高考物理常用模型十四:弹簧振子和单摆
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模型十四:弹簧振子和单摆
◆弹簧振子和简谐运动
①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为
m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。 ③弹簧可以贮存能量,弹力做功和弹性势能的关系为:W =-△EP 其中W 为弹簧弹力做功。 ④在平衡位置速度、动量、动能最大;在最大位移处回复力、加速度、势能最大。
⑤振动周期 T= 2πm K
(T 与振子质量有关、与振幅无关)
通过同一点有相同的位移、速率、回复力、加速度、动能、势能;
半个周期,对称点速度大小相等、方向相反。半个周期内回复力的总功为零,总冲量为2t mv 一个周期,物体运动到原来位置,一切参量恢复。一个周期内回复力的总功为零,总冲量为零。 ◆碰撞过程
两个重要的临界点:
(1)弹簧处于最长或最短状态:两物块共速,具有最大弹性势能,系统总动能最小。
(2)弹簧恢复原长时:两球速度有极值,弹性势能为零。
◆单摆
T l g
=<︒25πθ() (T 与振子质量、振幅无关)
影响重力加速度有:①纬度,离地面高度;②在不同星球上不同,与万有引力圆周运动规律;③系统的状态(超、失重情况);④所处的物理环境有关,有电磁场时的情况;⑤静止于平衡位置时等于摆线张力与球V 1
V 2 B
A V 0
B A
A 球速度为V0,
B 球静
止,弹簧被压缩 状态分析 受力分析 A 球向左,B 球向右 V 2↑ V 1↓ 过程分析 A 球减速, B 球加速 条件分析
临界状态:速度相同时,弹簧压缩量最大
F F 图2
图1
质量的比值。