上海市高考数学试卷(理科)解析
高考真题理科数学(上海卷)解析版含答案
2013年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)一、填空题 1.计算:20lim______313n n n →∞+=+【解答】根据极限运算法则,201lim3133n n n →∞+=+.2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩. 3.若2211x xx y y y=--,则______x y +=【解答】2220x y xy x y +=-⇒+=.4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示) 【解答】2222222323303a ab bc c a b ab++-=⇒=++,故11cos ,arccos 33C C π=-=-.5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【解答】2515()(),2(5)71r r r r aT C x r r r x-+=--=⇒=,故15102C a a =-⇒=-. 6.方程1313313x x-+=-的实数解为________ 【解答】原方程整理后变为233238034log 4x x x x -⋅-=⇒=⇒=.7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________【解答】联立方程组得(1)1ρρρ-=⇒=,又0ρ≥. 8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【解答】9个数5个奇数,4个偶数,根据题意所求概率为252913118C C -=.9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =Γ的两个焦点之间的距离为________【解答】不妨设椭圆Γ的标准方程为22214x y b+=,于是可算得(1,1)C ,得24,23b c ==. 10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=【解答】10E x ξ=,22221019)30||D d ξ=++++++=.11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2sin()3x y +=. 12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________【解答】(0)0f =,故011a a ≥+⇒≤-;当0x >时,2()971a f x x a x=+-≥+即6||8a a ≥+,又1a ≤-,故87a ≤-. 13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48ππ+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【解答】根据提示,一个半径为1,高为2π的圆柱平放,一个高为2,底面面积8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为221228216πππππ⋅⋅+⋅=+.14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y fx -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【解答】根据反函数定义,当[0,1)x ∈时,()(2,4]f x ∈;[1,2)x ∈时,()[0,1)f x ∈,而()y f x =的定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应在集合(,0)[1,2](4,)-∞⋃⋃+∞,故若00()f x x =,只有02x =.二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞【解答】集合A 讨论后利用数轴可知,111a a ≥⎧⎨-≤⎩或11a a a ≤⎧⎨-≤⎩,解答选项为B .16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件 【解答】根据等价命题,便宜⇒没好货,等价于,好货⇒不便宜,故选B .17.在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( )(A)18(B)28(C)48(D)63【解答】,21i ji j i j i j a a a a a +=⋅++=-,而2,3,,19i j +=,故不同数值个数为18个,选A .18.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ).(A) 0,0m M =>(B) 0,0m M <>(C) 0,0m M <=(D)0,0m M <<【解答】作图知,只有0AF DE AB DC ⋅=⋅>,其余均有0i r a d ⋅≤,故选D . 三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =, 故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C ;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC D C AD ===,故132AD C S ∆=所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【解答】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥ 又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+ 故6x =时,max 457500y =元.21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值. 【解答】(1)因为0ω>,根据题意有C 11A34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”; (3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.【解答】:(1)C 1的左焦点为(F ,过F 的直线x =与C 1交于(,与C 2交于(1))±+,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =; (2)直线y kx =与C 2有交点,则(||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”。
2022上海高考真题—数学(理)解析版(纯word版)
2022上海高考真题—数学(理)解析版(纯word 版)一.填空题 1.运算:3-i=1+i(i 为虚数单位).【答案】1-2i 【解析】3-i(3-i)(1-i)2-4i===1-2i 1+i (1+i)(1-i)2. 【点评】本题着重考查复数的除法运算,第一,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A . 【答案】⎪⎭⎫ ⎝⎛-3,21 【解析】依照集合A 210x +>,解得12x >-,由12,,13x x --<<得到,因此⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,第一分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数1sin cos 2)(-= x x x f 的值域是 . 【答案】⎥⎦⎤⎢⎣⎡--23,25 【解析】依照题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,因此23)(25-≤≤-x f . 【点评】本题要紧考查行列式的差不多运算、三角函数的范畴、二倍角公式,属于容易题,难度较小.考纲中明确要求把握二阶行列式的运算性质.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题要紧考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情形一定要注意,属于低档题,难度较小. 5.在6)2(xx -的二项展开式中,常数项等于 . 【答案】160-【解析】依照所给二项式的构成,构成的常数项只有一项,确实是333462C ()160T x x=-=- . 【点评】本题要紧考查二项式定理.关于二项式的展开式要清晰,专门注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V .【点评】本题要紧考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范畴是 .【答案】(]1,∞- 【解析】依照函数,(),x a x ax a e x a f x ee x a---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,因此a 的取值范畴为:(]1,∞- .【点评】本题要紧考查指数函数单调性,复合函数的单调性的判定,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 【答案】33π【解析】依照该圆锥的底面圆的半径为r ,母线长为l ,依照条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ因此该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥. 【点评】本题要紧考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【答案】1- 【解析】因为函数2)(x x f y +=为奇函数,因此,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题要紧考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,因此有)()(x f x f -=-那个条件的运用,平常要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf . 【答案】)6sin(1θπ-【解析】依照该直线过点)0,2(M ,能够直截了当写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f .【点评】本题要紧考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意把握差不多规律和基础知识即可.关于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的竞赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 【答案】32【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,因此依照古典概型得到此种情形下的概率为32.【点评】本题要紧考查排列组合概率问题、古典概型.要分清差不多事件数和差不多事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||CD CN BC BM =,则AN AM ⋅的取值范畴是 . 【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,因此51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin ).22224284423N x x BM CN CN x BM x M x x π≤≤===+--则依照题意,有)83235,4821(),1,(x x AM x AN --==→→.因此83235)4821(x x x AN AM -+-=•→→⎪⎭⎫ ⎝⎛≤≤2521x ,因此2 5.AM AN →→≤•≤【点评】本题要紧考查平面向量的差不多运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【答案】45【解析】依照题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩因此围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,因此围成的图形的面积为45 .【点评】本题要紧考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出表达数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 . 【答案】13222--c a c【解析】据题a CD AC BD AB 2=+=+,也确实是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,现在有最大值,现在最大值为:13222--c a c .【点评】本题要紧考查空间四面体的体积公式、空间中点线面的关系.本题要紧考虑依照已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b【答案】 B【解析】依照实系数方程的根的特点1也是该方程的另一个根,因此b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题要紧考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对差不多知识和差不多技巧的考查,复习时要专门注意. 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C RcB R b A R a===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,因此C 为钝角,因此该三角形为钝角三角形.故选择A.【点评】本题要紧考查正弦定理及其推理、余弦定理的运用.要紧抓住宅给式子的结构来选择定理,假如显现了角度的正弦值就选择正弦定理,假如显现角度的余弦值就选择余弦定理.本题属于中档题. 17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x xx +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D = C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情形,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,因此有1ξD >2ξD . 