北航数理统计期末考试题

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

北航2015级硕士研究生数理统计参考答案(B层)

北航2015级硕士研究生数理统计参考答案(B层)

2015-2016 学年 第一学期期末试卷参考答案学号 姓名 成绩 考试日期: 2016年1月15日考试科目:《数理统计》(B 层)一、填空题(本题共16分,每小题4分)1.设12,,n x x x ,是来自正态总体2(0,)N σ的简单样本,则当c = 时,统计量221()nkk x cxx η==-∑服从F -分布,其中11nk k x x n ==∑。

((1)n n -)2. 设12,,n x x x ,是来自两点分布(1,)B p 的简单样本,其中01p <<,2n ≥,则当c = 时,统计量2ˆ(1)cx x σ=-是参数()(1)q p p p =-的无偏估计,其中11nk k x x n ==∑。

(1n n -)3.设总体X 的密度函数为22,[0,](;)0,[0,]x x p x x θθθθ⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是来自总体X 简单样本,则θ的充分统计量是 。

(()n x ) 4.设12,,n x x x ,是来自正态总体2(,)N μσ的简单样本,已知样本均值 4.25x =,μ的置信度为0.95的双侧置信区间下限为3.1,则μ的置信度为0.95的双侧置信区间为(,)。

((3.1,5.4))二、(本题12分)设12,,,n x x x 是来自正态总体2(1,2)N σ的简单样本。

(1)求2σ的极大似然估计2σ;(2)求2σ的一致最小方差无偏估计;(3)问2σ的一致最小方差无偏估计是否为有效估计?证明你的结论。

解(1)似然函数为22211()exp{(1)}4nnii L x σσ==--∑对数似然函数为222211ln ()(ln(4)ln )(1)24n i i n L x σπσσ==-+--∑求导,有222241ln ()1(1)24n i i L n x σσσσ=∂=-+-∂∑ 令22ln ()0L σσ∂=∂,可得θ的极大似然估计为2211ˆ(1)2n i i x n σ==-∑。

北航数理统计答案

北航数理统计答案

北航数理统计答案【篇一:北航数理统计考试题】术部2011年12月2007-2008学年第一学期期末试卷一、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?,?2)的样本,令t?x?x),试证明t服从t-分布t(2)二、(6分,b班不做)统计量f-f(n,m)分布,证明1f的?(0?1)的分位点x?是1f1??(n,m)。

三、(8分)设总体x的密度函数为?(1??)x?,0?x?1p(x;?)??0,其他?其中???1,是位置参数。

x1,x2,…,xn是来自总体试求参数?的矩估计和极大似然估计。

四、(12分)设总体x的密度函数为?1?x???exp???,x???p(x;?)??????,??0,其它其中???????,?已知,??0,?是未知参数。

x1,x2,…,xn是来自总?体x的简单样本。

(1)试求参数?的一致最小方差无偏估计?;(2)?是否为?的有效估计?证明你的结论。

五、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,y1,y2,…,yn是来自正态总体n(?两样本相互独立,其中?设h0:?1??2,h1:?1??2,1221?,?1)2的,?2)的简单样本,且21,?1,?2,?222是未知参数,???22。

为检验假可令zi?xi?yi, i?1,2,...,n ,???1??2 ,则上述假设检验问题等价于h0:?1?0,h1:?1?0,这样双样本检验问题就变为单检验问题。

基于变换后样本z1,z2,…,zn,在显著性水平?下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,b班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,?0已知,?2未知,试求假设检验问题h0:?2,?)02的??0,h1:?22??02的水平为?的umpt。

七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6分)设方差分析模型为?xij????i??j??ij?2??ij服从正态总体分布n(0,?)且?ij相互独立??i?1,2,...,p;j?1,...,q?pq??和?满足??i?0,??j?0.j?ii?1j?1?总离差平方和pst?sa?sb?se中sa?q?(xi??x),x?i?1x??pqi?1j?11pqij,xi??1qijx?qj?1,且e(se)=(p-1)(q-1)?.?...??p?0的拒绝2试求e(sa),并根据直观分析给出检验假设h0:?1??2域形式。

北航数理统计期末考试题

北航数理统计期末考试题

材料学院研究生会学术部2011年12月2007-2008学年第一学期期末试卷一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。

