(完整版)初中数学培优竞赛讲座第30讲__创新命题
初中数学竞赛辅导讲义及习题解答 第30讲 从创新构造入手
第三十讲 从创新构造入手有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:1.构造方程;2.构造函数;3.构造图形;4.对于存在性问题,构造实例;5.对于错误的命题,构造反例;6.构造等价命题等.【例题求解】【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a .思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.【例2】 求代数式1342222+-+++x x x x 的最小值.思路点拨 用一般求最值的方法很难求出此代数式的最小值.222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E ,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.思路点拨 假设在AB 边上存在点E ,使Rt △ADE ∽Rt △BEC ∽Rt △ECD ,又设AE=x ,则BC BE AE AD =,即ax b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:(1)几何问题代数化;(2)利用图形图表解代数问题;(3)构造函数,借用函数图象探讨方程的解.利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握.对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”.学历训练1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围是 .2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .3.代数式9)12(422+-++x x 的最小值为 .4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 .5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求ts st 14++的值.7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.9.求所有的实数x ,使得xx x x 111-+-= .10.若是不全为零且绝对值都小于106的整数.求证:2110132>++c b a .11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.12.设10<<z y x ,,0,求证1)1()1()1(<-+-+-x z z y y x .13.从自然数l ,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.15.如图,已知一等腰梯形,其底为a 和b ,高为h .(1)在梯形的对称轴上求作点P ,使从点P 看两腰的视角为直角;(2)求点P 到两底边的距离;(3)在什么条件下可作出P 点?参考答案。
全国通用初中数学竞赛培优辅导讲义(28—33)讲
全国初中数学竟赛辅导讲义修订(2)三角形的边角性质内容提要三角形边角性质主要的有:1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其他两边和。
用式子表示如下:a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-⇔⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>+>+>+⇔<推广到任意多边形:任意一边都小于其他各边的和2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个内角和。
推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180六边形内角和=4×180 n 边形内角和=(n -2) 1803. 边与角的关系① 在一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。
② 在直角三角形中,△ABC 中∠C=Rt ∠222c b a =+⇔(勾股定理及逆定理) △ABC 中⇔⎭⎬⎫=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中⇔⎭⎬⎫=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。
(1988年泉州市初二数学双基赛题)解:根据三角形任意两边和大于第三边,得不等式组 ⎪⎩⎪⎨⎧+>-+-->-++->++-141312131214121413a a a a a a a a a 解得⎪⎩⎪⎨⎧<->>51135.1a a ∴1.5<a<5答当1.5<a<5时,三条线段3a -1,4a+1,12-a 能组成一个三角形例2.如图A B C DAB=x ,AC=y, AD=z 若以AB 和CD 分别绕着点B 和点C 旋转,使点A 和D 重合组成三角形,下列不等式哪些必须满足?① x<2z , ②y<x+2z , ③y<2z 解由已知AB=x, BC=y -x, CD=z -x 要使AB ,BC ,CD 组成三角形,必须满足下列不等式组:⎪⎩⎪⎨⎧>-+-->-+->-+x y z x y x y y z x y z x y x 即⎪⎩⎪⎨⎧>>+>x z y z x z y 2222∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<>222z x z x y z y 答y<x+2z 和y<2z 必须满足。
初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页
装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。
主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。
特别地,如果r=0,那么a=bq。