故选择A.【点评】本题要紧考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100 【答案】C【解析】依据正弦函数的周期性,能够找其中等于零或者小于零的项.【点评】本题要紧考查正弦函数的图象和性质和间接法解题.解决此类问题要紧找到规律,从题目动身能够看出来相邻的14项的和为0,这确实是规律,考查综合分析问题和解决问题的能力.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形, PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,PA=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)[解](1)因为PA ⊥底面ABCD ,因此PA ⊥CD ,又AD ⊥CD ,因此CD ⊥平面PAD , 从而CD ⊥PD . ……3分 因为PD=32)22(222=+,CD =2, 因此三角形PCD 的面积为3232221=⨯⨯.(2)[解法一]如图所示,建立空间直角坐标系, 则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC . ……8 设AE 与BC 的夹角为θ,则222224||||cos ===⨯⋅BC AE BCAE θ,θ=4π.由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分yA BDP EF[解法二]取PB 中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分在AEF ∆中,由EF =2、AF =2、AE =2 知AEF ∆是等腰直角三角形, 因此∠AEF =4π.因此异面直线BC 与AE 所成的角的大小是4π ……12分【点评】本题要紧考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易显现找错角的情形,要考虑全面,考查空间想象能力,属于中档题.20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范畴;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数 )(x g y =])2,1[(∈x 的反函数.(8分) [解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,因此1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分由单调性可得]2lg ,0[∈y .因为y x 103-=,因此所求反函数是x y 103-=,]2lg ,0[∈x . ……14分【点评】本题要紧考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练把握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴 正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912xy =;②定位后救援船即刻沿直线匀速前往救援;③救援船动身t 小时后,失事船所在位置的横坐标为.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若现在两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分) [解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912xy =中,得P 的纵坐标y P =3. ……2分 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan307,故救援船速度的方向为北偏东arctan307弧度. ……6分(2)设救援船的时速为v 海里,通过t 小时追上失事船,现在位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分因为2212≥+t t ,当且仅当t =1时等号成立,因此22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分 22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(6分) [解](1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:xy 2±=. 过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y xy ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分因此所求三角形的面积1为8221||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切, 故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x bx y ,得01222=---b bx x .设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x b x x .又2,因此221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . ……10分(3)当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(明显22||>k ),则直线OM 的方程为x y k1-=.由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,因此22412||k kON ++=.同理121222||-+=k k OM . ……13分设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+,因此3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分 【点评】本题要紧考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.专门要注意直线与双曲线的关系问题,在双曲线当中,最专门的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,同时相互垂直,这些性质的运用能够大大节约解题时刻,本题属于中档题 .23.关于数集},,,,1{21n x x x X -=,其中nx x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若关于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P .(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.(8分)[解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分因此x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,因此s 、t 异号.因为-1是X 中唯独的负数,因此s 、t 中之一为-1,另一为1,故1∈X . ……7分 假设1=kx ,其中n k <<1,则nx x <<<101.选取Yx x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则nn x s sx x ≤<=1,矛盾.因此x 1=1. ……10分(3)[解法一]推测1-=i i qx ,i =1, 2, …, n . ……12分记},,,1,1{2k k x x A -=,k =2, 3, …, n .先证明:若1+k A 具有性质P ,则kA 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中显现-1时,明显有2a 满足021=⋅a a ;当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,因此有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.因此1t ∈k A .从而kA 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论明显成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ; 当n=k +1时,若},,,,1,1{121++-=k k k x x x A有性质P ,则},,,1,1{2kk x x A -= 也有性质P ,因此},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s与t 中有且只有一个为-1.若1-=t ,则1,不可能; 因此1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,因此k k q x =+1.综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分 [解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于原点对称. ……14分注意到-1是X 中的唯独负数,},,,{)0,(32nx x x B ---=-∞ 共有n -1个数,因此),0(∞+ B 也只有n -1个数. 由于1221x x x x x x x x n n n n n n<<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<< (1)2x x注意到12111x x x x x x n n >>>- ,因此12211x x x x x x n n n n ===--- ,从而数列的通项公式为111)(12--==k k x xk q x x ,k =1, 2, ..., n . (18)分【点评】本题要紧考查数集、集合的差不多性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的差不多运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。
(上海卷)高考数学试题详细解答及考点解读
全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间20分钟.一.填空题(本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1.若复数z 满足(1)1z i i +=-(i 是虚数单位),则其共轭复数z =__________________ . 2.已知集合}|{},1|{a x x B x x A ≥=≤=,且A B R =,则实数a 的取值范围是________.3.若行列式4513789xx 中,元素4的代数余子式大于0,则x 满足的条件是___________.4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是 .5.如图,若正四棱柱1111ABCD A B C D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示). 6.函数22cos sin 2y x x =+的最小值是_____________________ .7.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E ξ____________(结果用最简分数表示). 8.已知三个球的半径1R ,2R ,3R 满足12323R R R +=,则它们的表面积1S ,2S ,3S ,满足的等量关系是___________.9.已知F 1、F 2是椭圆22221(0)x y a b a b+=>>的两个焦点,P 为椭圆C 上一个点,且21PF PF ⊥.若△21F PF 的面积为9,则b = . 10.在极坐标系中,由三条直线0,,cos sin 13πθθρθρθ==+=围成圆形的面积是 .11.当0≤x ≤1时,不等式sin2xkx π≥成立,则实数k 的取值范围是 .12.已知函数x x x f tan sin )(+=.项数为27的等差数列}{n a 满足⎪⎭⎫⎝⎛-∈2,2ππn a ,且公差d ≠0.若0)()()(2721=+⋅⋅⋅++a f a f a f ,则当=k 时,0)(=k a f . 13.某地街道呈现东—西、南—北向的网格状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4), (-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外) 为发行站,使6个零售点沿街道到发行站之间路程的和最短. 14.将函数2642--+=x x y (]6,0[∈x )的图像绕坐标原点逆时针方向旋转角θαθ≤≤0,得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图像,则α的最大值为 .二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分. 15.“22≤≤-a ”是“实系数一元二次方程012=++ax x 有虚根”的 ( )(A )必要不充分条件. (B )充分不必要条件. (C )充要条件.(D )既不充分也不必要条件.16.若事件E 与F 相互独立,且41)()(==F P E P ,则)(F E P 的值等于( ) (A )0.(B )161. (C )41. (D )21.17.在发生某公共卫生事件期间,有专业机构认为该事件一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )(A )甲地:总体均值为3,中位数为4. (B )乙地:总体均值为1,总体方差大于0. (C )丙地:中位数为2,众数为3.(D )丁地:总体均值为2,总体方差为3.18.过圆1)1()1(:22=-+-y x C 的圆心,作直线分别交 x 、y 正半轴于点A 、B ,△AOB 被圆分成四部分(如图).若这四部分图形面积满足ⅢⅡⅣⅠS S S S +=+,则 这样的直线AB 有 ( )A .0条B .1条C .2条D .3条三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分14分) 如图,在直三棱柱111C B A ABC -中,21===AB BC AA ,AB ⊥BC ,求二面角111C C A B --的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有时可用函数⎪⎪⎩⎪⎪⎨⎧>--≤-+=6,44.4,6,ln 151.0)(x x x x xa a x f描述学习某学科知识的掌握程度.