三、(8分)设总体X 的密度函数为其中1α>-,是位置参数。

x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。

四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。

x 1,x 2,…,x n 是来自总体X 的简单样本。

(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。

五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。

为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。

基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。

04北航概率期末试题

04北航概率期末试题

北京航空航天大学概率论与数理统计试卷 2004-01姓名: 班级: 学号: 得分:一.判断题(10分,每题2分)1. 在古典概型的随机试验中,0)(=A P 当且仅当A 是不可能事件 ( )2.连续型随机变量的密度函数)(x f 与其分布函数)(x F 相互唯一确定 ( )3.若随机变量X 与Y 独立,且都服从1.0=p 的 (0,1) 分布,则Y X = ( )4.设X 为离散型随机变量, 且存在正数k 使得0)(=>k X P ,则X 的数学期望)(X E 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( )二.选择题(15分,每题3分)1. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤ 次成功的概率为 .(a) r n r r n p p C ----)1(11; (b) r n r r n p p C --)1(; (c) 1111)1(+-----r n r r n p p C ; (d) r n r p p --)1(. 2. 离散型随机变量X 的分布函数为)(x F ,则==)(k x X P .(a) )(1k k x X x P ≤≤-; (b) )()(11-+-k k x F x F ;(c) )(11+-<<k k x X x P ; (d) )()(1--k k x F x F .3. 设随机变量X 服从指数分布,则随机变量)2003,(max X Y =的分布函数 .(a) 是连续函数; (b) 恰好有一个间断点;(c) 是阶梯函数; (d) 至少有两个间断点.4. 设随机变量),(Y X 的方差,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=-)23(Y X D .(a) 40; (b) 34; (c) 25.6; (d) 17.65. 设),,,(21n X X X 为总体)2,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是 .(a) )(~/21n t n X -; (b) )1,(~)1(4112n F X ni i ∑=-; (c) )1,0(~/21N n X -; (d) )(~)1(41212n X ni i χ∑=-. 二. 填空题(28分,每题4分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为)(x f ,则随机变量X e Y 3=的概率密度函数为=)(y f Y3. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P = .4. 设二维随机变量),(Y X 的联合密度函数为 ⎩⎨⎧<<<=他其,0;10,,1),(x x y y x f 则条件密度函数为,当 时 ,=)(x y f X Y5. 设)(~m t X ,则随机变量2X Y =服从的分布为 ( 需写出自由度 )6. 设某种保险丝熔化时间),(~2σμN X (单位:秒),取16=n 的样本,得 样本均值和方差分别为36.0,152==S X ,则μ的置信度为95%的单侧置信区间上限为7. 设X 的分布律为 X 1 2 3P 2θ )1(2θθ- 2)1(θ-已知一个样本值)1,2,1(),,(321=x x x ,则参数的极大似然估计值为三. 计算题(40分,每题8分)1. 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是0.02;一次品被误认为是合格品的概率是0.05.求在被检查后认 为是合格品的产品确实是合格品的概率2.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数分布,试求Y X Z 23+=的密度函数)(z f Z .3.某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为1=λ 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率.4. 总体),(~2σμN X ,),,,(21n X X X 为总体X 的一个样本.求常数 k , 使∑=-ni i X X k 1为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力),(~2σμN X(单位:kg ). 已知8=σ kg , 现从该厂生产的一大批特种金属丝中 随机抽取10个样品,测得样本均值2.575=x kg . 问这批特种金属丝的 平均折断力可否认为是570 kg ? (%5=α)(2) 已知维尼纶纤度在正常条件下服从正态分布)048.0,(2μN . 某日抽取5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 . 问 这天的纤度的总体方差是否正常?试用%10=α作假设检验.四. 证明题(7分)设随机变量Z Y X ,,相互独立且服从同一贝努利分布),1(p B . 试证明随机变量Y X +与Z 相互独立.附表: 标准正态分布数值表 2χ分布数值表 t 分布数值表 6103.0)28.0(=Φ 488.9)4(205.0=χ 1315.2)15(025.0=t975.0)96.1(=Φ 711.0)4(295.0=χ 7531.1)15(05.0=t9772.0)0.2(=Φ 071.11)5(205.0=χ 1199.2)16(025.0=t9938.0)5.2(=Φ 145.1)5(295.0=χ 7459.1)16(05.0=t概 率 统 计 试 卷 参 考 答 案一. 判断题(10分,每题2分) 是 非 非 非 是 .二. 选择题(15分,每题3分) (a)(d)(b)(c)(d).三. 填空题(28分,每题4分)1.1/22 ;2. ⎩⎨⎧≤>=000)])3/[ln()(1y y y f y f y Y ; 3.0.9772 ; 4. 当10<<x 时⎩⎨⎧<<-=他其0)2/(1)(xy x x x y f X Y ; 5. ),1(m F 6. 上限为 15.263 . 7. 5 / 6 .四. 计算题(40分,每题8分)1. A 被查后认为是合格品的事件,B 抽查的产品为合格品的事件. (2分)9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P , (4分) .998.09428.0/9408.0)(/)()()(===A P B A P B P A B P (2分)2. ⎩⎨⎧>=-其他00)(x e x f xX λλ ⎩⎨⎧>=-其他00)(y e y f y Y μμ (1分) 0≤z 时,0)(=z F Z ,从而 0)(=z f Z ; (1分) 0≤z 时, ⎰∞+-∞-=dx x z f x f z f Y X Z ]2/)3[()()(21 (2分) )(232/3/3/0]2/)[(21z z z x z x e e dx e μλμλλμλμλμ-------==⎰ (2分) 所以⎪⎩⎪⎨⎧≤>--=--0,00),(23)(2/3/z z e e z f z z Z μλλμλμ[ ⎪⎩⎪⎨⎧≤>--=--0,00),(32)(3/2/z z e e z f z z Z μλλμλμ ] (2分) 3. 设 i X 为第i 周的销售量, 52,,2,1 =i i X )1(~P (1分)则一年的销售量为 ∑==521i i X Y ,52)(=Y E , 52)(=Y D . (2分) 由独立同分布的中心极限定理,所求概率为1522521852185252522)7050(-⎪⎪⎭⎫⎝⎛Φ+⎪⎪⎭⎫ ⎝⎛Φ≈⎪⎪⎭⎫⎝⎛<-<-=<<Y P Y P (4分) 6041.016103.09938.01)28.0()50.2(=-+=-Φ+Φ=. (1分) 4. 注意到()n i i X X n X X n X X ---+--=- )1(121)2(1)(,0)(2分σn n X X D X X E i i -=-=-)1(1,0~2分⎪⎭⎫⎝⎛--σn n N X X i dze n n z X X E n n z i 2212121|||)(|σσπ--∞+∞-⎰-=-dz en n z n n z 221201212σσπ--∞+⎰-=)3(122分σπn n -=nnσπn kn 2=令5. (1) 要检验的假设为 570:,570:10≠=μμH H (1分)检验用的统计量 )1,0(~/0N n X U σμ-=,拒绝域为 96.1)1(025.02==-≥z n z U α. (2分) 96.106.21065.010/85702.5750>==-=U ,落在拒绝域内,故拒绝原假设0H ,即不能认为平均折断力为570 kg . [ 96.1632.0102.010/92.5695710<==-=U , 落在拒绝域外,故接受原假设0H ,即可以认为平均折断力为571 kg . ] (1分) (2) 要检验的假设为 221220048.0:,048.0:≠=σσH H (1分) [22122079.0:,79.0:≠=σσH H ]检验用的统计量 )1(~)(2202512--=∑=n X X i i χσχ,拒绝域为 488.9)4()1(205.022==->χχχαn 或 711.0)4()1(295.02122==-<-χχχαn (2分) 41.1=x [49.1=x ]488.9739.150023.0/0362.020>==χ, 落在拒绝域内,[711.0086.06241.0/0538.020<==χ,落在拒绝域内,]故拒绝原假设0H ,即认为该天的纤度的总体方差不正常 . (1分) 五、证明题 (7分) 由题设知 X 0 1 Y X + 0 1 2P p q P 2q pq 2 2p (2分))0()0()0,0(3==+====+Z P Y X P q Z Y X P ; )分(2)1(2-=n n k π)1()0()1,0(2==+====+Z P Y X P pq Z Y X P ; )0()1(2)0,1(2==+====+Z P Y X P pq Z Y X P ;)1()1(2)1,1(2==+====+Z P Y X P pq Z Y X P ;)0()2()0,2(2==+====+Z P Y X P pq Z Y X P ;)1()2()1,2(3==+====+Z P Y X P p Z Y X P . 所以 Y X +与Z 相互独立. (5分)。

数理统计期末复习题

数理统计期末复习题

期末复习题 一、填空题(每空2分,共30分)1.已知随机变量X 的分布列如下,则常数a =_______。

X 1 2 3 4 5Pa 2a 0.3 0.3 0.12. 方差分析的前提条件是_________、__________和独立性。

3. 设随机变量X 与Y 相互独立,且D(X)=3,D(Y)=6,则D (3X -Y )= ________。

4. 设随机变量),(~p n B X ,()2,E X =() 1.2,D X = 则n = ______ ,p = ______。

5.正交试验中,若选用正交表)2(1516L ,共需要进行 次实验,最多可以安排 个因素 水平的试验。

6. 用P 值法进行检验时,若P 值α>,则结论应当是________0H 。

7.设总体X 服从正态分布N (μ,2σ),其中μ未知,X 1,X 2,…,X n 为其样本。

若假设检验问题为2201H 1; H 1σσ≠:=:,则应采用 检验。

8. 估计量优劣的主要评判标准是________、________和一致性。

9. 设随机变量2~(1.5,)XN σ,且(1.5 2.5)0.19P X <<=,则(2)P X <=_______ (参考值:(0.5)0.69,(0.6)0.73,(1.25)0.89,(0.25)0.60φφφφ====)10.2S 可作为_______的点估计。

二、单选题(每题3分,共45分)1.某人连续向同一目标射击,每次命中目标的概率为3/5,他连续射击直到命中为止,则射击次数为4的概率是( )(A )453)( , (B )52533⨯)(, (C )53523⨯)(, (D )4115)53(52C )( 2.设~(0,1)X N ,()x φ为X 的分布函数,则(|2|3)P X ->是( )(A ))1()5(φφ+, (B ))1()5(1φφ+- , (C ))1(1)5(φφ-+, (D ))1()5(2φφ-- 3. 某药物治愈率为0.4,现有5个病人服用该药,则5个人中有3个治愈的概率为( )(A )236.04.0⨯ , (B )34.0 , (C )34.053⨯, (D )23356.04.0⨯⨯C4. 设125,,...x x x 是来自(5,2)N 的简单样本,则()E x 和()D x 分别为( )(A )5,2 (B )5(C )1,0.4 (D )5,0.45. 在假设检验中,用α和β分别表示犯第一类错误和第二类错误的概率,则当样本容量一定时,下列说法正确的是( )(A )减少α,增加β (B )增大α,β往往增大(C )减少α,β往往增大 (D )无法确定 6. 设n X X X ,,,21 为总体)3,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是( )(A ) )(~/31n t nX -; (B ) )1,(~)1(3112n F X ni i ∑=-;(C ) )1,0(~/31N nX -; (D ) )1(~)1(31221--∑=n X ni i χ7. 设总体2~(,)X N μσ,n x x x ,...,21是来自总体X 的简单样本,则下列估计量中,不是总体参数μ的无偏估计的是( )(A )10.40.6n X X +(B )i X (C )123X X X +-(D )12...n X X X +++ 8. 对正态总体),(2σμN 的假设检验问题中,使用u 统计量解决的问题是( ). (A) 已知方差,检验均值 (B) 未知均值,检验方差 (C) 已知均值,检验方差 (D) 未知方差,小样本,检验均值 9.单因素方差分析中,当F 值(1,)F k n k <--时,可以认为( )(A) 各样本均值都不相等 (B) 各总体均值不等或不全相等 (C) 各总体均值都不相等 (D) 各总体均值相等10.方差分析时使用的F 统计量是( )(A) 组间平方和除以组内平方和 (B) 组内平方和除以组间平方和 (C) 组间均方除以组内均方 (D) 组内均方除以组间均方 11.设事件A 与B 相互独立,则( )(A) A 与B 不能同时发生 (B) A 与B 一定能同时发生 (C) A 与B 相互独立 (D) A 与B 不独立 12. 甲、乙两人进行射击,A ,B 分别表示甲、乙射中目标,则A B ⋂( ) (A)两人都没射中目标 (B) 甲没射中,乙射中 (C)至少有一人没射中目标 (D) 至少有一人射中目标13. 对因素A 、B 、C 、D 用49(3)L 正交表安排试验,用直观分析法对试验结果进行正交分析和计算,所得因素A 、B 、C 、D 的极差分别为A R =25, B R =16,C R =23,D R =8,则各因素对试验结果的影响从大到小的次序为( )(A )A 、B 、C 、D ; (B )D 、B 、A 、C ; (C )A 、C 、B 、D ; (D )B 、D 、A 、C 14. 若两事件A 和B 相互独立,且满足()( ),()0.3,P AB P A B P A ==则()P B =( ) (A )0.4 (B )0.5 (C )0.6 (D )0.715. 设A ,B 为随机事件,P (B )>0,P (A|B )=1,则必有( )(A )P(A ∪B)=P (A ), (B )B A ⊂, (C )P (A )=P (B ), (D )P (AB )=P (A )三、解答题(共25分)(保留两位小数)(参考值:0.0250.051.961.65u u == 0.0250.05(24)2.06(24) 1.71t t ==)1. (5分)某厂生产的化纤强度服从正态分布,长期以来其标准差稳定在0.85σ=,现抽取了一个容量为25n =的样本,测定其强度,算得样本均值为 2.25x =,试求这批化纤平均强度μ的置信水平为0.95的置信区间。

