新能源电动汽车回收系统资料知识讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代汽车电子技术

题目:电动助力转向系统

摘要

本文从全球环境污染和能源短缺等严峻问题阐述了发展电动汽

车的重要性和必要性,着重分析概括了电动汽车制动能量回收系统的研究现状

关键字电动汽车制动能量回收系统

1 引言

目前,普通燃油汽车在国内外仍占据绝大部分汽车市场。汽车发动机燃烧燃料产生动力的同时排放出大量尾气,其成分主要有二氧化碳(CO2),一氧化碳(CO),氮氧化合物(NO X)和碳氢化合物(HC),还有一些铅尘和烟尘等固体细微颗粒物,虽然现代汽车技术已经使汽车尾气排放降到很低,但由于汽车保有量持续高速增加,汽车排放的尾气还是会对人类的生存环境造成很严重的影响,例如近年来不断加剧的温室效应,光化学烟雾,城市雾霾等大气污染现象。

内燃机汽车消耗的能源主要来自石油,石油属于不可再生资源,目前全球已探明的石油总量为12000.7亿桶,按现在的开采速度将只够开采40.6年左右,即使会不断发现新的油田,但总会有消耗的一天。全球交通领域的石油消耗占石油总消耗的57%,由于汽车的保有量持续快速增长(主要来自发展中国家),到2020年预计这一比例将达到62%以上,2010年我国的石油对外依存度已达到53.8%,到2030年预计这一比例将达到80%以上,可见石油资源的短缺将会直接影响我国的能源安全,经济安全和国家安全,不利于我国长期可持续的发展,因此探索石油以外的汽车动力能源是21世纪迫切需要解决的问题。

电动汽车具有无污染,已启动,低噪声,易操纵等优点,相关的技术研究已趋成熟,是公认的未来汽车的主流。自1997年10底丰田推出混合动力车型Prius 以来,电动汽车越来越受市场的欢迎,近年来不少国内外汽车生厂商已向市场推出不少种类的电动汽车,在混合动力汽车领域,日本的丰田和本田不管从技术研发还是在市场销售,宣传等方面已经走在世界的前列,推出了诸如Pius,Insight,Fit,Civic 等量产化混合动力车型,其他国外汽车制造商在本田和丰田之后也相继推出相应的车型,例如宝马3系,5系,7系,8系都推出了相应的混合动力车型,大众途锐的混合动力版,特斯拉推出的MODEL S 纯电动车,国内汽车生产商比亚迪在电动汽车领域已经走在前列,相继推出包含“秦”在内的许多种混合动力车型。

制动能量回收系统是现代电动汽车和混合动力车重要技术之一,也是其一个重要特点。其工作原理如图1所示,在一般的内燃机汽车上,当车辆减速、制动时,车辆的运动能量通过制动系统而转变为热能,并向大气中释放。而在电动汽车与混合动力车上,这种被浪费掉的部分运动能量已可通过制动能量回收技术转变为电能并储存于蓄电池等储能装置中,有效地利用了车辆制动时的动能,可以显著的改善车辆的燃油经济性及车辆的制动性,提高能量的利用效率,增加电动汽车的行驶里程。

图1 制动能量回收原理

2电动汽车制动能量回收系统研究现状

2.1制动能量回收系统的组成与分类

2.1.1制动能量回收系统的组成

由于电动机产生的再生制动力矩通常达不到传动燃油车中的制动系统产生的制动性能,所以在电动汽车中,制动能量回收系统包括液压制动和再生制动两个子系统,同时涉及到整车控制器、变速器、差速器和车轮等相关部件,如图2所示。电制动系统包含驱动电机及其控制器、动力电池和电池管理系统电机控制器用于控制驱动电机工作于发电状态,施加回馈制动力;电池管理系统控制电能回收于电池;液压控制系统包括液压制动执行机构和制动控制器(BCU),用于控制摩擦制动力的建立与调节。

图2 制动能量回收系统的组成

2.1.2制动能量回收系统的分类

按回馈制动力与摩擦制动力的耦合关系,制动能量回收系统可分为叠加式(或并联式)和协调式(或串联式)两种,如图3所示。

图3 叠加式与协调式制动能量回收系统

叠加式制动能量回收系统是将电机回馈制动力直接叠加在原有

摩擦制动力之上,不调节原有摩擦制动力,实施方便,但回馈效率低,制动感觉差。协调式制动能量回收系统则是优先使用回馈制动力,对液压制动力进行相应调节,使两种制动力之和与总制动需求协调一致,回馈效率较高,制动感觉较好,但须对传统液压制动系统进行改造,实施较为复杂。早期的电驱动车辆大多采用叠加式回馈制动。随着技术的发展,在回馈效率、制动感觉和制动安全等诸多方面具有巨大优势的协调式回馈制动逐渐成为了研发的主流。