其中x 表示某学科知识的学习次数)(*N ∈x ,)(x f 表示对该学科知识的掌握程度,正实数a 与学科知识有关.(1)证明:当7≥x 时,掌握程度的增长量)()1(x f x f -+总是下降;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(](](]133,127,127,121,121,115.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.21.(本题满分16分)本题共有12个小题,第1小题满分8分,第2小题满分8分.已知双曲线,12:22=-y x C 设过点)0,23(-A 的直线l 的方向向量),1(k =. (1)当直线l 与双曲线C 的一条渐近线m 平行时,求直线l 的方程及l 与m 距离; (2)证明:当22>k 时,在双曲线C 的右支上不存在点Q ,使之到直线l 的距离为.6 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知函数)()(1x f y x fy ==-是的反函数,定义:若对给定的实数)0(≠a a ,函数)(')(1a x f y a x f y +=+=-与互为反函数,则称)(x f y =满足“a 和性质”;若函数)(ax f y =与)(1ax fy -=互为反函数,则称)(x f y =满足“a 积性质”.(1)判断函数)0(1)(2>+=x x x g 是否满足“1和性质”,并说明理由; (2)求所有满足“2和性质”的一次函数;(3)设函数)0)((>=x x f y 对任何0>a ,满足“a 积性质”.求)(x f y =表达式. 23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.已知}{n a 是公差为d 的等差数列,}{n b 是公比为q 的等比数列.(1)若13+=n a n ,是否存在k m m a a a N k m =+∈+*1,,有?说明理由;(2)找出所有数列}{n a 和}{n b ,使对一切n nn b a a N n =∈+*1,,并说明理由; (3)若3,4,511====q b d a ,试确定所有的p ,使数列}{n a 中存在某个连续p 项的和是数列}{n b 中的一项,请证明.全国普通高等学校招生统一考试(上海卷)数学试卷(理工农医类)答案及解读一.填空题(本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1. i .【解读与点评】由(1)1z i i +=-,得11iz i i-==-+,从而z i =,故答案为:i . 点评:熟记一些常用的复数运算,如2211(1)2,(1)2,,1i i i i i i i i i ++=-=-=-=-,11i ii-=-+等.2. (,1]-∞.【解读与点评】利用数形结合的方法,易知实数a 的取值范围是1a ≤,故答案为:(,1]-∞.3. 8(,)3+∞.【解读与点评】依题意可知元素4的代数余子式为 38 9x ,即为898303x x -⨯>⇒>,故答案为:8(,)3+∞.4. 2,12,1x x y x x ⎧≤=⎨->⎩.【解读与点评】依题意,可知程序框的判定语句,当1x >时,是将2x -赋予y ,否则1x ≤时,2x赋予y . 从而可知输出量y 与输入量x 满足的关系式是:2,12,1x x y x x ⎧≤=⎨->⎩.5. .【解读与点评】解析:因为11//A D AD ,所以直线11A D 与1BD 所成的角即为异面直线1BD 与AD 所成角因为正四棱柱底面边长为2,高为4,所以在11Rt A D B ∆中,112A D =,1A B ==所以11111tan A BD A B D A ∠==11D A B arc ∠=arc6.1-.【解读与点评】解析:依题意有22cos sin 21cos 2sin 2)14y x x x x x π=+=++=++当2242x k πππ+=-,即3,8x k k Z ππ=-∈时,sin(2)14x π+=-,此时有函数22cos sin 2y x x =+的最小值是:1,故答案为:1-7.47.【解读与点评】依题意可知随机变量ξ值可为0,1,2, 252710(0)21C P C ξ===,11522710(1)21C C P C ξ===,22271(2)21C P C ξ===. 所以10101124012212121217E ξ=⨯+⨯+⨯==,故答案为:47. 8.=.【解读与点评】依题意可知2221122334,4,4S R S R S R πππ===,从而123R R R =12323R R R +=, 23= 9. 3.【解读与点评】解法一:由已知条件可设12,PF m PF n ==,则9,22,mnm n a ⎧=⎪⎨⎪+=⎩则22222212()24364m n m n mn a F F c +=+-=-==, 得2229b a c =-=,∴3b =.解法二:利用结论:122212tan 2PF F b S F PF ∆=∠,从而有1222212991tan 2PF F b b S F PF ∆==⇒=∠,又0b >,所以3b =,故答案为:3. .【解读与点评】解析:方法一:依题意,因为cos sin 1ρθρθ+=,从而方法二:依题意在极坐标系中三条直线0,,cos sin 13πθθρθρθ==+=,转化为直角坐标系方程即为:0y =,,1y x y =+=,在直角坐标系画出图象如图所示:可知1AB =,3CAB π∠=,4ABC π∠=,从而512ACB π∠=,由正弦定理得:sin 1554sin sin sin 124124AB AC AB AC ππππ=⇒===三条直线所围成的图形的面积为113sin 1)123224S AC AB π=⨯⨯=⨯⨯⨯=,故答案为:34-. 11. (,1]-∞.【解读与点评】方法一:当0x =时,不等式sin2x kx π≥恒成立;当0x ≠时,不等式sin2x kx π≥恒成立,等价于sin2xk xπ≤((0,1]x ∈),令sin2()xf x x π=,则2cossin222()x x xf x x πππ-'=, ∵(0,1)x ∈时,(0,)22x ππ∈, tan 22x x ππ>,即可得cos sin 0222x x x πππ-<,从而()0f x '<,又(1)0f '<,∴()f x 在(0,1]x ∈上为减函数, 即可得()(1)1f x f ==最小值,∴1k ≤.故答案为:(,1]-∞. 方法二:利用性质:当[0,]2πα∈,2sin 1απα≤≤.所以当0≤x ≤1,[0,]22xππ∈,所以不等式sin 2x kx π≥恒成立,等价于sin sin2222x xk xxππππ≤=,又当[0,]22x ππ∈时,sin222x x πππ的最小值为1,所以1k ≤, 故答案为:(,1]-∞.12. 14.【解读与点评】依题意可知:函数()sin tan f x x x =+为(,)22ππ-上的奇函数且单调递增,又(0)0f =,且等差数列{n a a }满足1227()()()0f a f a f a ++⋅⋅⋅+=,则必有127226325,,,a a a a a a =-=-=-⋅⋅⋅且140a =, 即得14k =时,14()0f a =. 故答案为:14.13. (3,3).【解读与点评】设零售点坐标为(x ,y ),则6个零售点沿街道到发行站之间的路程为(|2||2|)(|2||3|)(|3||1|)(|3||4|)(|4||5|)(|6||6|)x y x y x y x y x y x y ++-+++-+-+-+-+-+-+-+-+-即为2|2|2|3||4||6||1||2||3||4||5||6|x x x x y y y y y y ++-+-+-+-+-+-+-+-+-, 不难知横坐标(2,4)x ∈时,横坐标差的绝对值之和较小,纵坐标[3,4]y ∈时,纵坐标差的绝对值之和较小,去掉绝对值可得142|3|8|3||4|x y y +-++-+-,当3x =时,去掉不可取的零售点(3,4)外可取3y =,此时最小路程为23, 故可以确定(3,3)为发行站. 故答案为:(3,3). 14. 2tan3arc .【解读与点评】将函数变形为方程可得 22(3)(2)13x y -++=, [0,6],0x y ∈≥,其图象如右图所示,过点O 作该圆的切线OA,将该函数的图象绕原点逆时针旋转时,其最大的旋转角为AOy ∠,此时曲线C 都是一个函数的图象(理解好函数的概念:一个x 值只能对应一个y 的值) ∵132OA OC k k =-=, ∴12tan 3OA AOy k ∠==, ∴其最大的角α的为2tan3arc .故答案为:2tan 3arc . 二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分. 15. A .【解读与点评】由实系数一元二次方程210x ax ++=有虚根,可得240a ∆=-<, 即可得(2,2)a ∈-,∵(2,2)[2,2]-⊆-, ∴“22a -≤≤”是“实系数一元二次方程210x ax ++=有虚根”的必要不充分条件, 故应选A .16. B .【解读与点评】∵事件E 与F 相互独立, ∴1()()()16P E F P E P F =⨯=, 故应选B .17. D .【解读与点评】甲地取0,0,0,0,4,4,4,4,4,10,该组数据均值为3,中位数为4,显然不符合该该标志;乙地取0,0,0,0,0,0,0,0,0,10,该组数据均值为1,总体方差大于0,显然也不符合该标志; 丙地取0,0,1,1,2,2,3,3,3,10,该组数据中位数为2,众数为3,显然也不符合该标志; 丁地的均值为2,则样本总和为20,由于总体方差为3,可知该组每一个数据与2的差的平方和为30,若该组数据中有一个超过7则,其方差必大于3,于是可得丁地一定符合该标志, 故应选D .18. B .【解读与点评】解析:如右图所示,设圆与两坐标轴的切点分别为E ,F ,BAO α∠=,((0,)2πα∈),则11tan ,1tan OB OA αα=+=+, 由S Ⅰ+S Ⅳ12AOB S ∆=,可得111112(1t a n)(1)2t a n 222tanπαπααπα+⋅+⨯=⨯⨯++, 整理可知得1tan 22tan απαα-=-+,(0,)2πα∈,此方程可化为(22)sin 22cos 20πααα-++=, 令()(22)sin 22cos 2f απααα=-++,(0,)2πα∈,由(0)20,()202f f π=>=-<,可知函数()f x 与x 轴必有一个交点,即上述上程必有一解,所以这样的直线AB 有1条, 故应选B .三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.【解读与点评】如图,建立空间直角坐标系.则A (2,0,0),C (0,2,0),A 1(2,0,2), B 1(0,0,2),C 1`(0,2,2),设AC 的中点为M ,,,1CC BM AC BM ⊥⊥)0,1,1(11=⊥∴C ,C A BM 即平面是平面A 1C 1C的一个法向量.设平面A 1B 1C 的一个法向量是),,(z y x =,)0,0,2(),2,2,2(11-=--=B A AC,0222,02111=-+-=⋅=-=⋅∴z y x C A n x B A n令z=1,解得x=0,y=1.)1,1,0(=∴, 设法向量与的夹角为ϕ,二面角B 1—A 1C —C 1的大小为θ,显然θ为锐角.111||1cos |cos |,.23||||.3n BM n BM B AC C πθφθπ⋅====⋅∴--解得二面角的大小为20.【解读与点评】证明:(1)当.)4)(3(4.0)()1(,7--=-+≥x x x f x f x 时而当)4)(3(,7--=≥x x y x 函数时单调递增,且.0)4)(3(>--x x故)()1(x f x f -+单调递减.7≥∴x 当,掌握程度的增长量)()1(x f x f -+总是下降.解(2)由题意知.85.06ln151.0=-+a a整理得05.06c a a =-,解得(]127,1210.123,0.123650.206135.035.0∈=⨯≈⋅-=e e a 由此可知,该学科是乙学科. 21.【解读与点评】(1)双曲线C 的渐近线02,02:=±=±y x y x m 即l 直线∴的方程,0232=+±y x l 直线∴与m 的距离.62123=+=d(2)证法一:设过原点且平行于l 的直线,0:=-y kx b则直线l 与b 的距离21||23k k d +=,当.6,22>>d k 时 又双曲线C 的渐近为 .02=±y x ∴ 双曲线C 右支在直线D 的右下方∴双曲线右支上的任意点到l 的距离大于6.故在双曲线C 的右支上不存在点Q ,使之到直线l. [证法二] 假设双曲线C 右支上存在点),.(00y x Q 到直线l 的距离为.6则⎪⎩⎪⎨⎧=-=++-)2(,22)1(,61|23|2020200y x k k y kx 由(1)得2001623k k kx y +⋅±+=设21623k k t +⋅±=,当22>k 时, 016232>+⋅+=k k t , .01312616232222>++-⨯=+⋅-=k k k k k t将t kx y +=00代入(2)得 0)1(24)21(20202=+---t ktx x k (*)0,22>>t k , .0)1(2,04,02122<+-<-<-∴t kt k∴方程(*)不存在正根,即假设不成立, 故在双曲线C 的右支上不存在点Q ,使之到直线l.22.【解读与点评】(1)函数)0(1)(2>+=x x x g 的反函数是)1(1)(1>-=-x x x g)0()1(1>=+∴-x x x g .而)1(1)1()1(2->++=+x x x g , 其反函数为)1(11>--=x x y , 故函数)0(1)(2>+=x x x g 不满足“1和性质” .(2)设函数)()(R x b kx x f ∈+=满足“2和性质”,0≠k , )()(1R x k b x x f ∈-=∴-, ∴k bx x f -+=+-2)2(1.而)()2()2(R x b x k x f ∈++=+,得反函数k kb x y 2--= ,由“2和性质”定义可知k kb x k b x 22----+对R x ∈恒成立.R b k ∈-=∴,1,即所求一次函数为)()(R b b x x f ∈+-=.(3)设0,00>>x a ,且点),(00y x 在)(ax f y =在图像上,则),(00x y 在函数)(1ax f y -=图像上, 故⎩⎨⎧==-,)(,)(00100x ay f y ax f可得),()(000ax af x f ay ==令x ax -0, 则0x xa =, )()(00x f x xx f =∴, 即.)()(00xx f x x f =综上所述,)0()(≠=k x kx f ,此时ax kax f =)(,其反函数就是,ax ky =而,)(1ax kax f =-故)()(1ax f y ax f y --==与互为反函数.23.