北航数理统计期末考试题

北航数理统计期末考试题

材料学院研究生会学术部2011 年12 月2007-2008学年第一学期期末试卷一、(6 分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( , 2) 的样本,令2(x1 x2)T(x3 x4)2 (x5 x6)2 ,试证明T 服从t-分布t(2)二、( 6 分, B 班不做 ) 统计量F-F(n,m) 分布,证明1的 (0< <1)的分位点x 是1。

F F1 (n,m) 。

三、(8分)设总体X 的密度函数为其中1,是位置参数。

x1,x2,⋯,x n是来自总体X 的简单样本,试求参数的矩估计和极大似然估计。

四、(12分)设总体X 的密度函数为1xexp ,xp(x; )0 , 其它其中, 已知,0, 是未知参数。

x1,x2,⋯,x n 是来自总体X 的简单样本。

1)试求参数的一致最小方差无偏估计;2) 是否为的有效估计?证明你的结论。

五、(6分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( 1, 12) 的简单样本,y1,y2,⋯,y n 是来自正态总体N( 2, 22) 的简单样本,且两样本相互独立,其中1, 12, 2, 22是未知参数,1222。

为检验假设H0 :可令z i x i y i, i 1,2,..., n ,1 2 ,1 2, H1 : 1 2,则上述假设检验问题等价于H0 : 1 0, H1: 1 0,这样双样本检验问题就变为单检验问题。

基于变换后样本z1,z2,⋯,z n,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6 分,B 班不做)设x1,x2,⋯,x n是来自正态总体N( 0, 2) 的简单样本,0 已知,2未知,试求假设检验问题H0: 202, H1: 202的水平为的UMPT。

七、(6 分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6 分)设方差分析模型为总离差平方和试求E(S A ) ,并根据直观分析给出检验假设H0 : 1 2 ... P 0的拒绝域形式。

《概率论与数理统计》期末试卷(A)

《概率论与数理统计》期末试卷(A)

第1页 共3页北京理工大学珠海学院2013 ~ 2014学年第二学期《概率论与数理统计》期末试卷(A )1.箱中有5个白球3个红球,任取2个,则两个都是红球的概率为( ) A.15/28 B.13/28 C.5/28 D.3/282.设),(~2σμN X ,则随σ增加,概率(||)P X μσ-<( )A.单调增加B.单调减少C.保持不变D.与错误!未找到引用源。

μ有关3.设总体),(~2σμN X ,错误!未找到引用源。

是总体X 的样本,则以下μ错误!未找到引用源。

的无偏估计中, 最有效的估计量是( ). A.12X X - B.321613221X X X -+ C.错误!未找到引用源。

D.321515452X X X -+ 4.设8.0)(,5.0)(=⋃=B A P A P ,且A 与B 互斥,则=)(B P 5.设随机变量X 在(1,6)服从均匀分布,则=<<)42(X P 6.若总体),(~2σμN X ,其中2σ未知,则对总体均值μ进行区间估计时选择的枢轴量为1.分别为20%、(1(22.设随机变量X (1)求)(X E ;3.设随机变量X (1)求常数c ;1. 求(1)X (2))1(22≤+Y X P2.(1)求错误!(2)判断错误!……………………………………………装………………………………订…………………………线………………………………………………………此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写此处不能书写 此处不能书写3.设总体X 的概率密度为错误!未找到引用源。

错误!未找到引用源。

,n X X X ,,,21 是总体X 的样本,求未知参数θ的最大似然估计量.4.已知某炼铁厂的铁水含碳量在正常情况下服从正态分布)108.0,55.4(2N ,现在测了五炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37。

对于0.05α=,01: 4.55,: 4.55H H μμ=≠,试检验总体均值有无变化? 李琳、许其州(0.050.0250.050.0251.645, 1.96,(5) 2.02,(5) 2.57z z t t ====)四、解答题(每小题6分,共12分)【得分: 】 1.设随机变量)25,1(~N X ,)16,2(~N Y ,4.0-=XY ρ,求 (1)),cov(Y X ;(2))(Y X D +.2.某高校图书馆阅览室共有1332个座位,该校共有14400名学生,已知每天晚上每个学生到阅览室去自习的概率为10%.试用中心极限定理计算阅览室晚上座位不够用的概率?(9987.0)3(,8413.0)1(=Φ=Φ错误!未找到引用源。

专业学位研究生应用数理统计期末试题

专业学位研究生应用数理统计期末试题

专业学位研究⽣应⽤数理统计期末试题航天学院2019-2020学年第⼀学期专业学位研究⽣《应⽤数理统计》课程考试卷(A卷)考核形式:开卷部门:班级:姓名:说明:下列试题均可⽤SPSS软件计算,所有问题均要求提供纸质答案及电⼦答案。

最后⼀题要求提供数据⽂件.sav和输出⽂件.spv.⽤两种软件提供答案的试卷可适当加分。

2章参数估计⼀、随机地从A批导线中抽取4根,并从B批导线中抽取5根,测得其电阻(单位:)设测试数据分别服从正态分布,在下列两种情况下讨论两总体均值差的区间估计。

(1)两总体⽅差相等;(2)两总体⽅差不等。

3章假设检验⼆、为研究长跑运动对增强普通⾼校学⽣⼼脏功能的效果,对某⾼校15名男⽣进⾏测试,经过5个⽉的长跑训练后看其晨脉是否减少。

锻炼前后的晨脉数据如下表所⽰。

试问锻炼前后的晨脉在显著性⽔平0.05下有⽆显著性差别。

4章⽅差分析三、为了研究⽕箭燃料和推进器对⽕箭射程的影响,选⽤了4种不同燃料和3种不同推进器,将他们相互搭配并在每⼀种搭配下做了两次试验,得到⽕箭射程(海⾥)数据如下表。

在显著性⽔平0.05下,试分析燃料、推进器以及燃料和推进器这两种因素的交互作⽤对⽕箭射程的影响是否显著?6章回归分析四、国家需要⼤⼒发展国际旅游⾏业以增加国家的外汇收⼊,外汇收⼊Y 与接待的旅游⼈数X 之间构成什么样的统计关系呢?根据2004年的中国统计年鉴,得到1985—2002年间的统计数据如下表:(1)试根据上述数据建⽴外汇收⼊Y 与接待的旅游⼈数X 之间的回归模型,并进⾏回归分析,对2003年和2004年的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。

(2)试查找2005-2016年间连续6年的国家的外汇收⼊与接待的旅游⼈数的相关统计数据,分析其是否符合(1)中的模型,如不符合,试建⽴新的回归模型。

(3)利⽤(2)中的回归模型对我国2017年(可验证)和2019年(预测)的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。