对于叠加式回馈制动,液压制动力无须调节,传统液压制动系统即可实现。而对于协调式回馈制动,则应对液压系统进行重新设计或改造。按照其液压调节机构所依托的技术平台,协调式制动能量回收系统又可分为以下3 类。

(1) 基于EHB 技术(电子液压制动系统)的制动能量回收系统此类方案采用传统车辆EHB 电控液压制动系统作为协调式回馈制动的执行机构。

(2) 基于ESP / ESC 技术的制动能量回收系统此类方案基于ESP / ESC 技术平台,利用标准化零部件,对制动管路布置进行相应改造。

(3) 基于新型主缸/助力技术的制动能量回收系统此类方案根据协调式回馈制动的技术要求对制动主缸和助力系统进行重新的设计与开发。

装备协调式能量回收系统的车辆制动时,在保证制动安全的条件下优先采用电机回馈制动力,当回馈制动力不能满足制动需求时再施加液压制动力。在施加电机回馈制动力时要考虑电机的外特性、电池状态和制动稳定性等,因此在制动过程中电机回馈制动力总是在变化的,这就要求能够准确快速地调节液压制动力以使得总制动力与驾驶员需求相符。因此传统车的液压制动系统不满足制动能量回收技术的要求,需要加以改造或重新设计新的液压制动系统。除了需要设计能够灵活调节液压制动力的液压制动系统之外,还需设计合适的控制策略,主要包括回馈制动力与液压制动力的分配以及前后轮制动力的分配,控制策略必须充分考虑到制动稳定性、电池充电能力、电机特性和驾驶感觉。目前制动能量回收技术的研究主要集中在两个面:方案设计和控制策略。

2.2制动能量回收系统方案设计

电驱动车辆与传统内燃机车辆相同,都安装了各种各样的底盘动力学控制系统,以保证车辆的正常行驶,一般包括驱动控制和制动控制两大方面,在制动控制系统上,目前基本上所有的车辆都配备了ABS防抱死制动系统,在各种恶劣工下该系统已经可以很大程度上保证车辆制动时的可控性和稳定性。而在电驱动车辆的制动控制中,由于引入电动机回馈制动,会对防抱死制动系统产生的不确定的影响,需要对制动回馈系统和防抱死制动系统进行协调,常见的协调式(串联式)制动回馈系统和防抱死制动系统从调节手段和执行机构上来看,防抱死制动和串联回馈制动下的制动融合是相同的,这就为实现这两个制动系统协调控制提供了便利。

因此在使用协调式制动回馈系统的趋势下,为了充分保证制动安全,简化执行机构,提高系统的集成程度,对制动能量回馈与防抱死制动在硬件和软件上进行集成设计与控制具有现实意义。目前国际上已经有不少知名的整车和零部件制造商都提出了自己的解决方案,其中大多适用于乘用车的液压制动能量回收系统,按照其工作原理大致可以分为两类:一类是基于原有的ABS/ESP系统,在制动管路上安装调节阀、蓄能器、电机和泵等来达到调节摩擦制动转矩的目的,同时保证制动踏板感觉;第二类是对原有会制动系统的主缸进行改造,在进入轮边调节阀之前完成踏板感觉和实际制动力的解耦。以上两种方案中,为了保证制动感觉与传统的内燃机汽车一致,普遍安装了踏板感觉模拟器。第一类方案的代表是日本的丰田公司。他们推出的基于EHB 方案设计的集成制动能量回收功能制动防抱死系统(图4)已经批量应用于Prius 混合动力车上,在正常制动情况下,主缸与制动器管路隔离,阻断了踏板和液压管路的关联。系统中有专门的电机泵和低压蓄能器为轮缸提供制动压力,同时利用冲程模拟器模拟踏板的位移和反作用力。踏板位移传感器和主缸压力传感器判断驾驶员的制动需求,在获知当前最大回馈制动力后,总制动力被分配给摩擦制动和回馈制动,相应的控制信号分别传递至轮边压力调节阀和电机控制器。其中,轮边压力调节阀也作为防抱死制动时的调节机构,在防抱死控制循环中进行增压、保压、降压等操作。当系统失效时,主缸与制动管路接通同时关闭冲程模拟器,主缸压力直接送达轮缸产生制动力。该方案的优点是可以任意调节各轮缸压力,回馈策略的设计因此

相关文档
最新文档