【解读与点评】(1)由k m m a a a =++1,得,1356+=+k m 整理后,可得,342=-m k,,*N k m ∈ m k 2-∴为整数,*,N k m ∈∴不存在,使等式成立.(2)解法一:若n n n b a a =+1,即1111)1(-=-+-n q b dn a nd a (*)(i )若0=d ,则.111n n b q b ==-当}{n a 为非零常数列,}{n b 为恒等于1的常数列,满足要求.(ii )若0≠d ,(*)式等号左边取极限和1)1(lim 11=-+∞→d n a nda a ,(*)式等号右边的极限只有当1=q 时,才可能等于1,此时等号左边是常数,,0=∴d 矛盾.综上所述,只有当}{n a 为非零常数列,}{n b 为恒等于1的常数列,满足要求 10分 解法二:设,c nd a n +=若n n n b a a =+1, 对*N n ∈都成立,且}{n b 为等比数列, 则q a a a a nn n n =+++112/,对*N n ∈都成立,即212++=n n n qa a a . *2)()2)((N n c d dn q c d dn c dn ∈++-+++∴对都成立,22qd d =∴.(i )若0=d ,则0≠=c a n ,*,1N n b n ∈=∴. (ii )若0≠d ,则,1=q m b n =∴(常数),即m c dn c d dn =+++,则0=d ,矛盾. 综上所述,有1,0=≠=n n b c a ,使对一切n nn b a a N n =∈+1*,. (3)*,3,14N n b n a n n n ∈=+=设.,,,3*21N m N k p b a a a k k p m m m ∈∈==++++++ ,321)(41)1(4k p p m m =+++++ 93324k p m =++∴. N p N k p ∈=∴∈δδ,3,,* ,取03)14(2)14(33234,232222≥--⨯--=-⨯-=+=+-s s s s m s k .由二项展开式可得正整数M 1、M 2,使得,114)14(22+=-+M s,2)1(8)14(22s N M -+=-⨯ 2)1)1(()2(4421+---=∴s M M m ,∴存在整数m 满足要求.故当且仅当N s p s∈=,3时,命题成立.说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分) 若p 为偶数,则p m m m a a a ++++++ 21为偶数,但k 3为奇数,故此等式不成立,∴p 一定为奇数.当1=p 时,则k m b a =+1,即k m 354=+.而kk )14(3-=当k 为偶数时,存在m ,使k m 354=+成立.当3=p 时, 则k m m m b a a a =+++++321,即k m b a -+23也即k m 3)94(3=+, 1135)1(4,394--=++=+∴k k m m由已证可知,当1-k 为偶数即k 为奇数时,存在k m m 394,=+成立.当5=p 时, 则k m m m b a a a =++++++521 ,即k m b a =+35 也即,而k 3不是5的倍数, ∴当5=p 时,所要求的m 不存在.故不是所有奇数都成立试卷综合解读与评析——上海秋季高考数学试卷评析:基础与能力是立足点上海秋季高考数学卷立足于科学性,考查考生对基本数学思想和基本数学方法的掌握程度,鼓励中学数学教学围绕基本内容,提高对数学概念的本质认识,提高学生分析问题的能力.试卷保持了2007、2008年的风格,从宏观上看基本上是稳定的,即“在稳定中前行,在变化中发展”,这是今年高考的特点.试卷的题型结构不变,在题量、背景、方法、思维方式上有一些变化.难易梯度上保持循序渐进,基础题1—10题比较容易,但整卷有三个波浪:理科数学选择题后四题、填空题后两题难度较大,解答题后三题坡度比较高.今年数学卷的基本特点是:1.题型变化大.本卷共23道试题,填空题改为14道是意料之外的变化,解答题5道是在意料之中.也许填空题若设置5分一道,对考生压力较大,再加上《考试说明》中对“主客观题的分值约为1:1”的规定,因而增加了三道填空题,将减少一道解答题的分值分散在2~3道填空题中.2.知识点覆盖全.上海高考坚持能力立意以来,对知识点的考查不再求全.但本试卷较全面地考查了知识点,尤其是新增内容,基本都涉及到了,部分试题要求较高,如行列式、算法、期望、独立事件、旋转体、统计初步、矩阵等.3.新题数量较多.填空题中第12、13、14题,选择题中第17、18题,解答题中第20、22、23题给人耳目一新的感觉.有些问题的表述比较陌生,考生需要较强的数学理解和化归能力,有些试题的提问方式新颖,对考生的综合数学能力要求较高.4.提倡理性思维,强化数学思想的考查要求.数学科学的特点之一就是理性思维,在高考考试目标中对理科考生尤其如此.理性思维要求考生在问题解决中,运用所学的基本知识和基本概念,会进行演绎、归纳和类比推理,能合乎逻辑地、准确地阐述自己的思想和观点,会正确而简明地表述推理过程,而不是都以算为手段,用算解决问题.例如理科第17、20题,依据统计中的有关基本概念、函数单调性的概念等对问题作出判断.如果只是用计算器将所有情形算一遍,虽然得分不低,但可能损失时间,不利于考生的整体发挥.又如理科第21(2)题,将含有点的方程代入双曲线方程,由演绎推理得到所设方程不成立即可,如果用判别式和韦达定理则要大算一通,这道题考查对于数学思想方法本质的理解.本卷较多地考查了对数形结合思想.不仅有代数对应几何图形的准确快速作图要求,还有对图形变化以及图形中代数性质概括的要求,如第10、11、13、14、18、21等.第10题,将三条直线围成的图形做出后,就转化为一个解斜三角形的问题,若无较强的平面几何知识,按部就班计算,问题变得复杂.第13、14题作为提高区分度试题,要求很高,要想完全弄清题意,给出充分解释,并非易事.第17题,选项中同时出现了均值、中位数、众数、方差等概念,而且需要对选项逐一检验.四个选项,无论是肯定还是否定,学生都不容易,再加上大多少学生对上述统计量并没有深刻理解,因而,猜的成份更大.第18题,需要将图形从静止到运动,才能体会其中的关系.第21(2)题的解答表述比较困难,从图形分析,学生容易理解,但难以说清楚,对考生的表达能力要求较高.第23(3)题,需要考生有一定的数论整除知识.对大多少的考生甚至教师而言,都非常欠缺数论知识.5.源于教材,注重过程.试卷没有一道题目直接来自教材,但从教材改编的题目很多.这些源于教材,又不同于教材的题目,目的在于鼓励师生钻研教材,不远离课本,减轻学生负担.例如理科第13题,源于高三的“统计案例”一章,教材分析了在一维条件下到有限点距离最短的结论,试题在此基础上,利用它的思想方法考查学生在二维条件下的结论是什么.由于这里横坐标、纵坐标可以独立考虑,因此并不需除教材例题之外的方法.又如理科第17题,源于高三统计基本方法一章,教材对具体数学对象中的中位数、众数和平均值作了详尽的说明,试题结合社会实际现象,设计的问题落在考查准确把握上述统计内容中的基本概念,以及如何解释它的实际意义上.再如理科第20题,源于高一(二)对数函数例3“学习曲线”的描述,第(2)题的问题是要验证参数的区间,相当于对模型的应用和检验.由于每年的应用题得分率都不高,失分大多是因为未能建立数学模型,今年的应用题(理科第20题)改编自课本,题目给出了数学模型,从某种意义上说扫清了“拦路虎”.由上述3题考试目标的阐述可见数学教学应注重学习过程,准确把握基本概念内涵,要从“教题”转化到“教书”,而不是从“题型”出发,把学生淹没在题海中.有些试题考生可能第一眼看上去像新面孔,但分析一下会有“他乡遇故知”的感觉.6.体现“二期”课改理念和要求.今年在全面推行“二期”课改的前提下,试卷体现了“二期”课改的理念和要求:一,注重过程与方法;二,体现新增内容的基本要求,如代数余子式、框图、球、独立事件等均要考查知识和基本技能,立体几何以向量为工具解决问题.7.夯实基础,着眼能力.从理科试卷的几个能力型问题考查目标分析,尽管试题体现了一定的能力要求,但落脚点都在基础知识上.如理科第14题,将一个函数图像旋转以后仍然是函数的图像,关键是对函数基本定义的理解,即对任何自变量,函数值必须是唯一的.又如第22(3)题,虽然是一个自主学习能力的试题,但是考查的重点还是反函数的概念和互为反函数的图像是关于对称的基本要求.再如第23(3)题,它有一定深度的探究能力,然而从研究问题的一般方法入手,可以从具体到一般地层层深入,对p的开始几个值上的试探,即可获得这小题的部分分值是我们对不少考生的期望.对比往年的数学试题,今年的知识点较多,没有“挖陷阱”的题目.但拿到题目时不要计算器当家,应有所分析,让大脑指挥手.只要对题目给出的提示信息获取充分,试题本身并不难.8.导向良好:教会学生思考.上海市高考理科数学,不少学生说题目难.因为许多题目都是“新面孔”,所以不会做.“新面孔”题目比例的提升,传递出一个信号:高考越来越注重对学生能力的考察,应试教育下的“条件反射”日渐失灵.在今年的试卷面前,考生的能力高下很容易区分.对于能力强的考生来说,有些题目第一眼看上去像“新面孔”,但分析一下就会有“他乡遇故知”的感觉,落脚点还是在基础知识上.如理科第14题,将一个函数图像旋转以后仍然是函数的图像,关键是对函数基本定义的理解,即对任何自变量,函数值必须是唯一的.中学教学过程中有一个误区:学理科归根到底就是做题目.老师、学生一起苦战“题海”,以机械操练代替对数学基本概念、基本原理的理解,甚至有学生认为学习概念浪费时间,不如多做几道题痛快,这是舍本求末的表现.还有学生学习时往往看一遍题目,再翻到答案部分看一遍解法就“懂了”,如此囫囵吞枣,跳过对解题思路的琢磨,只能就题论题,无法举一反三.如果靠大量简单重复训练形成条件反射,在未来的高考中可能会事倍功半.同时,学习时不但要重视解题,更应重视概念的形成、论证过程,解题思路的探究过程.教师在教学过程中,不应简单把学生淹没在题海中,而是要考虑中学数学教育如何从“教题”(教会学生做题)回归到“教书”“教思考”,掌握数学的本质,培养更多“有想法”的学生.对于高中数学教学的导向,体现在“品、做、悟”.要学会品数学,所谓“品”,就是从不同角度欣赏她的美感,就会热爱她,热爱她就会关注她,就能够极大地激发学生学习数学的兴趣、主动性.第二,在多思指导下的精练,不是多做,更不是背.第三要“悟”,学会归纳、发现、创新,以数学的目光看问题能不能变化,能不能发展,能不能进行总结,能不能发现新的规律.全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间20分钟.一.填空题(本大题满分56分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1.函数1)(3+=x x f 的反函数)(1x f -= _____________.2.已知集合{}|1A x x =≤,{}|B x x a =≥,且AB R =,则实数a 的取值范围是______________________ . 3.若行列式4513789x x中,元素4的代数余子式大于0,则x 满足的条件是___________ . 4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是_____________ .5.如图,若正四棱柱1111ABCD A B C D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数表示).6. 若球O 1、O 2表示面积之比421=S S ,则它们的半径之比21R R =_____________. 7. 已知实数x 、y 满足223y x y x x ≤⎧⎪≥-⎨⎪≤⎩则目标函数2Z x y =-的最小值是___________.8. 若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 .9. 过点(1,0)A 作倾斜角为4π的直线,与抛物线22y x =交于M N 、两点,则 MN = .10. 函数2()2cos sin 2f x x x =+的最小值是 .11. 若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示). 12.已知F 1、F 2是椭圆22221(0)x y a b a b+=>>的两个焦点,P 为椭圆C 上一个点,且 21PF PF ⊥.若△21F PF 的面积为9,则b = .13. 已知函数x x x f tan sin )(+=.项数为27的等差数列}{n a 满足⎪⎭⎫ ⎝⎛-∈2,2ππn a ,且公差d ≠0.若0)()()(2721=+⋅⋅⋅++a f a f a f ,则当=k 时,0)(=k a f .14. 某地街道呈现东—西、南—北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点 为发行站,使5个零售点沿街道发行站之间路程的和最短.二.选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.15.已知直线1:(3)(4)10l k x k y -+-+=与2:2(3)230l k x y --+=平行,则K 得值是( )(A ) 1或3 (B )1或5 (C )3或5 (D )1或216.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是4 4 4 3 3 4 45 (D)(C) (B) (A)17. 点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是 ( )(A )22(2)(1)1x y -++= (B )22(2)(1)4x y -++=(C )22(4)(2)4x y ++-= (D )22(2)(1)1x y ++-=18. 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 ( )(A )甲地:总体均值为3,中位数为4 .(B )乙地:总体均值为1,总体方差大于0 .(C )丙地:中位数为2,众数为3 .(D )丁地:总体均值为2,总体方差为3 .三.解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分14分)已知复数z a bi =+(a 、b R +∈)(I 是虚数单位)是方程2450x x -+=的根 . 复数3w u i =+(u R ∈)满足w z -< u 的取值范围 .20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形;(2) 若m ⊥p ,边长c = 2,角C = 3π,求ΔABC 的面积 . 21.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分 .有时可用函数 0.115ln ,6,() 4.4,64a x a x f x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩ 描述学习某学科知识的掌握程度.其中x 表示某学科知识的学习次数(*x N ∈),()f x。