概率论和数理统计期末考试试题及答案

概率论和数理统计期末考试试题及答案

一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有 (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0.06 (C) 0.07 (D ) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A)对任意实数21,p p =μ (B )对任意实数21,p p <μ(C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C)22EY EX = (D) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0.1(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f ,则使)()(a X P a X P <=>的常数a = 421(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P 0.35(4) 设两个相互独立的随机变量X 和Y 均服从)51,1(N ,如果随机变量X -aY +2满足条件 ])2[()2(2+-=+-aY X E aY X D ,则a = 20 _.(5) 已知X ~),(p n B ,且8)(=X E ,8.4)(=X D , 则n = 3三、解答题 (共65分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?解:A 为事件“生产的产品是次品”,B 1为事件“产品是甲厂生产的”,B 2为事件“产品是乙厂生产的”,B 3为事件“产品是丙厂生产的”易见的一个划分是Ω321,,B B B(1) 由全概率公式,得.0345.0%2%40%4%35%5%25)()()()(3131=⨯+⨯+⨯===∑∑==i i i i i B A P B P AB P A P(2) 由Bayes 公式有:2、(10分)设二维随机变量(X,Y)的联合概率密度为⎩⎨⎧<<<<--= , 其它040,20),6(),(y x y x k y x f 求:(1)常数k (2))4(≤+Y X P2380345.0%4%35)()()()()(31222=⨯==∑=i ii B P B A P B P B A P A B P解:(1)由于1),(=⎰⎰∞∞-∞∞-dxdy y x f ,所以1)6(4020=--⎰⎰dy y x k dx ,可得241=k (2)98)16621(241)6(2412204020=+-=--⎰⎰⎰-dx x x dy y x dx x3、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求:随机变量Y X Z +=的概率密度函数.解: ⎰∞-=xdt t f x F )()( 当t x t e dt e x F x 2121)(,0==<⎰∞-------------------------------------------------------------------------------------3分 当t x t t e dt e dt e x F x --∞--=+=≥⎰⎰211][21)(,0004、(8分)设随机变量X 具有概率密度函数⎩⎨⎧<<=其他,,0;40,8)(x x x f X求:随机变量1-=X e Y 的概率密度函数.解:1-=X e Y 的分布函数).(y F Y⎰+∞-=+≤=≤-=≤=)1ln()())1ln(()1()()(y X X Y dx x f y X P y e P y Y P y F=⎪⎩⎪⎨⎧≤--<≤+<.1,1;10),1(ln 161;0,0442y e e y y y 于是Y 的概率密度函数⎪⎩⎪⎨⎧-<<++==.,0;10,)1(8)1ln()()(4其他e y y y y F dy d y f Y Y5、(8分)设随机变量X 的概率密度为:∞<<∞-=-x e x f x 21)(,求:X 的分布函数.解:由卷积公式得⎰+∞∞--=dx x z x f z f Z ),()( , 又因为X 与Y 相互独立,所以⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当10<<z 时,;1)()()(0)(z z x z Y X Z e dx e dx x z f x f z f ---+∞∞--==-=⎰⎰ 当0≤z 时,;0)()()(=-=⎰+∞∞-dx x z f x f z f Y X Z 当1≥z 时,);1()()()(10)(-==-=---+∞∞-⎰⎰e e dx e dx x z f x f z f z x z Y X Z 所以 ;1)1(10100)()()(⎪⎩⎪⎨⎧≥-<<-≤=-=--∞+∞-⎰z e e z e z dx x z f x f z f z z Y X Z6、(9分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障可获利润5万元;发生二次故障所获利润0元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?解:(1)因为)1,0(~),1,0(~N Y N X ,且相互独立,所以1,1++=+-=Y X V Y X U 都服从正态分布,11)1(=+-=+-=E EY EX Y X E EU2)1(=+=+-=DY DX Y X D DU所以 )2,1(~N U ,所以 4241)(u U e u f -=π同理 11)1(=++=++=E EY EX Y X E EV 2)1(=+=++=DY DX Y X D DU所以 )2,1(~N V ,所以 4241)(u V e u f -=π(2))12()1)(1(22++-=+++-=X Y X E Y X Y X E EUV12))(()(122222+++-+=++-=EX EY DY EX DX EX EY EX 1=7、 所以0=-=DV DU EUEV EUV UV ρ7、(10分)设)1,0(~),1,0(~N Y N X ,且相互独立1,1+-=++=Y X V Y X U ,求:(1)分别求U,V 的概率密度函数;(2)U,V 的相关系数UV ρ; 、(3)解 由条件知)2.0,5(~B X ,即5,,1,0,8.02.05}{5 =⎪⎪⎭⎫ ⎝⎛==-k k k X P k k⎪⎪⎩⎪⎪⎨⎧≥-=====3,2;2,0;1,5;0,10)(X X X X X g Y)(216.5057.02410.05328.010}]5{}4{}3{[2}2{0}1{5}0{10}{)()(50万元=⨯-⨯+⨯==+=+=⨯-=⨯+=⨯+=⨯====∑=X P X P X P X P X P X P k X P k g X Eg EY k。

数理统计期末考试试题

数理统计期末考试试题

一、X 服从),(2σμN ,2σ为已知,原假设和备择假设为0:0:10>↔=μμH H 用U 检验法进行检验,求该检验的势函数及犯第二类错误的概率. 96.1,65.1,05.0025.005.0===U U α (12分)二、X 的分布密度函数为⎪⎩⎪⎨⎧≤>=-000),(11x x e x f x θθθ (1)求θ的最大似然估计量; (7分)(2)该估计量是否为θ的有效估计 (7分)三、n X X X ,...,21为来自),0(θ上均匀分布的样本,证明i n x n X X ≤≤=1)(max 是θ的充分统计量,并证明其为θ的无偏估计。

四、121,,...,+n n X X X X 为来自),(2σμN 的样本,2,n S X 分别为的样本均值和样本方差,求111+-+-n n n n S XX 的概率分布五、在某橡胶产品的配方中,考虑3种不同的促进剂和4种不同分量的氧化锌,各配方作2次实验.设在各水平的搭配下胶品的定强指标服从正态分布且方差相同, 已知5.17,75.4,13.82,58.38====E AXB B A Q Q Q Q 问促进剂、氧化锌分量以及它们的交互作用对定强指标有无显著影响.29.3)15,3(,49.3)12,3(,89.3)12,2(,3)12,6(,05.005.005.005.005.0=====F F F F α六.某电话交换台在一小时内接到电话用户呼叫次数按每分钟统计得到记录如下: 呼叫次数 0 1 2 3 4 5 6 >7频 数 8 16 17 10 6 2 1 0问电话交换台每分钟接到呼叫次数X 是否服从泊松分布. (14分)七、),(~2σμN X ,2σ未知,求μ的置信度为α-1的置信区间。

(8分) 八、n θ是θ的一个估计量,当∞→n 时有0ˆ,0ˆ→→n n D E θθ.证明nθˆ是θ的相合估计量,即0}ˆ{lim =≥-∞→εθθn n P 九、X 服从两点分布B(1.p).n X X X ,...,21为其样本,参数p 的先验分布为),(γαβ.求p 的后验分布. (10分)。