这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。
2.若a|c,b|c,且a,b互质,则ab|c。
3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。
(1)式称为n的质因数分解或标准分解。
4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。
5.整数集的离散性:n与n+1之间不再有其他整数。
因此,不等式x<y与x≤y-1是等价的。
下面,我们将按解数论题的方法技巧来分类讲解。
一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。
这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。
例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。
七年级数学培优班讲义(教师版)
初一数学根底知识讲义一、 第一讲 和绝对值有关的问题知识结构框图:二、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:〔Ⅰ〕|a|≥0即|a|是一个非负数;〔Ⅱ〕|a|概念中蕴含分类讨论思想。
典型例题例1.〔数形结合思想〕a 、b 、c 在数轴上位置如图:那么代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于〔 A 〕 A .-3a B . 2c -a C .2a -2b D . b 解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值〔 C 〕A .是正数B .是负数C .是零D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如下图: 所以)()(--+-+=--+++y x z y z x yx z y z x201020081861641421⨯++⨯+⨯+⨯分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
数学培优竞赛新方法(七年级)
数学培优竞赛新方法(七年级)引言数学培优竞赛对于学生的数学能力和解题能力有很高的要求,因此在备战竞赛时,学生需要掌握一些有效的方法和技巧。
本文将介绍一些适用于七年级学生的数学培优竞赛新方法,帮助学生在竞赛中取得好成绩。
1. 提前熟悉竞赛要求在备战竞赛之前,学生需要认真研读竞赛的规则和要求。
这些规则和要求通常包括考试时间、题型、考察的知识点等内容。
通过了解竞赛要求,学生可以更有针对性地准备,并合理安排备考时间和学习重点。
2. 掌握基础知识在解题过程中,基础知识的掌握是非常重要的。
学生需要牢固掌握七年级数学课本上的基础知识,如小数、分数、平方根、百分数等。
同时,对于一些常见的数学概念和定理,比如勾股定理、等腰三角形的性质等,也需要熟悉掌握。
3. 针对性练习为了提高解题能力,学生需要进行针对性的练习。
可以选择一些竞赛辅导书或试题集进行练习,找出其中的薄弱环节,并有针对性地进行强化训练。
对于容易出错的题型,如代数方程、几何证明,可以多做相关题目,并总结解题技巧和方法。
4. 学会总结归纳在备战竞赛时,学生需要将解题过程中的经验和技巧进行总结归纳。
可以将常用的解题方法、套路和技巧进行整理,并编写成笔记或思维导图,方便复习和查阅。
同时,总结归纳也有助于学生对知识的理解和记忆,提高解题的速度和准确性。
5. 切忌只注重题目数量备战竞赛时,很多学生容易陷入做大量题目的误区。
虽然多做题目有助于提高解题速度和熟悉考点,但过多的题目练习可能导致理解水平不足。
因此,在备考过程中,学生需注重提高解题的深度和质量,而不仅仅追求题目的数量。
6. 合理安排备考时间备战竞赛需要一定的时间规划和安排。
学生可以制定每天的复习计划,在每个时间段内专注于某一类题型或知识点的学习和巩固。
此外,备考期间也要注意休息和放松,保持良好的身体和精神状态,以便更好地发挥自己的水平。
7. 寻求老师和同学的帮助备战竞赛时,学生可以向老师请教一些疑难问题,或与同学进行讨论和交流。
(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。
【例3】 解关于x 的方程02)1(2=+--a ax x a 。
思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。
【例4】设方程04122=---x x ,求满足该方程的所有根之和。
思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。
【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。
思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。
赠送:初二数学竞赛辅导三十讲
第一讲:因式分解(一) (1)第二讲:因式分解(二) (4)第三讲实数的若干性质和应用 (7)第四讲分式的化简与求值 (10)第五讲恒等式的证明 (13)第六讲代数式的求值 (16)第七讲根式及其运算 (18)第八讲非负数 (22)第九讲一元二次方程 (26)第十讲三角形的全等及其应用 (29)第十一讲勾股定理与应用 (33)第十二讲平行四边形 (36)第十三讲梯形 (39)第十四讲中位线及其应用 (42)第十五讲相似三角形(一) (45)第十六讲相似三角形(二) .............................................. 