2023高考上海数学理科试卷含详细解答
2023年全国普通高等学校招生统一考试(上海) 数学(理工农医类) 全解全析一 填空(4’×11)1.不等式|1|1x -<地解集是 .【解析】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = .【解析】2【解析】由{2}, 22A B A B a =⇒⇒= 只有一个公共元素.3.若复数z 满足z =i (2-z)(i 是虚数单位),则z = .【解析】1i+【解析】由2(2)11iz i z z i i=-⇒==++.4.若函数f (x )地反函数为f -1(x )=x 2(x >0),则f (4)= .【解析】2【解析】令12(4)()44(0)2f t ft t t t -=⇒=⇒=>⇒=.5.若向量→ a 、→ b 满足|→ a |=1,|→ b |=2,且→ a 与→ b 地夹角为π3,则|→ a +→b |= .【解析】222||()()2||||2||||cos 7||3a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+ 6.函数f (x )=3sin x +sin(π2+x )地最大值是 .【解析】2【解析】由max ()cos 2sin()()26f x x x x f x π=+=+⇒=.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形地概率是 (结果用分数表示).【解析】34【解析】已知A C E F B C D 、、、共线;、、共线;六个无共线地点生成三角形总数为:36C;可构成三角形地个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=;8.设函数f (x )是定义在R 上地奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0地x 地取值范围是 .【解析】(1,0)(1,)-+∞ 【解析】 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;;由f (x )为奇函数得: 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;9.已知总体地各个体地值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体地中位数为10.5,若要使该总体地方差最小,则a 、b 地取值分别是 .【解析】10.5,10.5a b ==【解析】根据总体方差地定义知,只需且必须10.5,10.5a b ==时,总体方差最小;10.某海域内有一孤岛,岛四周地海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 地椭圆,已知岛上甲、乙导航灯地海拔高度分别为h 1、h 2,且两个导航灯在海平面上地投影恰好落在椭圆地两个焦点上,现有船只经过该海域(船只地大小忽略不计),在船上测得甲、乙导航灯地仰角分别为θ1、θ2,那么船只已进入该浅水区地判别条件是 .【解析】1122cot cot 2h h a θθ⋅+⋅≤【解析】依题意, 12||||2MF MF a+≤1122cot cot 2h h a θθ⇒⋅+⋅≤;11.方程x 2+2x -1=0地解可视为函数y =x +2地图像与函数y =1x 地图像交点地横坐标,若x 4+ax -4=0地各个实根x 1,x 2,…,x k(k ≤4)所对应地点(x i,4x i )(i =1,2,…,k )均在直线y =x 地同侧,则实数a 地取值范围是 .【解析】(,6)(6,)-∞-+∞ 【解析】方程地根显然0x ≠,原方程等价于34x a x+=,原方程地实根是曲线3y x a =+与曲线4y x=地交点地横坐标;而曲线3y x a =+是由曲线3y x =向上或向下平移||a 个单位而得到地。
高考数学上海卷理全解全析
2008年全国普通高等学校招生统一考试(上海)数学(理工农医类) 全解全析一 填空(4’×11)1.不等式|1|1x -<的解集是 . 【答案】(0,2)【解析】由11102x x -<-<⇒<<.2.若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a = . 【答案】2 【解析】由{2}, 22AB A B a =⇒⇒=只有一个公共元素.3.若复数z 满足z =i (2-z)(i 是虚数单位),则z = . 【答案】1i +【解析】由2(2)11iz i z z i i=-⇒==++. 4.若函数f (x )的反函数为f -1(x )=x 2(x >0),则f (4)= . 【答案】2【解析】令12(4)()44(0)2f t ft t t t -=⇒=⇒=>⇒=.5.若向量?a 、?b 满足|?a |=1,|?b |=2,且?a 与?b 的夹角为?3,则|?a +?b |= .【解析】222||()()2||||2||||cos7||73a b a b a b a a b b a b a b a b a b π+=++=++=++=⇒+=. 6.函数f (x )=3sin x +sin(?2+x )的最大值是 .【答案】2【解析】由max ()cos 2sin()()26f x x x x f x π=+=+⇒=.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 【答案】34【解析】已知 A C E F B C D 、、、共线;、、共线;六个无共线的点生成三角形总数为:36C;可构成三角形的个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=; 8.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0 的x 的取值范围是 . 【答案】(1,0)(1,)-+∞【解析】 0 ()0 1 ()00 1 x f x x f x x >>⇔><⇔<<当时,;;由f (x )为奇函数得: 0 ()010 ()0 1 x f x x f x x <>⇔-<<<⇔<-⇒当时,;结论;9.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,,,20,且总体的中位数为,若要使该总体的方差最小,则a 、b 的取值分别是 . 【答案】10.5,10.5a b ==【解析】根据总体方差的定义知,只需且必须10.5,10.5a b ==时,总体方差最小; 10.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 . 【答案】1122cot cot 2h h a θθ⋅+⋅≤ 【解析】依题意, 12||||2MF MF a +≤1122cot cot 2h h a θθ⇒⋅+⋅≤;11.方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i)(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是 . 【答案】(,6)(6,)-∞-+∞【解析】方程的根显然0x ≠,原方程等价于34x a x+=,原方程的实根是曲线3y x a=+与曲线4y x=的交点的横坐标;而曲线3y x a =+是由曲线3y x =向上或向下平移||a 个单位而得到的。
普通高等学校招生全国统一考试数学理科试题(上海卷)真题解析
2010年普通高等学校招生全国统一考试(上海卷)数学(理科)答案及解析考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、 不等式042>+-x x的解集为_______________; 【解析】20(4)(2)0(4)(2)0424xx x x x x x->⇔+->⇔+-<⇔-<<+,故答案为:)2,4(-.或由2020404x xx x ->⎧->⇔⎨+>+⎩或2040x x -<⎧⎨+<⎩,解得42x -<<,故答案为:)2,4(-. 【点评】本题考查分式不等式的解法,常规方法是化为整式不等式或不等式组求解. 2、 若复数12z i =-(i 为虚数单位),则=+⋅z z z _____________;【解析】∵12z i =-,∴(12)(12)1251262z z z i i i i i ⋅+=-++-=+-=-,故答案为:i 26-【点评】本题考查复数的基本概念与运算,属基础概念题.3、 若动点P 到点F (2,0)的距离与它到直线02=+x 的距离相等,则点P 的轨迹方程为_____________; 【解析】由抛物线定义知:P 的轨迹为抛物线,易知焦参数4p =,所以点P 的轨迹方程为x y 82=.【点评】本题考查抛物线定义和轨迹方程的求法之——直接法,属基础概念题.4、 行列式6cos3sin6sin 3cosππππ的值为_______________;【解析】cossin 36coscossinsincos()cos 03636362sincos36πππππππππππ=-=+==,答案为:0.【点评】本题考查二阶行列式的计算方法与和角的余弦公式以及特殊角的三角函数值,符合在知识交汇处命题原则,属基础题.5、 圆C :044222=+--+y x y x 的圆心到直线l :3440x y ++=的距离=d ________;【解析】由044222=+--+y x y x ,得22(1)(2)1x y -+-=,则圆心为(1,2),故22334d ==+,答案为:3.【点评】本题考查圆的标准方程、点到直线的距离公式以及计算能力,是课本习题的变式题.6、 随机变量ξ的概率分布率由下图给出:x 7 8 9 10 P(x =ξ)0.30.350.20.15则随机变量ξ的均值是__________;【解析】70.380.3590.2100.158.2E ξ=⨯+⨯+⨯+⨯=,故答案为:8.2. 【点评】本题考查随机变量ξ的概率分布和均值(期望)的计算,属常规题,无难度. 7、2010年上海世博会园区每天9:00开园,20:00停止入园。
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
高考试题数学理上海卷解析版
第III氐到两个定点入D殆距制目等,是AD的中垂绻即阻.•・、;=二•一皐沦二;第N区;到定^、A与到定直线•、■轴砖距离柏等,是抛牧线,达\畑・> 一Iv -luixSZ)}第V&.到两个亠D走虫的鉅离相等,应協是AD的中爭绻俚该线不经过弟V色故第V区没有满忌聚件的点;第vi氐到定直銭:•轮的距禹等于到定点0距鮎放满足隶件的点只有丄轴的非正半轴,即{(和).V<O,T=O}第ni心到同一个点o的距扁相等的点,爰妣蘇象f艮的点,即:{(x.v)X CS:T<!0}策'in区:到定直筑.\轴,与列定点0的距韶痔,姒应O故满足条件的为.:轴的非iE半轴.RP:{(rr) r=Oj <n}第IX E;到定点a D的鉅斋相等的為为0D昭中垂竭该戋不经过IX区,枚不存在。
殊上所述:清足条件的点为:二H.;、y SrS?}^ {(x,:.);. - 2x ・ W.H Z】)}_ f(儿;:v • S x 52:}S 0; vSO),J:l・vj| A<0;Mil年上海高舟歎学试卷(理科)-、填空题(爭小邂4分.満分%分〉1、__________________________ 禺数“门■丄的更轟数为r(M-•r-2 ・【解析】厂⑴■丄・2.V2、箸全集L 集^-4»{r|x^l}J{.\ A<0}> 1*1 C,.4= ___________________【解析】<¥ 0<x<l}3、设別是常數.并虫刁0・门是双购找丄一二“的一个氯L 则加.w P【解析】根播交点公式* - r => «J■ 25 -P ■ 16.那・16」、不帑式口曲的解为 _____________X【解折】-L1<3=O i—^-<0 {.v .x<0 A m >1)x x 25、在极坐标系中,it繼p(】coM-shi8i■:与朮銭门4&・1的夬厨大小为_____________ (站果Jfl反三刑西歎值表示)【解析】因为.V =pcosc^.r = psint7,故直銭的一鮫方程为:lx-)«2,A =1.夹角为arctan A 6、恵和距2千米的±3两点处测董81标点C,若上(?:』■?亍丄(?3.4・6小・则.4.C两点W 问的距禹为 ___________ 千米.【解析】由正弦定现;=, AC •小sinoO- $in4?"7S箔01馳的侧而积为X.廉酝积为二,则该圆毎的休积为■10、柠列邓 耕agg-LiQ :所有可储的值中,说大杓是 __________________ 【解析】F :卜仝£一立,所以a = jf = £剣取丸值为6lk 在正三用彫・£C 杯 Q 是3C 上的点,若・i3・3.3D ・l, « A?<3- ___________________ 【覲析】绥田如下,过点D 柞DE_・4B ・则|AB - AD = --13 • -4x? = 34随机掖収的9仗同学杯 至少有::位同学在一月份出生的槪半为 __________________________________________________________________ (跌认番个月的夭歎相同.绐粟输确到0.001)13^设訓门是;t 义在R 上•以1为周期的及瓠 芳国数r (x —W 虫区间[3•町上的值 威为[-2.5]>刚在区间(-10:10]±的值域为 ________________ 【解析】-lSJlJs定义在虫上,以1为周禺的国敎■••• 0X411 = 0X1.文I7S =3( "3 - S5 I =5(3-13D I «JL X (3-1)«12Ml*» ■【解析】p= 0OS5P:.P.…,Pj Jll lirn QP, = ___________【解析】d £的极限点就是以原点为圆心,以】対半径与j=l的交点亀15 33 P1 8 161V1•11V V V 1 1 ■•・•1 1 1 1 1 11 1 1 11 1 •1 1 •1 1 1 ! i! ?013 2 9324本送就是二分法解方程的延伸,关蛙条件(0Q -21( OR, -2i<0的意思是QR.上到原点距离为2的点(设为P)始终在QR<之间,且Q&的长度不斷缩小,fi•到Q,面£^QR 的中為也妊终在0&之间,故当职极限时匕£两点就重合了,此时ljm OP =怛(妙_0Q: Hi M若0为任意一点,为重心,则;0S1只有重心満足条件八所有不竽于董心的点有丽=557-1^,故只有诂点是重心时才能为零向晏面董心只有一个,故満足条件的点只有一个.1$、设匕〕是各项为正的无穷数列,.4杲边长为U, S的絶形的面积仁—丄…),则⑷ 为等比数列的充晏条件是< )A. {叮是等比歎列氐20.…2「.・…或仃;.攻..・・・・%.…長等比教列£;・绡:•…£«・…和込…•冬「…均是等比数列2忑卫•…,■斗…和冬•乞,…山―…均是等比敎外且公比相同【解析】D日二”幺」故竺吕二込丄满足访条件只有A、D,而显然D的范囲aa・ a sr.a z• • • • < ■庚全面,放选D三、解答题(本题满分?4分)19、(本题满分1】分)巳知真數2.滿足(Z.-2X1-/1=1-/ (f为虚数卑仗),复数2•的虚部为2,且2・・Z •是夹数,• ・• • •求?・•2L (本遠满分14分.第1小题6分,第丄小魏S分)已H3CD • H3CD是底酝边氏舟1的正四祓栓.0曲.< 坊5D的交点.・ lit ••••・⑴设.3坊嚴西・打(・:2所戍的夹丙的丸小为二而用,-32-亠的大小为0.求证:can" 〔aim :⑵若处到平a&.3的距需为i, 蘇四极桂攻的高.【解析】(1)拟採题意可知’显藝&就是厶3亠3. 0就是4CU•i •>已矣°歎刊(aj和{弭的通顶公式分剧为a - 3廿-6. :■ 2?r- 7(片三V i ,杵集合所以:aiiz?->j-tana{.vi.x-a t.wf .V) J{x x■玄豊"〉•']申的无需从小到大侬次椰儿枸成数列w、・・.「・• $ 顼.第四顶一定是顶■第五項是{汀中的项.第兴項不拄这样的话.⑴是以4 为截取周禺的.枚匕;的X、(本題満分(1)35 ±通項为:n = 4k9 k e .V e fl+i c =6*r** > 则c,・=6次二 + ■二二f ■;a 4 2^n = 4/t-l> k€ A"时.。