04北航概率期末试卷

04北航概率期末试卷

北京航空航天大学概率论与数理统计试卷 2004-01姓名: 班级: 学号: 得分:一.判断题(10分,每题2分)1. 在古典概型的随机试验中,0)(=A P 当且仅当A 是不可能事件 ( )2.连续型随机变量的密度函数)(x f 与其分布函数)(x F 相互唯一确定 ( )3.若随机变量X 与Y 独立,且都服从1.0=p 的 (0,1) 分布,则Y X = ( )4.设X 为离散型随机变量, 且存在正数k 使得0)(=>k X P ,则X 的数学期望)(X E 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( )二.选择题(15分,每题3分)1. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤ 次成功的概率为 .(a) r n r r n p p C ----)1(11; (b) rn r r n p p C --)1(;(c) 1111)1(+-----r n r r n p pC ; (d) r n r p p --)1(.2. 离散型随机变量X 的分布函数为)(x F ,则==)(k x X P .(a) )(1k k x X x P ≤≤-; (b) )()(11-+-k k x F x F ;(c) )(11+-<<k k x X x P ; (d) )()(1--k k x F x F .3. 设随机变量X 服从指数分布,则随机变量)2003,(max X Y =的分布函数 .(a) 是连续函数; (b) 恰好有一个间断点;(c) 是阶梯函数; (d) 至少有两个间断点.4. 设随机变量),(Y X 的方差,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=-)23(Y X D .(a) 40; (b) 34; (c) 25.6; (d) 17.65. 设),,,(21n X X X 为总体)2,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是 .(a) )(~/21n t nX -; (b) )1,(~)1(4112n F X ni i ∑=-;(c) )1,0(~/21N nX -; (d) )(~)1(41212n X ni i χ∑=-.二. 填空题(28分,每题4分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为)(x f ,则随机变量X e Y 3=的概率密度函数为=)(y f Y3. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P = .4. 设二维随机变量),(Y X 的联合密度函数为⎩⎨⎧<<<=他其,0;10,,1),(x x y y x f则条件密度函数为,当 时 ,=)(x y f X Y5. 设)(~m t X ,则随机变量2X Y =服从的分布为 ( 需写出自由度 )6. 设某种保险丝熔化时间),(~2σμN X (单位:秒),取16=n 的样本,得样本均值和方差分别为36.0,152==S X ,则μ的置信度为95%的单侧置信区间上限为7. 设X 的分布律为X 1 2 3P 2θ )1(2θθ- 2)1(θ-已知一个样本值)1,2,1(),,(321=x x x ,则参数的极大似然估计值为三. 计算题(40分,每题8分)1. 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是0.02;一次品被误认为是合格品的概率是0.05.求在被检查后认为是合格品的产品确实是合格品的概率2.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数分布,试求Y X Z 23+=的密度函数)(z f Z .3.某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为1=λ 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率.4. 总体),(~2σμN X ,),,,(21n X X X 为总体X 的一个样本.求常数 k , 使∑=-ni i X X k 1为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力),(~2σμN X(单位:kg ). 已知8=σ kg , 现从该厂生产的一大批特种金属丝中随机抽取10个样品,测得样本均值2.575=x kg . 问这批特种金属丝的平均折断力可否认为是570 kg ? (%5=α)(2) 已知维尼纶纤度在正常条件下服从正态分布)048.0,(2μN . 某日抽取5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 .问 这天的纤度的总体方差是否正常?试用%10=α作假设检验.四. 证明题(7分)设随机变量Z Y X ,,相互独立且服从同一贝努利分布),1(p B . 试证明随机变量Y X +与Z 相互独立.附表: 标准正态分布数值表 2χ分布数值表 t 分布数值表6103.0)28.0(=Φ 488.9)4(205.0=χ 1315.2)15(025.0=t 975.0)96.1(=Φ 711.0)4(295.0=χ 7531.1)15(05.0=t9772.0)0.2(=Φ 071.11)5(205.0=χ 1199.2)16(025.0=t 9938.0)5.2(=Φ 145.1)5(295.0=χ 7459.1)16(05.0=t概 率 统 计 试 卷 参 考 答 案一. 判断题(10分,每题2分) 是 非 非 非 是 .二. 选择题(15分,每题3分) (a)(d)(b)(c)(d).三. 填空题(28分,每题4分)1.1/22 ;2. ⎩⎨⎧≤>=000)])3/[ln()(1y y y f y f y Y ; 3.0.9772 ;4. 当10<<x 时⎩⎨⎧<<-=他其0)2/(1)(xy x x x y f XY;5. ),1(m F6. 上限为 15.263 .7. 5 / 6 .四. 计算题(40分,每题8分)1. A 被查后认为是合格品的事件,B 抽查的产品为合格品的事件. (2分)9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P , (4分).998.09428.0/9408.0)(/)()()(===A P B A P B P A B P (2分)2. ⎩⎨⎧>=-其他0)(x e x f xX λλ ⎩⎨⎧>=-其他)(y e y f y Y μμ (1分)时,0)(=z F Z ,从而 0)(=z f Z ; (1分)0≤z 时, ⎰∞+-∞-=dx x z f x f z f Y X Z ]2/)3[()()(21(2分))(232/3/3/0]2/)[(21z z z x z x e e dx e μλμλλμλμλμ-------==⎰(2分)所以⎪⎩⎪⎨⎧≤>--=--0,00),(23)(2/3/z z e e z f z z Z μλλμλμ[ ⎪⎩⎪⎨⎧≤>--=--0,00),(32)(3/2/z z e e z f z z Z μλλμλμ] (2分)3. 设 i X 为第i 周的销售量, 52,,2,1 =i i X )1(~P (1分)则一年的销售量为 ∑==521i iXY ,52)(=Y E , 52)(=Y D . (2分)由独立同分布的中心极限定理,所求概率为1522521852185252522)7050(-⎪⎪⎭⎫⎝⎛Φ+⎪⎪⎭⎫ ⎝⎛Φ≈⎪⎪⎭⎫ ⎝⎛<-<-=<<Y P Y P (4分)6041.016103.09938.01)28.0()50.2(=-+=-Φ+Φ=. (1分)4. 注意到()n i i X X n X X nX X ---+--=- )1(121)2(1)(,0)(2分σnn X X D X X E i i -=-=-)1(1,0~2分⎪⎭⎫⎝⎛--σn n N X X i dze nn z X X E nz i 222121|||)(|σσπ-∞+∞-⎰-=-dz e nn znn z 221201212σσπ--∞+⎰-=)3(122分σπnn -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==ni i ni i X X E k X X k E 11||||σπnn kn122-=σ令=)分(2)1(2-=n n k π5. (1) 要检验的假设为 570:,570:10≠=μμH H (1分)检验用的统计量 )1,0(~/0N nX U σμ-=,拒绝域为 96.1)1(025.02==-≥z n z U α. (2分)96.106.21065.010/85702.5750>==-=U ,落在拒绝域内,故拒绝原假设0H ,即不能认为平均折断力为570 kg .[ 96.1632.0102.010/92.5695710<==-=U , 落在拒绝域外,故接受原假设0H ,即可以认为平均折断力为571 kg . ] (1分)(2) 要检验的假设为 221220048.0:,048.0:≠=σσH H (1分)[22122079.0:,79.0:≠=σσH H ]检验用的统计量)1(~)(222512--=∑=n X Xi iχσχ,拒绝域为488.9)4()1(205.022==->χχχαn 或711.0)4()1(295.02122==-<-χχχαn (2分)41.1=x [49.1=x ]488.9739.150023.0/0362.020>==χ, 落在拒绝域内,[711.0086.06241.0/0538.020<==χ,落在拒绝域内,]故拒绝原假设0H ,即认为该天的纤度的总体方差不正常 . (1分)五、证明题 (7分) 由题设知0 1 YX+0 1 2P p22p(2分)q P2q pqXY=P+ZXP;=YZqP()0)0=)0,0((3=+==XYPP+ZY=P;XZpq)0)1(=)1,0((2====+YPX=+ZY=P;ZpqPX(2)1(=)0)0,1+=(2==XY+Z=PPY=P;XZpq=2()1)1)1(=,1+=(2=XP+ZPYY=P;XZpq,2()2(=)0)0==+(2==X+ZPPYY=P.XZp(3=()2()1=)1=,2=+=X+与Z相互独立. (5分)所以Y。