48 第十七讲* 集合与简易逻辑. (51)第十八讲归纳与发现 (56)第十九讲特殊化与一般化 (59)第二十讲类比与联想 (63)第二十一讲分类与讨论 (67)第二十二讲面积问题与面积方法 (70)第二十三讲几何不等式 (73)第二十四讲* 整数的整除性 (77)第二十五讲* 同余式 (80)第二十六讲含参数的一元二次方程的整数根问题 (83)第二十七讲列方程解应用问题中的量 (86)第二十八讲怎样把实际问题化成数学问题 (90)第二十九讲生活中的数学(三) ——镜子中的世界 (94)第三十讲生活中的数学(四)──买鱼的学问 (99)第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≣0,即a3+b3+c3≣3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≣0,y=b3≣0,z=c3≣0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3³1+2=0;f(-2)=(-2)2-3³(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4³22+6³2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x 2-2x+2).说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x 4-3x 3+7x 2-3x-2.分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1)说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x 2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例4 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明 本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x 4-2x 3-27x 2-44x+7.分析 本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x 2+ax+b)(x 2+cx+d)的形式. 解 设原式=(x 2+ax+b)(x 2+cx+d)=x 4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd , 所以有由bd=7,先考虑b=1,d=7有所以原式=(x 2-7x+1)(x 2+5x+7).说明 由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a ,c 的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.第三讲 实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的. 性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然. 例1分析 要说明一个数是有理数,其关键要看它能否写成两个整数比的形式. 证 设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a 为有理数,b 为无理数,则 (1)a+b ,a -b 是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得:由例4知a=Ab,1=A,说明 本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a ,b 是两个任意有理数,且a <b ,求证:a 与b 之间存在着无穷多个有理数(即有理数集具有稠密性).分析 只要构造出符合条件的有理数,题目即可被证明.证 因为a <b ,所以2a <a+b <2b ,所以说明 构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a ,b 是两个任意有理数,且a <b ,问是否存在无理数α,使得a <α<b 成立?即由①,②有存在无理数α,使得a <α<b 成立.b 4+12b 3+37b 2+6b -20的值.分析 因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b 2,所以b 2+6b=5.b 4+12b 3+37b 2+6b -20=(b 4+2²6b 3+36b 2)+(b 2+6b)-20 =(b 2+6b)2+(b 2+6b)-20 =52+5-20=10. 例9 求满足条件的自然数a ,x ,y . 解 将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42²n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a 有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≣0,(c2-d2)2≣0,(ab-cd)2≣0,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y 和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x 2y 2z 2=1.分析 本题x ,y ,z 具有轮换对称的特点,我们不妨先看二元的所以x 2y 2=1.三元与二元的结构类似. 证 由已知有①³②³③得x 2y 2z 2=1.说明 这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.第六讲 代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x -1=0,所以 6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x -1)+1 =(3x 2+3x -1)(2z 2+3x+1)+1 =0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,①求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1,所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:。
新课标数学竞赛讲座目录(七、八、九年级)