XXXX上海高考数学理科试题及知识点解析
XXXX上海高考数学理科试题及知识点解析1 XXXX高考数学试卷(理科)一、填空(56分):1。
(xxxx上海高考数学试卷(理科)参考答案及分析1,填空(56分):1。
(2012年?上海)计算:= 1-2i (I为虚数单位)。
测试点:复数代数形式的乘法和除法主题:计算问题分析:从问题的含义来看,复代数表达式的分子和分母可以乘以1-1,然后通过计算得到答案:解:所以答案是1-2i注释:这个问题检查复代数形式的乘法和除法运算。
解决这个问题的关键是用分母乘以分子和分母的共轭。
复数的四种运算是复数考试的重要组成部分,我们应该掌握2。
如果设置a = {x | 2x+1 > 0},b = {x | | x-1 | 测试点:交叉点及其操作主题:计算问题分析:从问题的含义出发,可以先简化两组数,然后通过定义交集运算得到两组数的交集。
答案是解:从问题a = {x | 2x+1 > 0} = {x | x >﹡,b = {x | | x-1 | 所以a∪b =(﹡(3)因此,答案是({)注释:解决这个问题的关键是掌握交集的定义和运算规则。
正确地简化这两个集合对于解决问题也是非常重要的。
有必要准确地简化3。
(2012年?上海)函数f(x)=的范围为。
测试点:二阶矩阵;常数变换在三角函数中的应用主题:计算问题分析:首先根据二阶行列式的算法得到函数的解析表达式,然后对其进行简化。
根据正弦函数的有界性,可以找到的范围。
解决方案:解决方案:f(x)= =-2-sinx cosx =-2-sin2x∶1≤sin2x≤16∴答案是的范围是99它属于的基本问题。
4。
(2012年?Shanghai)如果= (﹣2,1)是直线l的法向量,那么l的倾斜角的大小是反正切2(结果由反三角函数的值表示)。
测试点:平面矢量坐标表示的应用主题:计算问题分析:根据直线的法向量得到直线的一个方向向量,从而得到直线的斜率,倾角可以根据k=tanα得到。
2023年上海市高考数学试卷(解析版)
2023年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为 (1,3) .【答案】(1,3).【解答】解:由|x﹣2|<1可得,﹣1<x﹣2<1,解得1<x<3,即不等式的解集为(1,3).故答案为:(1,3).2.(4分)已知向量=(﹣2,3),=(1,2),则•= 4 .【答案】4.【解答】解:∵向量=(﹣2,3),=(1,2),∴•=﹣2×1+3×2=4.故答案为:4.3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= 189 .【答案】189.【解答】解:∵等比数列的首项为3,公比为2,∴S6==189.故答案为:189.4.(4分)已知tanα=3,则tan2α= ﹣ .【答案】﹣.【解答】解:∵tanα=3,∴tan2α===﹣.故答案为:﹣.5.(4分)已知函数f(x)=,则函数f(x)的值域为 [1,+∞) .【答案】[1,+∞).【解答】解:当x≤0时,f(x)=1,当x>0时,f(x)=2x>1,所以函数f(x)的值域为[1,+∞).故答案为:[1,+∞).6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .【答案】.【解答】解:∵z=1﹣i,∴|1+iz|=|1+i(1﹣i)|=|2+i|=.故答案为:.7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= ﹣3 .【答案】﹣3.【解答】解:圆x2+y2﹣4x﹣m=0化为标准方程为:(x﹣2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=﹣3.故答案为:﹣3.8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A= .【答案】.【解答】解:a=4,b=5,c=6,由余弦定理得,cos A===,又∵A∈(0,π),∴sin A>0,∴sin A===.故答案为:.9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为 946(亿元) .【答案】946(亿元).【解答】解:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为 49 .【答案】49.【解答】解:二项式(1+2023x)100的通项为=•2023r•x r,r∈{0,1,2,…,100},二项式(2023﹣x)100的通项为=•2023100﹣r•(﹣1)r•x r,r∈{0,1,2,…,100},∴a k=+=[2023k+2023100﹣k•(﹣1)k],k∈{0,1,2,⋯,100},若a k<0,则k为奇数,此时a k=(2023k﹣2023100﹣k),∴2023k﹣2023100﹣k<0,∴k<100﹣k,∴k<50,又∵k为奇数,∴k的最大值为49.故答案为:49.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= arccos .【答案】arccos.【解答】解:斜坡的长度为l=,上坡所消耗的总体力y=×(1.025﹣cosθ)=,函数的导数y′==,由y′=0,得4﹣4.1cosθ=0,得cosθ=,θ=arccos,由f′(x)>0时cosθ<,即arccos<θ<时,函数单调递增,由f′(x)<0时cosθ>,即0<θ<arccos时,函数单调递减,即θ=arccos,函数取得最小值,即此时所消耗的总体力最小.故答案为:θ=arccos.12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有 9 种.【答案】9.【解答】解:如图所示,设任取2个不同的点为D、E,当△ABC为正四棱锥的侧面时,如图,平面ABC的两侧分别可以做ABDE作为圆锥的底面,有2种情况,同理以BCED、ACED为底面各有2种情况,所以共有6种情况;当△ABC为正四棱锥的截面时,如图,D、E位于AB两侧,ADBE为圆锥的底面,只有一种情况,同理以BDCE、ADCE为底面各有1种情况,所以共有3种情况;综上,共有6+3=9种情况.故答案为:9.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3}【答案】A【解答】解:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关【答案】C【解答】解:根据散点图的分布可得:身高和体重成正相关.故选:C.15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0【答案】D【解答】解:由给定区间可知,a>0.区间[a,2a]与区间[2a,3a]相邻,且区间长度相同.取a=,则[a,2a]=[],区间[2a,3a]=[],可知s a>0,t a>0,故A可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a>0,t a<0,故C可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a<0,t a<0,故B可能.结合选项可得,不可能的是s a<0,t a>0.故选:D.16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立【答案】B【解答】解:∵椭圆是封闭的,总可以找到满足题意的M点,使得|MP|•|MQ|=1成立,故①正确,在双曲线中,|PM|max→+∞,而|QM|min是个固定值,则无法对任意的P∈C,都存在Q∈C,使得|PM||QM|=1,故②错误.故选:B.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.【答案】(1)证明见解答;(2)arctan.【解答】解:(1)证明:根据题意可知AB∥DC,AA1∥DD1,且AB∩AA1=A,∴可得平面A1ABB1∥平面DCC1D1,又直线A1B⊂平面A1ABB1,∴直线A1B∥平面DCC1D1;(2)设AA1=h,则根据题意可得该四棱柱的体积为=36,∴h=4,∵A1A⊥底面ABCD,在底面ABCD内过A作AE⊥BD,垂足点为E,则A1E在底面ABCD内的射影为AE,∴根据三垂线定理可得BD⊥A1E,故∠A1EA即为所求,在Rt△ABD中,AB=2,AD=3,∴BD==,∴AE===,又A1A=h=4,∴tan∠A1EA===,∴二面角A1﹣BD﹣A的大小为arctan.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.【答案】(1)a=0时,f(x)的定义域为{x|x≠0},不存在c使得f(x)是奇函数.(2)(,)∪(,+∞).【解答】解:(1)若a=0,则f(x)==x++1,要使函数有意义,则x≠0,即f(x)的定义域为{x|x≠0},∵y=x+是奇函数,y=1是偶函数,∴函数f(x)=x++1为非奇非偶函数,不可能是奇函数,故不存在实数c,使得f(x)是奇函数.(2)若函数过点(1,3),则f(1)===3,得3a+2+c=3+3a,得c=3﹣2=1,此时f(x)=,若数f(x)与x轴负半轴有两个不同交点,即f(x)==0,得x2+(3a+1)x+1=0,当x<0时,有两个不同的交点,设g(x)=x2+(3a+1)x+1,则,得,得,即a>,若x+a=0即x=﹣a是方程x2+(3a+1)x+1=0的根,则a2﹣(3a+1)a+1=0,即2a2+a﹣1=0,得a=或a=﹣1,则实数a的取值范围是a>且a≠且a≠﹣1,即(,)∪(,+∞).19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.【答案】(1)P(A)=,P(B)=.P(B|A)=.事件A和事件B不独立.(2)EX=277(元).【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P(A)==,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P(B)===.取到红色外观的模型同时是棕色内饰的有12个,即P(AB)=,则P(B|A)====.∵P(A)P(B)==≠,∴P(A)P(B)≠P(AB),即事件A和事件B不独立.(2)由题意知X=600,300,150,则外观和内饰均为同色的概率P===,外观和内饰都异色的概率P==,仅外观或仅内饰同色的概率P=1﹣﹣=,∵>>,∴P(X=150)=,P(X=300)==,P(X=600)=,则X的分布列为:X150300600P则EX=150×+300×+600×=277(元).20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a >0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,P是第一象限内Γ上异于A的动点,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.【答案】(1);(2);(3)(0,2].【解答】解:(1)抛物线Γ:y2=4x的准线为x=﹣1,由于A到抛物线Γ准线的距离为3,则点A的横坐标为2,则a2=4×2=8(a>0),解得;(2)当a=4时,点A的横坐标为,则A(4,4),设B(b,0),则AB的中点为,由题意可得,解得b=﹣2,所以B(﹣2,0),则,由点斜式可得,直线AB的方程为,即2x﹣3y+4=0,所以原点O到直线AB的距离为;(3)如图,设,则,故直线AP的方程为,令x=﹣3,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则a2+12>a2+4a+4,解得0<a<2,又当a=2时,,当且仅当t=2时等号成立,而a≠t,即当a=2时,也符合题意.故实数a的取值范围为(0,2].21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.【答案】(1)证明过程见解答;(2)a m≤a m﹣1﹣2;(3)k=3.【解答】解:(1)证明:,则过点(a m﹣1,f(a m﹣1))的切线的斜率为,由点斜式可得,此时切线方程为,即,令x=0,可得y=lna m﹣1﹣1,根据题意可知,a m=lna m﹣1﹣1,即得证;(2)先证明不等式lnx≤x﹣1(x>0),设F(x)=lnx﹣x+1(x>0),则,易知当0<x<1时,F′(x)>0,F(x)单调递增,当x>1时,F′(x)<0,F(x)单调递减,则F(x)≤F(1)=0,即lnx≤x﹣1(x>0),结合(1)可知,a m=lna m﹣1﹣1≤a m﹣1﹣1﹣1=a m﹣1﹣2;(3)假设存在这样的k符合要求,由(2)可知,数列{a n}为严格的递减数列,n=1,2,3,…,k,由(1)可知,公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,先考察函数g(x)=lnx﹣x﹣1,则,易知当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,则g(x)=d至多只有两个解,即至多存在两个a n﹣1,使得g(a n﹣1)=d,若k≥4,则g(a1)=g(a2)=g(a3)=d,矛盾,则k=3,当k=3时,设函数h(x)=ln(lnx﹣1)﹣2lnx+x+1,由于h(e1.1)=ln0.1﹣2.2+e1.1+1=e1.1﹣ln10﹣1.2<0,h(e2)=﹣3+e2>0,则存在,使得h(x0)=0,于是取a1=x0,a2=lna1﹣1,a3=lna2﹣1,它们构成等差数列.综上,k=3.。
高考数学理科卷带详解
2 个女生,(步骤
1)∴ P(ξ=0)=
C
2 5
C
2 7
10 21
.P(
ξ=1)=
C15 C12 C72
10
.