数理统计 期末试题及答案

数理统计 期末试题及答案

数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。

以下为试题及答案的详细内容。

一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。

设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。

已知甲队共投篮20次,乙队共投篮30次。

问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。

设投资额构成一个等比数列,求该公司的总投资额。

A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。

如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。

答案:要求P(45≤X≤55),可以使用标准正态分布表计算。

先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。

查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。

故P(45≤X≤55)≈0.6825。

2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案

)B =________________.3个,恰好抽到),(8ak ==(24)P X -<= 乙企业生产的50件产品中有四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知 01.0.20.10.10.a +++++= 故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案一、选择题(每题5分,共25分)1. 设随机变量X的分布函数为F(x),以下哪个选项是正确的?A. F(x)是单调递增的函数B. F(x)是单调递减的函数C. F(x)是连续的函数D. F(x)是可导的函数答案:A2. 设随机变量X和Y相互独立,以下哪个选项是正确的?A. X和Y的协方差为0B. X和Y的相关系数为0C. X和Y的联合分布等于X和Y的边缘分布的乘积D. X和Y的方差相等答案:C3. 设随机变量X服从参数为λ的泊松分布,以下哪个选项是正确的?A. E(X) = λB. D(X) = λC. E(X) = λ²D. D(X) = λ²答案:A4. 在假设检验中,以下哪个选项是正确的?A. 显著性水平α越大,拒绝原假设的证据越充分B. 显著性水平α越小,接受原假设的证据越充分C. 显著性水平α越大,接受原假设的证据越充分D. 显著性水平α越小,拒绝原假设的证据越充分答案:D5. 以下哪个选项不是统计量的定义?A. 不含未知参数的随机变量B. 含未知参数的随机变量C. 不含样本数据的随机变量D. 含样本数据的随机变量答案:B二、填空题(每题5分,共25分)6. 设随机变量X和Y的方差分别为DX和DY,协方差为Cov(X,Y),则X和Y的相关系数ρ的公式为______。

答案:ρ = Cov(X,Y) / √(DX × DY)7. 设随机变量X服从标准正态分布,则X的数学期望E(X) = ______,方差D(X) = ______。

答案:E(X) = 0,D(X) = 18. 设总体X的方差为σ²,样本容量为n,样本方差为s²,则样本方差的期望E(s²) = ______。

答案:E(s²) = σ²9. 在假设检验中,原假设和备择假设分别为H₀: μ = μ₀和H₁: μ ≠ μ₀,其中μ为总体均值,μ₀为某一常数。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。

答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。

答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。

答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。

答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。

北京航空航天大学大二公共课专业概率论与数理统计试卷及答案

北京航空航天大学大二公共课专业概率论与数理统计试卷及答案

北京航空航天大学2021 学年概率论与数理统计第一学期期末一、单项选择题〔每题3分,总分值18分〕1、设随机变量),0(~2i i N X σ,2,1=i,则以下说法中正确的选项是〔 〕。

〔A 〕12(,)X X 必服从二维正态分布; 〔B 〕12()0E X X =; 〔C 〕221212()()X X σσ+服从2(2)χ分布; 〔D 〕12()0E X X += 。

2、设随机变量X 存在数学期望EX 和方差0DX ≠,则对任意正数ε,以下不等式成立的是〔 〕。

〔A 〕2{||}DXP X EX εε-≥>; 〔B 〕2{||}1DXP X EX εε-<<-〔C〕21{||P X EX εε-≥≤; 〔D 〕||{||}kkE X EX P X εε-≥≤,(1)k ≥。

3、设1,,n X X 是来自正态总体2(,)N μσ的样本,当c =〔 〕时,222ˆˆX c μσ=+是2μ的无偏估计, 其中∑==n i i X n X 11,2211ˆ()1n i i X X n σ==--∑ 。

〔A 〕11n -- , 〔B 〕11n - , 〔 C 〕 1n - , 〔 D 〕1n。

4、设随机变量),(~2σμN X ,则4||E X μ-=〔 〕.(A) 4σ; (B) 42σ; (C) 46σ; (D) 43σ 。

5、设B A ,为任意两事件,则以下关系成立的有( )(A) A B B A =-+)( ;(B) ()A B B A B +-=- ;(C) A B B A =+-)( ;(D) ()A B B AB -+=.6、从9~0这十个数码中任意取出4个排成一串数码,则数码恰成四位偶数的概率为:〔A 〕4190 ;〔B 〕12;〔C 〕4090;〔D 〕3290。

二、填空题〔每题3分,总分值18分〕1、设有n 个球,每个球都能以同样的概率N1落到N 个格子)(n N ≥的每一个格子中, 则恰有n 个格子中各有一个球的概率为 。

数理统计学期末考试卷子

数理统计学期末考试卷子

数理统计学期末考试卷子一、选择题1. 下列哪个不是统计学的基本概念?A. 总体B. 样本C. 中位数D. 方差2. 相对频率是指:A. 某个数出现的次数B. 某个数出现的频率C. 某个数在总数中的比例D. 某个数的个数3. 样本容量越大,样本均值的估计:A. 变得更加准确B. 变得更加不准确C. 与总体均值无关D. 无法估计4. 统计学中经常使用的分布是:A. 泊松分布B. 正态分布C. 二项分布D. 均匀分布5. 样本方差的计算公式为:A. (Σxi - μ)^2B. Σ(xi^2)C. Σ(xi - μ)^2 / nD. Σ(xi - μ)^2 / (n-1)二、计算题1. 有一个班级30名学生,他们期末考试成绩如下:(单位:分)85, 90, 78, 92, 88, 75, 80, 85, 86, 79, 84, 93, 87, 88, 82, 81, 77, 83, 94, 89, 87, 84, 85, 79, 91, 76, 80, 83, 86, 90请计算这30名学生的平均分、中位数和方差。

2. 一家公司的员工月薪数据如下:(单位:元)5000, 6000, 5500, 5800, 6200, 6500, 5800, 5700, 5300, 5900请计算这些员工的平均工资、工资中位数和工资标准差。

三、简答题1. 什么是正态分布?正态分布有什么特点?2. 请解释什么是中心极限定理?它对数理统计学有什么重要意义?3. 为什么要使用抽样调查?抽样调查有什么优点和局限性?四、推断题1. 一项调查显示,某电商平台的用户年龄分布呈正态分布,平均年龄为35岁,标准差为5岁。

