过人工设定也可以与数值联系起来.
x
2
1
0
-2
1
1
1
1
P(ξ=x)
3
6
4
4
a
12
练习
5. 已知随机变量ξ的分布律如下表所示:
x
1
2
3
4
1
2
P(ξ=x)
10
5
1
3
5
10
随机变量η=5-2ξ的分布律如下表所示:
x

1
-3
3
1
2
3
1
P(η=x)
5
5
10
10
请在框中填入适当的数字.
a
13
小结
随机变量; 随机变量的分布律.
a
14
p2

pn
一般地,随机变量所有的取值 x1, x2, … , xn 对应的概率所组成的数列 p1, p2, … , pn叫做 随机变量的概率分布律,简称随机变量的
分布律.
a
7
随机变量的概率分布律
如果设pk, k=1, 2, …, n是分布律, 那么它满足
1.0≤ pk≤1, k=1, 2, …, n; 2.p1+p2+…+pn=1.
a
4
例题
1. 在旋转一枚均匀硬币的实验中,用随机变量 ξ 表示所有的基本事件及其概率.
解:设基本事件ω1表示“出现图朝上”,对应
ξ=1; ω2表示“出现字朝上”,对应ξ=0;
Ω={1,P 0}. 11,P01.
2
2
概率
a
5
例题
2. 一个袋子里装有外形和质地一样的5个白球、
3个绿球和2个红球. 将它们充分混合后,
摸得一个白球记1分,摸得一个绿球记2分, 摸得一个红球记4分,用随机变量 η 表示 随机摸得一个球的得分及其概率.
解:随机事件 摸得白球 摸得绿球 摸得红球
η的取值
1
2
4
概率P
1
2
3 10
1 5
a
6
定义
一般地,取离散值的随机变量叫做离散型 随机变量,其取值概率可用下表给出.
xi
x1
x2

xn
P(ξ=xk) p1
a
8
练习
1. 下表是否可作为离散型随机变量的分布律.
x
0
1
3
(1) P(ξ=x)
1
1
1
4
4
2
x
0
1
2
(2)
1
1
1
P(ξ=x)
2
4
2
(3)
x
1
1
2
1
1
1
P(ξ=x)
4
4
2
a
9
练习
2. 用ξ表示掷一颗骰子出现的点数,求ξ的概 率分布律.
3. 用η表示独立地旋转一枚硬币3次出现图朝 上的次数,求η的概率分布律.
相关文档
最新文档