21
P( ξ=2) =
C22 C27
1
10
(步骤 2)∴ Eξ=0
1 10
2
1 = 4 .故答案为:
4
.(步骤 3)
21
21
21
21 7
7
8.已知三个球的半径 R1, R2 , R3 满足 R1+2R2=3R3, 则它们的表面积 S1 , S2, S3, 满足的等量关系是 【测量目标】球的表面积 .
一定符合该标志的是
()
A .甲地:总体均值为 6, 中位数为 8 C.丙地:中位数为 5, 众数为 6 【测量目标】用样本数字特征估计总体数字特征
B .乙地:总体均值为 5, 总体方差为 12 D .丁地:总体均值为 3, 总体方差大于 0
.
【考查方式】运用均值、中位数、众数、方差的数值特征对整体数字特征进行估计.
∴∠ MAB= arctan2 故答案为: arctan 2 .
3
3
MAB 时, 曲线 C 都不是一个函数的图像
第 14 题图 二、选择题(共 4 小题, 每小题 4 分, 满分 16 分)
15. “ 2 , a, 2”是“实系数一元二次方程 x2+ax+1=0 有虚根 ”的
A .必要不充分条件
B.充分不必要条件
【难易程度】容易
【测量目标】椭圆的简单几何性质 .
【考查方式】给出椭圆上的一点与椭圆两交点之间的位置关系,
及它们所形成的三角形面积求解椭圆方程中
上海高考数学试卷与答案(理科)(K12教育文档)
上海高考数学试卷与答案(理科)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(上海高考数学试卷与答案(理科)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为上海高考数学试卷与答案(理科)(word版可编辑修改)的全部内容。
2007年全国普通高等学校招生统一考试(上海卷)一.填空题(本大题满分44分)1.函数3)4lg(--=x x y 的定义域是.2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -•-=的解是.5.若x y ∈+R ,,且14=+y x ,则x y •的最大值是.6.函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T .7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 .9.对于非零实数a b ,,以下四个命题都成立: ①01≠+aa ;②2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是.10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个 相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异面直线的充分条件:.(原点O 除11.已知P 为圆1)1(22=-+y x 上任意一点1C 1B1A外),直线OP 的倾斜角为θ弧度,记||OP d =.在右侧的坐标系中,画出以()d θ,为坐标的点的轨迹的大致图形为 二.选择题(本大题满分16分)12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是( )A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a <B.b a ab 22<C.ba ab 2211<D.b aa b < 14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形 ABC 中,若j k i j i+=+=3,2,则k 的可能值个数是( )A.1 B.2 C.3 D.415.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立 C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分) 16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -成角的大小(结果中,1,90===∠BC AC ACB.求直线B A 1与平面C C BB 11所用反三角函数值表示).17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos =B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01mm m m C C C ,,,就是“对称数列”.(1)设{}n b 是项数为7的“对称数列",其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列",使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆"与x ,y 轴的交点.(1)若012F F F △是边长为1的等边三角形,“果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围;(3的弦.试研究:是否存在实数k ,使斜率为k 的“果圆"平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.答案要点一、填空题(第1题至第11题)1. {}34≠<x x x 且2. 32-3. )(11≠-x x x 4.7log 3 5.1616. π7. 3.08.)3(122+=x y 9.②④ 10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)题 号12131415答 案ACBD三、解答题(第16题至第21题)16.解法一: 由题意,可得体积1B1C上海高考数学试卷与答案(理科)(word 版可编辑修改)11111122ABCV CC S CC AC BC CC ====△,∴211==CC AA .连接1BC . 1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角.52211=+=BC CC BC ,51tan 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得 体积11111122ABCV CC S CC AC BC CC ∆====,21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,,1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, 平面C C BB 11的法向量为(100)n =,,. 设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ, 则116cos 6A B n A Bn ϕ==-,66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin . 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B , 10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得710=c , ∴111048sin 222757S ac B ==⨯⨯⨯=.上海高考数学试卷与答案(理科)(word 版可编辑修改)18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为%36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥.解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,∴函数)(x f 既不是奇函数,也不是偶函数.(2)解法一:设122x x <≤,22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x .a ∴的取值范围是(16]-∞,. 解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数,xax x f +=∴2)(在[2)+∞,为增函数.当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d ,∴数列{}n b 为25811852,,,,,,. (2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 ,50134)13(42212-⨯+--=-k S k ,∴当13=k 时,12-k S 取得最大值. 12-k S 的最大值为626.(3)所有可能的“对称数列”是:①22122122222221m m m ---,,,,,,,,,,; ②2211221222222221m m m m ----,,,,,,,,,,,; ③122221222212222m m m m ----,,,,,,,,,,; ④1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m 1222200921--+=--m m m . 对于②,当2008m ≥时,1220082008-=S . 当15002007m <≤时,2008S 122200821--=-+m m . 对于③,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 3222009-+=-m m . 对于④,当2008m ≥时,2008200822--=m m S . 当15002007m <≤时,2008S 2222008-+=-m m .21. 解:(1) ()()012(0)00F c F F ,,,,,021211F F b F F ∴==,, 于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤. (2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b .45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆"C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤. 记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b+=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴P Q ,的中点M ()x y ,满足 221,2a c t x b y t ⎧-⎪=-⎨⎪=⎩, 得122222=+⎪⎭⎫ ⎝⎛-b y c a x . b a 2<,∴22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b+=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x ka b y 22-=上,即不在某一椭圆上.当0k时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2024年上海高考数学试题+答案详解
2024年上海高考数学试题+答案详解(试题部分)一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A = .2.已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.已知,x ∈R 则不等式2230x x −−<的解集为 .4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .5.已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 .6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 .7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 . 10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 .11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠= (精确到0.1度)12.无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=−∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是 . 二、单选题13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势 14.下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x xC .22sin cos x x +D .22sin cos x x −15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,ΩP P P ∈,存在不全为0的实数123,,λλλ,使得1122330OP OP OP λλλ++=.已知(1,0,0)Ω∈,则(0,0,1)Ω∉的充分条件是( )A .()0,0,0∈ΩB .()1,0,0−∈ΩC .()0,1,0∈ΩD .()0,0,1−∈Ω16.已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈−<R ,在使得[]1,1M =−的所有()f x 中,下列成立的是( )A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x −处取到极小值三、解答题17.如图为正四棱锥,P ABCD O −为底面ABCD 的中心.(1)若5,AP AD ==POA 绕PO 旋转一周形成的几何体的体积; (2)若,AP AD E =为PB 的中点,求直线BD 与平面AEC 所成角的大小. 18.若()log (0,1)a f x x a a =>≠.(1)()y f x =过()4,2,求()()22f x f x −<的解集;(2)存在x 使得()()()12f x f ax f x ++、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少? (2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d −=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)20.已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.21.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =−+−,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”. (1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”; (2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t −−,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2024年上海高考数学试题+答案详解(答案详解)一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A = . 【答案】{}1,3,5【解析】由题设有{}1,3,5A =, 答案:{}1,3,52.已知()0,1,0x f x x >=≤⎪⎩则()3f = .【解析】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.已知,x ∈R 则不等式2230x x −−<的解集为 . 【答案】{}|13x x −<<【解析】方程2230x x −−=的解为=1x −或3x =, 故不等式2230x x −−<的解集为{}|13x x −<<, 答案:{}|13x x −<<.4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【解析】因为()f x 是奇函数,故()()0f x f x −+=即()330x a x a ++−+=,故0a =, 答案:0.5.已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 . 【答案】15【解析】//a b ,256k ∴=⨯,解得15k =. 答案:15.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 . 【答案】10【分析】令1x =,解出5n =,再利用二项式的展开式的通项合理赋值即可. 【解析】令1x =,(11)32n ∴+=,即232n =,解得5n =, 所以5(1)x +的展开式通项公式为515C r rr T x−+=⋅,令52r -=,则3r =,32245C 10T x x ==∴.答案:10.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .【答案】【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为答案:8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 【答案】0.85【解析】根据题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=. 答案:0.85.9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 . 【答案】2【解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+−+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m ∈R ,22323101b m b b b b ⎧+=⎪⎪+∴⎨−⎪=⎪+⎩,解得2m =,答案:2.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 . 【答案】329【解析】根据题意知集合中且至多只有一个奇数,其余均是偶数. 首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有29P 72=个;②当个位不为0时,则个位有14C 个数字可选,百位有18C 256=个数字可选,十位有18C 个数字可选,由分步乘法这样的偶数共有111488C C C 256=,最后再加上单独的奇数,所以集合中元素个数的最大值为722561329++=个. 答案:329.11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠= (精确到0.1度)【答案】7.8︒【分析】设BCA θ∠=,在DCA △和BCA V 中分别利用正弦定理得到sin sin CA CD D CAD =∠,()sin16.5sin 16.5CA CB θ=+。
高考上海理科数学试题及答案(word解析版)
列的前两项为 2, 0;或 2, 1;或 3, 0;或 3, 为 2, 0,
1;若 n 3 , 由 S3
2,3 , 可得数列的前三项
0;或 2, 0, 1;或 2, 1, 0;或 2, 1, 3, 1, 1;
若 n 4 , 由 S4 2,3 , 可得数列的前四项为 或 2, 0,
1;或 3, 0, 0;或 3, 0, 1;或 3, 1, 0;或 2, 0, 0, 0;或 2, 0, 0, 1;或 2, 0, 1, 0;
3 , 则该正四棱柱的高等于
.