现在随机抽取10名用户,请根据这10名用户的年龄推断这家电商平台的用户年龄情况。

2. 一份问卷调查显示,80%的受访者认为某品牌的产品质量很好。

现在随机抽取100名受访者,请根据这100名受访者的回答推断整体受访者对产品质量的看法。

04北航概率期末试卷

04北航概率期末试卷

北京航空航天大学概率论与数理统计试卷 2004-01姓名: 班级: 学号: 得分:一.判断题(10分,每题2分)1. 在古典概型的随机试验中,0)(=A P 当且仅当A 是不可能事件 ( )2.连续型随机变量的密度函数)(x f 与其分布函数)(x F 相互唯一确定 ( )3.若随机变量X 与Y 独立,且都服从1.0=p 的 (0,1) 分布,则Y X = ( )4.设X 为离散型随机变量, 且存在正数k 使得0)(=>k X P ,则X 的数学期望)(X E 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( )二.选择题(15分,每题3分)1. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤ 次成功的概率为 .(a) r n r r n p p C ----)1(11; (b) rn r r n p p C --)1(;(c) 1111)1(+-----r n r r n p pC ; (d) r n r p p --)1(.2. 离散型随机变量X 的分布函数为)(x F ,则==)(k x X P .(a) )(1k k x X x P ≤≤-; (b) )()(11-+-k k x F x F ;(c) )(11+-<<k k x X x P ; (d) )()(1--k k x F x F .3. 设随机变量X 服从指数分布,则随机变量)2003,(max X Y =的分布函数 .(a) 是连续函数; (b) 恰好有一个间断点;(c) 是阶梯函数; (d) 至少有两个间断点.4. 设随机变量),(Y X 的方差,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=-)23(Y X D .(a) 40; (b) 34; (c) 25.6; (d) 17.65. 设),,,(21n X X X 为总体)2,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是 .(a) )(~/21n t nX -; (b) )1,(~)1(4112n F X ni i ∑=-;(c) )1,0(~/21N nX -; (d) )(~)1(41212n X ni i χ∑=-.二. 填空题(28分,每题4分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为)(x f ,则随机变量X e Y 3=的概率密度函数为=)(y f Y3. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P = .4. 设二维随机变量),(Y X 的联合密度函数为⎩⎨⎧<<<=他其,0;10,,1),(x x y y x f则条件密度函数为,当 时 ,=)(x y f X Y5. 设)(~m t X ,则随机变量2X Y =服从的分布为 ( 需写出自由度 )6. 设某种保险丝熔化时间),(~2σμN X (单位:秒),取16=n 的样本,得样本均值和方差分别为36.0,152==S X ,则μ的置信度为95%的单侧置信区间上限为7. 设X 的分布律为X 1 2 3P 2θ )1(2θθ- 2)1(θ-已知一个样本值)1,2,1(),,(321=x x x ,则参数的极大似然估计值为三. 计算题(40分,每题8分)1. 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是0.02;一次品被误认为是合格品的概率是0.05.求在被检查后认为是合格品的产品确实是合格品的概率2.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数分布,试求Y X Z 23+=的密度函数)(z f Z .3.某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为1=λ 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率.4. 总体),(~2σμN X ,),,,(21n X X X 为总体X 的一个样本.求常数 k , 使∑=-ni i X X k 1为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力),(~2σμN X(单位:kg ). 已知8=σ kg , 现从该厂生产的一大批特种金属丝中随机抽取10个样品,测得样本均值2.575=x kg . 问这批特种金属丝的平均折断力可否认为是570 kg ? (%5=α)(2) 已知维尼纶纤度在正常条件下服从正态分布)048.0,(2μN . 某日抽取5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 .问 这天的纤度的总体方差是否正常?试用%10=α作假设检验.四. 证明题(7分)设随机变量Z Y X ,,相互独立且服从同一贝努利分布),1(p B . 试证明随机变量Y X +与Z 相互独立.附表: 标准正态分布数值表 2χ分布数值表 t 分布数值表6103.0)28.0(=Φ 488.9)4(205.0=χ 1315.2)15(025.0=t 975.0)96.1(=Φ 711.0)4(295.0=χ 7531.1)15(05.0=t9772.0)0.2(=Φ 071.11)5(205.0=χ 1199.2)16(025.0=t 9938.0)5.2(=Φ 145.1)5(295.0=χ 7459.1)16(05.0=t概 率 统 计 试 卷 参 考 答 案一. 判断题(10分,每题2分) 是 非 非 非 是 .二. 选择题(15分,每题3分) (a)(d)(b)(c)(d).三. 填空题(28分,每题4分)1.1/22 ;2. ⎩⎨⎧≤>=000)])3/[ln()(1y y y f y f y Y ; 3.0.9772 ;4. 当10<<x 时⎩⎨⎧<<-=他其0)2/(1)(xy x x x y f XY;5. ),1(m F6. 上限为 15.263 .7. 5 / 6 .四. 计算题(40分,每题8分)1. A 被查后认为是合格品的事件,B 抽查的产品为合格品的事件. (2分)9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P , (4分).998.09428.0/9408.0)(/)()()(===A P B A P B P A B P (2分)2. ⎩⎨⎧>=-其他0)(x e x f xX λλ ⎩⎨⎧>=-其他)(y e y f y Y μμ (1分)时,0)(=z F Z ,从而 0)(=z f Z ; (1分)0≤z 时, ⎰∞+-∞-=dx x z f x f z f Y X Z ]2/)3[()()(21(2分))(232/3/3/0]2/)[(21z z z x z x e e dx e μλμλλμλμλμ-------==⎰(2分)所以⎪⎩⎪⎨⎧≤>--=--0,00),(23)(2/3/z z e e z f z z Z μλλμλμ[ ⎪⎩⎪⎨⎧≤>--=--0,00),(32)(3/2/z z e e z f z z Z μλλμλμ] (2分)3. 设 i X 为第i 周的销售量, 52,,2,1 =i i X )1(~P (1分)则一年的销售量为 ∑==521i iXY ,52)(=Y E , 52)(=Y D . (2分)由独立同分布的中心极限定理,所求概率为1522521852185252522)7050(-⎪⎪⎭⎫⎝⎛Φ+⎪⎪⎭⎫ ⎝⎛Φ≈⎪⎪⎭⎫ ⎝⎛<-<-=<<Y P Y P (4分)6041.016103.09938.01)28.0()50.2(=-+=-Φ+Φ=. (1分)4. 注意到()n i i X X n X X nX X ---+--=- )1(121)2(1)(,0)(2分σnn X X D X X E i i -=-=-)1(1,0~2分⎪⎭⎫⎝⎛--σn n N X X i dze nn z X X E nz i 222121|||)(|σσπ-∞+∞-⎰-=-dz e nn znn z 221201212σσπ--∞+⎰-=)3(122分σπnn -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==ni i ni i X X E k X X k E 11||||σπnn kn122-=σ令=)分(2)1(2-=n n k π5. (1) 要检验的假设为 570:,570:10≠=μμH H (1分)检验用的统计量 )1,0(~/0N nX U σμ-=,拒绝域为 96.1)1(025.02==-≥z n z U α. (2分)96.106.21065.010/85702.5750>==-=U ,落在拒绝域内,故拒绝原假设0H ,即不能认为平均折断力为570 kg .[ 96.1632.0102.010/92.5695710<==-=U , 落在拒绝域外,故接受原假设0H ,即可以认为平均折断力为571 kg . ] (1分)(2) 要检验的假设为 221220048.0:,048.0:≠=σσH H (1分)[22122079.0:,79.0:≠=σσH H ]检验用的统计量)1(~)(222512--=∑=n X Xi iχσχ,拒绝域为488.9)4()1(205.022==->χχχαn 或711.0)4()1(295.02122==-<-χχχαn (2分)41.1=x [49.1=x ]488.9739.150023.0/0362.020>==χ, 落在拒绝域内,[711.0086.06241.0/0538.020<==χ,落在拒绝域内,]故拒绝原假设0H ,即认为该天的纤度的总体方差不正常 . (1分)五、证明题 (7分) 由题设知0 1 YX+0 1 2P p22p(2分)q P2q pqXY=P+ZXP;=YZqP()0)0=)0,0((3=+==XYPP+ZY=P;XZpq)0)1(=)1,0((2====+YPX=+ZY=P;ZpqPX(2)1(=)0)0,1+=(2==XY+Z=PPY=P;XZpq=2()1)1)1(=,1+=(2=XP+ZPYY=P;XZpq,2()2(=)0)0==+(2==X+ZPPYY=P.XZp(3=()2()1=)1=,2=+=X+与Z相互独立. (5分)所以Y。

数理统计期末试题

数理统计期末试题

数理统计期末试题数理统计期末试题————————————————————————————————作者:————————————————————————————————日期:数理统计期末练习题1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少2.设n x x ,,1 是来自)25,( N 的样本,问n 多大时才能使得95.0)1|(| x P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求)2.0|(| y x P .5.设161,,x x 是来自),(2 N 的样本,经计算32.5,92s x ,试求)6.0|(| x P .6.设n x x ,,1 是来自)1,( 的样本,试确定最小的常数c,使得对任意的0 ,有)|(|c x .7. 设随机变量 X~F(n,n),证明 )1(X9.设21,x x 是来自),0(2N 的样本,试求22121 x x x x Y 服从分布.10.设总体为N(0,1),21,x x 为样本,试求常数k ,使得.05.0)()()(221221221k x x x x x x11.设n x x ,,1 是来自),(21N 的样本,m y y ,,1 是来自),(22 N 的样本,c,d是任意两个不为0的常数,证明),2(~)()(2221m n t s y d x c t md nc 其中22222,2)1()1(y x yx s s m n s m s n s 与分别是两个样本方差.12.设121,,, n n x x x x 是来自),(2N 的样本,11,n n i i x x n _2211(),1n n i n i s x x n 试求常数c 使得1n nc nx x t cs 服从t 分布,并指出分布的自由度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料学院研究生会学术部2011年12月2007-2008学年第一学期期末试卷一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。

三、(8分)设总体X 的密度函数为其中1α>-,是位置参数。

x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。

四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。

x 1,x 2,…,x n 是来自总体X 的简单样本。

(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。

五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。

为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。

基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。

六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。

七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面? 八、(6分)设方差分析模型为 总离差平方和试求A E(S ),并根据直观分析给出检验假设012:...0P H ααα====的拒绝域形式。

九、(8分)某个四因素二水平试验,除考察因子A 、B 、C 、D 外,还需考察A B ⨯,B C ⨯。

今选用表78(2)L ,表头设计及试验数据如表所示。

试用极差分析指出因子的主次顺序和较优工艺条件。

十、(8分)对某中学初中12岁的女生进行体检,测量四个变量,身高x 1,体重x 2,胸围x 3,坐高x 4。

现测得58个女生,得样本数据(略),经计算指标1234(x ,x ,x ,x )T X =的协方差阵V 的极大似然估计为 且其特征根为123450.4616.65 3.38 1.00λλλλ∧∧∧∧====,,,。

(1)试根据主成分85%的选择标准,应选取几个主要成分? (2)试求第一主成分。

2006级硕士研究生《应用数理统计》试题一、 选择题(每小题3分,共12分)1. 统计量T~t (n )分布,则统计量T2的α(0<α<1)分位点x α (P{T2≤x α}=α)是( )A. 212()t n α-⎡⎤⎢⎥⎣⎦ B. 12()t n α+ C.12()t n α- D212()t n α+⎡⎤⎢⎥⎣⎦2.设随机变量X ~N(0,1),Y ~N(0,1),则( )A.t-分布 B.X2+Y2服从2χ-分布C. X2和Y2都服从2χ-分布D. X2/Y2服从F-分布3.某四因素二水平实验,选择正交表L8(27),已填好A ,B ,C 三个因子,分别在第一,第四,第七列,若要避免“混杂”,应安排因子D 在第( )列.A.5 B.2 C.3 D.6(1)3 (2)2 1 (3)5 6 7 (4)4 7 6 1 (5)7 4 5 2 3 (6)6 5 4 3 2 1(7)4.假设总体X 服从两点分布,分布率为P{X=x}=p x(1-p)1-x ,其中x=0或1,p 为未知参数,X1,X2,…,Xn 是来自总体的简单样本,则下面统计量中不是充分统计量的是( )A. 1i ni X =∑ B. 11i n i X n =∑ C. 111i n i X n =-∑ D. 11i ni X p n =-∑二.填空题(每小题3分,共12分)1. 设X1,X2,…,Xn 是来自总体N(0,2σ)的简单样本,则常数c=_________mic X ∑服从t-分布(1m n ≤<),其自由度为____________2. 设X1,X2,…,Xn 是来自总体N(μ,2σ)的简单样本,其中2σ已知。

则在满足P{X a X b μ-≤≤+}=1-a 的均值μ的置信度为1-α的置信区间类{[,X a X b -+]:a ,b 常数}中区间长度最短的置信区间为( )3. 设X1,X2,…,Xn 是来自总体N(μ,2σ)的简单样本, μ已知,则2σ的无偏估计22111()1n k k S X X n ==--∑,22211()n k k S X n μ==-∑中较优的是( )4.在双因素实验的方差分析中,总方差T S 的分解中包含误差平方和2.111()pqrE ijk i j i j k S x x ====-∑∑∑,则E S 的自由度为( )三,(12分)设X1,X2,…,Xn 来自指数分布10()00xe xf x x θθ-⎧>⎪=⎨⎪≤⎩ 的简单样本,试求参数θ的极大似然估计θ∧,它是否是无偏估计?(2)求样本的Fisher 信息量;(3)求θ的一致最小方差无偏估计;(4)问θ∧是否是θ的有效估计?四.(6分,A 班不做)在多元线性回归Y X βε=+中,参数β的最小二乘估计为1(')'X X X Y β∧-=,残差向量为1((')')e Y Y I X X X X Y ∧-=-=-。

令11(')'(')'X X X Y Z I X X X X Y e β∧--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪-⎝⎭⎝⎭,当2~(0,)N I εσ时,Z 服从多元正态分布。

试证明β∧与e 相互独立。

五.(6分,A 班不做)设某切割机切割金属棒的长度X 服从正态分布,正常工作时,切割每段金属棒的平均长度为10.5cm 。

某日为了检验切割机工作是否正常,随机抽取15段进行测量,得平均样本值x =10.48cm ,样本方差s2=0.056cm2。

在显著性水平α=0.05下,试问该切割机工作是否正常?(0.950.9750.950.9751.64, 1.96,(14) 1.7631,(14) 2.1448z z t t ====)六.(6分,B 班不做)设X ~N(θ,2σ),2σ已知,X1,X2,…,Xn 来自X 的样本,并设θ的先验分布为θ~N(μ,2τ),μ2τ已知,则可知均值θ的Bayes 估计为试通过此例说明Bayes 估计的特点。

七.(B 班不做)设总体X 服从正态总体N(0,2σ),X1,X2,…,Xn 是来自总体的简单样本,考虑检验问题在显著水平α=0.05下,求最优检验(MP )的拒绝域。

八.研究小麦品种与施肥的农田实验,考察的因素与水平如下表所示:据经验需考虑交互作用A ×B ,选用正交表L8(27),数据如表所示。

D1 2 3 4 56 71 2 3 4 5 6 7 81 1 1 1 1 1 1 1 1 12 2 2 2 1 2 2 1 1 2 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 2 1 2 2 1 2 1 1 2115 160 145 155 140 155 100 125用极差分析确定最优方案(以数据大者为好) 九.(6分)设X= (X1,X2,X3,X4)’的协方差阵为 已知V 的特征根是21(31)λρσ=+,2234(1)λλλρσ===-,其中ρ=0.83,试根据85%的选取标准确定确定主成分个数,并求出主成分。

应用数理统计(2000 年)一、填空1 、设x1,x2,…x10 来自总体N(0,1) 的样本, 若y=k1(x1+2x2+3x3)2+k2(x4+x5+…+x10)2~x2(2),则k1=__________ k2=__________2、设x1,x2,…x2m 来自总体N(4,9)的样本,若y=,且Z=,服从t分布,则c=________ ,z~t(_________ )3、设x1,x2,…x2m来自总体N(μ,σ2)的样本,已知y=( x2-x1)2+(x3-x4) 2 +…+(x2m-x2m-1)2,且Z=cy为σ2的无偏估计,则c=_________4、上题中,Dz=_________5、由总体F(x)与G(x)中依次抽得容量为12 和11 的样本,已计算的游程总个数U=12,试在水平α=0.05 下检验假设H0:F(x)= G(x),其结论为___________ (U0.05(12,11)=8)二、设x1,x2,…x61 来自总体N(0,1) 的样本,令y=,试求P(t0.975(60)=2)三、设总体x 的密度函数为而(x1,x2,...xn)为来自x的样本,试求α的极大似然估计量。

四、设x~N(μ1,σ2),y~ N(μ2,σ2),今抽取x的样本x1,x2,...x8;y的样本y1,y2, (8)计算得1.试在水平α=0.01 下检验假设H0:μ1=μ2,H1:μ1>μ22.试求α=0.02 时,μ2-μ1的估计区间(t0.99(14)=2.6245)五、欲考察因子A,B,C,D 及交互作用A ×C ,且知B 也可能与其它因子存在交互作用,试在L8(27)上完成下列表头设计。

并说明理由。

B A DC B 1 2 3 4 5 6 7用L8(27)的交互作用表六、已知(x1, y1), (x2, y2),…, (x9, y9)为一组实验值,且计算得,,试求线性回归方程y ˆ= a ˆ + b ˆx七、x1,x2,…x100来自总体x~π(λ)的一个样本,试求参数λ的近似(1-α)置信区间, (Ex=λ,Dx=λ)八、在一元线性回归中,lyy=Q+U,F=SQ SU //~F(s,t),试给出用F 值来判定回归显著性的办法。

应用数理统计(2001 年)一、 填空(每空3 分,共30 分)1.设x1,x2,…… , x10 为来自总体N ( 0 , 1 ) 的样本, 若y =k1(2x1+x2-3x3)+k2(x4+x5+……+x10)2,且y~x2(2).则k1=_______,k2=_______2.设x1,x2,……,x12为来自总体N(0,A)的样本,若y=(x12+x22+x32)÷(x12+x22+……+x12)且Z=cy~F分布,则c=__,Z~F( )3.若x1,x2,……,x20为来自总体N(μ,σ2)的样本,若y=(x2-x1)2+(x4-x3)2+……+(x20-x19)2,且Z=cy为σ2的无偏估计,则c=__,DZ=__4.若x1,x2,……,x100为来自总体N(10,σ2)的样本,若,则Ey=__,Dy__5.若x1,x2,……,x16为来自总体N(μ,0.012)的样本,其样本平均值x---=2.215,则μ的0.20 置信区间为_________(取三位小数),(已知Ф(1.645)=0.95,Ф(1.282)=0.90)二(10 分)设总体X 的概率密度函数为而x1,x2,……,xn为来自X的样本,试求α的矩估计量和极大似然估计量。

相关文档
最新文档