【答案】 2 2
tan DBD1 DD1
【解析】由题意得
BD
【点评】本题考查了正四棱柱的性质,
2 DD1 2 DD1 2 2
3 32 3
.
正四棱柱的高的计算, 考查了线面角的定义,
关键是找到直线与平面
所成的角.
( 7)【 2019 年上海, 理 7, 4 分】方程 3sin x 1 cos2x 在区间 0,2 上的解为
2)r x
8 4r
( 2)r C8r x3 3 , 求常数项则令
8 3
4 r
3
0 , 所以 r 2 , 所以 T3 112 .
【点评】本题主要考查二项式定理的应用,
二项式展开式的通项公式, 求展开式中某项的系数, 二项式系数
的性质, 属于中档题.
( 9)【 2019 年上海, 理 9, 4 分】已知 ABC的三边长分别为 3, 5, 7, 则该三角形的外接圆半径等于
( A )充分非必要条件 【答案】 A
( B)必要非充分条件
( C)充要条件
(D )既非充分也非必要条件
【解析】 a 1 a2 1,a2 1 a 1或 a 1, 所以是充分非必要条件, 故选 A .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥12,m∈N*),则m的最小值为.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()C.1D.2A.﹣1 B.﹣三、名师解答题(本大题共有5题,满分74分)名师解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f (t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ= {1,4}.知识归纳:交、并、补集的混合运算.名师分析:本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.名师讲解:解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁U B)={x|x>3或x<2},∴A∩(∁U B)={1,4},故答案为:{1,4}.名师点评:本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.知识归纳:复数代数形式的乘除运算.名师分析:设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.名师解答:解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.名师点评:本题考查了复数的运算法则、复数相等,属于基础题.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.知识归纳:二阶行列式与逆矩阵.名师分析:根据增广矩阵的定义得到,是方程组的解,解方程组即可.名师解答:解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.名师点评:本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.知识归纳:棱锥的结构特征.名师分析:由题意可得(•a•a•sin60°)•a=16,由此求得a的值.名师解答:解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.名师点评:本题主要考查正棱柱的定义以及体积公式,属于基础题.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.知识归纳:抛物线的简单性质.名师分析:利用抛物线的顶点到焦点的距离最小,即可得出结论.名师解答:解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.名师点评:本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.知识归纳:旋转体(圆柱、圆锥、圆台).名师分析:设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.名师解答:解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.名师点评:本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是名师解答的关键.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.知识归纳:对数的运算性质.名师分析:利用对数的运算性质化为指数类型方程,解出并验证即可.名师解答:解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.名师点评:本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).知识归纳:排列、组合的实际应用.名师分析:根据题意,运用排除法名师分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.名师解答:解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.名师点评:本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.知识归纳:双曲线的简单性质.名师分析:设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.名师解答:解:设C1的方程为y2﹣3x2=λ,设Q(x,y),则P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.名师点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.知识归纳:反函数.名师分析:由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.名师解答:解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.名师点评:本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).知识归纳:二项式系数的性质.名师分析:先把原式前两项结合展开,名师分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.名师解答:解:∵(1+x+)10=,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.名师点评:本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).知识归纳:离散型随机变量的期望与方差.名师分析:分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.名师解答:解:赌金的分布列为12345P所以Eξ1=(1+2+3+4+5)=3,奖金的分布列为1.42.84.25.6P====所以Eξ2=1.4×(×1+×2+×3+×4)=2.8,则Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.2名师点评:本题主要考查离散型随机变量的分布列和期望的计算,根据概率的公式分别进行计算是解决本题的关键.13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥12,m∈N*),则m的最小值为8.知识归纳:正弦函数的图象.名师分析:由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.名师解答:解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.名师点评:本题考查正弦函数的图象和性质,考查名师分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f (x)max﹣f(x)min=2是名师解答该题的关键,是难题.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=﹣.知识归纳:平面向量数量积的运算.名师分析:由题意画出图形,结合面积求出cosA=,,然后代入数量积公式得答案.名师解答:解:如图,∵△ABD与△ACD的面积分别为2和4,∴,,可得,,∴.又tanA=,∴,联立sin2A+cos2A=1,得,cosA=.由,得.则.∴•==.故答案为:.名师点评:本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,考查了三角函数的化简与求值,是中档题.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件知识归纳:必要条件、充分条件与充要条件的判断.名师分析:根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.名师解答:解:设z1=1+i,z2=i,满足z1、z2中至少有一个数是虚数,则z1﹣z2=1是实数,则z1﹣z2是虚数不成立,若z1、z2都是实数,则z1﹣z2一定不是虚数,因此当z1﹣z2是虚数时,则z1、z2中至少有一个数是虚数,即必要性成立,故“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的必要不充分条件,故选:B.名师点评:本题主要考查充分条件和必要条件的判断,根据复数的有关概念进行判断是解决本题的关键.16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.知识归纳:任意角的三角函数的定义.名师分析:根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.名师解答:解:∵点A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OP|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.名师点评:本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根知识归纳:根的存在性及根的个数判断.名师分析:根据方程根与判别式△之间的关系求出a12≥4,a22<8,结合a1,a2,a3成等比数列求出方程③的判别式△的取值即可得到结论.名师解答:解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,则a32=()2=,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B名师点评:本题主要考查方程根存在性与判别式△之间的关系,结合等比数列的定义和性质判断判别式△的取值关系是解决本题的关键.18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()C.1D.2A.﹣1 B.﹣知识归纳:极限及其运算.名师分析:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.名师解答:解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点P n(x n,y n)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.名师点评:本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、名师解答题(本大题共有5题,满分74分)名师解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.知识归纳:直线与平面所成的角.名师分析:利用长方体的集合关系建立直角坐标系.利用法向量求出二面角.名师解答:解:连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,所以EF∥AC.由长方体的性质知AC∥A1C1,所以EF∥A1C1,所以A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1分别为xyz轴,建立空间直角坐标系,易求得,设平面A1C1EF的法向量为则,所以,即,z=1,得x=1,y=1,所以,所以=,所以直线CD1与平面A1C1FE所成的角的大小arcsin.名师点评:本题主要考查利用空间直角坐标系求出二面角的方法,属高考常考题型.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f (t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.知识归纳:余弦定理的应用.名师分析:(1)由题意可得t1==h,由余弦定理可得f(t1)=PC=,代值计算可得;(2)当t1≤t≤时,由已知数据和余弦定理可得f(t)=PQ=,当<t≤1时,f(t)=PB=5﹣5t,综合可得当<t≤1时,f(t)∈[0,],可得结论.名师解答:解:(1)由题意可得t1==h,设此时甲运动到点P,则AP=v甲t1=5×=千米,∴f(t1)=PC===千米;(2)当t1≤t≤时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB﹣8t=7﹣8t,PB=AB﹣AP=5﹣5t,∴f(t)=PQ===,当<t≤1时,乙在B点不动,设此时甲在点P,∴f(t)=PB=AB﹣AP=5﹣5t∴f(t)=∴当<t≤1时,f(t)∈[0,],故f(t)的最大值超过了3千米.名师点评:本题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.知识归纳:直线与圆锥曲线的综合问题;点到直线的距离公式.名师分析:(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C 到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.名师解答:解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C 到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=2|x1y2﹣x2y1|;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=2|x1y2﹣x2y1|=.方法二:设直线l1、l2的斜率分别为、,则=﹣,所以x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,所以(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,所以S=2|x1y2﹣x2y1|=.名师点评:本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).知识归纳:数列递推式;数列的函数特性.名师分析:(1)把b n=3n+5代入已知递推式可得a n+1﹣a n=6,由此得到{a n}是等差数列,则a n可求;(2)由a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到a n=2b n+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得a n的最大值M和最小值m,再由∈(﹣2,2)列式求得λ的范围.名师解答:(1)解:∵a n+1﹣a n=2(b n+1﹣b n),b n=3n+5,∴a n+1﹣a n=2(b n+1﹣b n)=2(3n+8﹣3n﹣5)=6,∴{a n}是等差数列,首项为a1=1,公差为6,则a n=1+(n﹣1)×6=6n﹣5;(2)∵a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2(b n﹣b n﹣1)+2(b n﹣1﹣b n﹣2)+…+2(b2﹣b1)+a1=2b n+a1﹣2b1,∴,∴.∴数列{b n}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=λ,∴∈(﹣2,2),∴λ∈,∴.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.名师点评:本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).知识归纳:函数与方程的综合运用.名师分析:(1)根据余弦周期函数的定义,判断cosg(x+6π)是否等于cosg(x)即可;(2)根据f(x)的值域为R,便可得到存在x0,使得f(x0)=c,而根据f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf(x)=1在[0,T]上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x∈(0,T)三种情况:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而得到f(2T)=2k1π,k1∈Z,根据f(x)单调递增便能得到k1>2,然后根据f(x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情况说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T时结论成立;而对于x∈(0,T)时,通过考查cosf(x)=c的解得到f(x+T)=f(x)+f(T),综合以上的三种情况,最后得出结论即可.名师解答:解:(1)g(x)=x+sin;∴==cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(x n),(x1<x2<…<x n);则f(x1+T),f(x2+T),…,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(x i+T)=f(x i)+4π=f(x i)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).名师点评:考查对余弦周期函数定义的理解,充分条件的概念,方程的解的概念,知道由cosf(x)=1能得出f(x)=2kx,k∈Z,以及构造方程解题的方法,在证明最后一问时能运用第二问的结论.。