新课标数学竞赛讲座目录(七、八、九年级)新课标数学竞赛讲座目录七年级第一讲走进美妙的数学世界第二讲跨越——从算术到代数第三讲创造的基石——观察、归纳与猜想第四讲数轴——数与形的第一次碰撞第五讲解读绝对值第六讲计算——工具与算法的变迁第七讲物以类聚——话说同类项第八讲一元一次方程第九讲绝对值与一元一次方程第十一讲列方程解应用题——设元的技巧第十二讲社会、生活、经济——情境应用题第十三讲一次方程组第十四讲一次方程组的应用第十五讲倾斜的天平——由相等到不等第十六讲不等式(组)的应用第十七讲整式的乘法与除法第十八讲乘法公式第十九讲丰富的图形世界第二十讲线段第二十一讲角第二十二讲平行线的判定与性质第二十三讲简单的面积问题第二十四讲质数、合数与因数分解第二十五讲奇数、偶数与奇偶分析第二十六讲整数整除的概念和性质第二十七讲不定方程、方程组第二十八讲计数方法第二十九讲最值问题第三十讲创新命题第三十一讲代数式的值第三十二讲最大公约数与最小公倍数八年级第一讲分解方法的延拓第二讲分解方法的延拓第三讲因式分解的应用第四讲分式的概念、性质及运算第五讲有条件的分式的化简与求值第六讲实数的概念及性质第七讲二次根式的运算第八讲二次根式的化简求值第九讲三角形的边与角第十讲全等三角形第十一讲等腰三角形的性质第十二讲等腰三角形的判定第十三讲从勾股定理谈起第十四讲多边形的边角与对角线第十五讲平行四边形第十六讲完美的正方形第十七讲梯形第十八讲由中点想到什么第十九讲平行截割第二十讲飞跃-从全等到相似第二十一讲相似三角形的性质第二十二讲直角三角形的再发现第二十三讲代数证明第二十四讲配方法的解题功能第二十五讲整体的方法第二十六讲面积问题评说第二十七讲图形的折叠、剪拼与分割第二十八讲奇妙的对称第二十九讲图形的平移与旋转第三十讲数形互助第三十一讲完全平方数和完全平方式第三十二讲几何不等式第三十三讲代数式的化简与求值第三十四讲分式方程(组)第三十五讲应用题九年级第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第二十讲直线与圆第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第十二讲方程与函数第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手。
(完整版)初中数学培优竞赛讲座第30讲__创新命题
第三十讲 创新命题计算机技术与网络技术的迅猛发展,深刻改变了我们的学习方式、生活方式与思维方式.IT 技术、Cyber 空间、bemgdigital(数字化生存)等新概念层出不穷.与时俱进,科学的发展对数学的需求,不断提出了新问题,在解决新问题的过程中又产生了许多新方法.近年各地中考、各级竞赛出现了丰富的以考查创新意识、创造精神为目的的创新命题,归纳起来有以下类型:1.定义一种新运算; 2.定义一类新数;3.给定一定规则或要求,然后按上述规则要求解题; 4.注重跨学科命题.解创新命题时,需要在新的问题情境下,尽快适应新情况,充分运用已学过的数学知识方法去创造性地思考解决问题,对培养阅读理解能力、创新能力、提高学习兴趣有重要的促进作用.例题【例1】 一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是 . (北京市竞赛题) 思路点拨 自然数可分为奇数与偶数,从分析奇数与偶数中“智慧数”的特征入手. 注: 定义新数,即给出一种特殊的概念或满足某种特殊的关系,解这类问题的关键是准确全面理解“新数”的意义,通过推理解决问题.【例2】 在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ⋅,在乙组图形的(a)、(b)、(c)、(d)4个图中,表示“D A ⋅”和“C A ⋅”的是( ) .A .(a),(b)B .(b),(c)C . (c),(d)D .(b),(d) (江苏省竞赛题)思路点拨 从甲组图形中,两两比较A 、B 、C 、D 分别代表的哪种线段,哪种圆.【例3】 有依次排列的3个数:3,9,8.对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少?( “希望杯”邀请赛试题)思路点拨 用字母表示数,通过对一般性的考查,探求新增数之和的规律,以此作为解题的突破口. 【例4】 设[x]表示不超过x 的最大整数(如[3.7]=3,[-3.7]=-4)解下列了程: (1)[-l. 77x]=[-1.77]x ;(x 为非零自然数) (四川省选拔赛试题) (2)[3x+1]=2x -21(全国初中数学联赛题) 思路点拨 解与[x]相关的问题,关键是去掉符号“[ ]”,需灵活运用[x]的性质,并善于把估算、等式与不等式知识综合起来.注:解决实际问题及计算机的运算时,常常需要对一些数据进行取整运算,即用不超过它的最大整数取而代之.[x]有以下基本性质:(1)x=[x]+r ,0≤r<l ; (2) [x]≤x <[x]+1; (3)x -1<[x]≤x ; (4)[n+x]=n+[x]; (5)[x+y]≥[x]+[y]其中当n 为整数,当且仅当x 为整数时等号成立.【例5】 如图,沿着圆周放着一些数,如果有依次相连的4个数a ,b ,c ,d 满足不等式(a 一d)(b 一c)>0,那么就可以交换b ,c 的位置,这称为一次操作.(1)若圆周上依次放着数1,2,3,4,5,6,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0?请说明理由.(2)若圆周上从小到大按顺时针方向依次放着2003个正整数1,2…,2003,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0 ?请说明理由.(全国初中数学竞赛题)思路点拨 (1)从1~6中选取满足(a 一d)(b 一c)>0的四个数,按题设条件操作, 直至符合结论的要求;(2)略.注:解按规则要求操作类的问题或写出具体操作步骤,或指出按规则要求不能实现的理由.解题的关键是善于在变化中把握不变量,利用不变量解题,此外,还要能灵活运用整数的整除性、奇偶性、通过赋值数学化等知识与方法.【例6】 假设a#a+b 表示经过计算后a 的值变为a 的原值和b 的原值的和,又b#b.c 表示经过计算后b 的值变为b 的原值和c 的原值和乘飘假设计算开始时a=0,b=1,c=1,对a 、b 、c 同时进行以下计算:(1) a#a+b ;(2) b#b.c ;(3) c#a+b+c(即c 的值变为所得到的a 、b 的值与c 的原值的和).连续进行上述运算共三次,试判断a 、b 、c 三个数值之和是几位数?思路点拨 对a 、b 运算次数1 2 3 a 1 2 5 b 1 3 24 c3837经过三次运算后,a+b+c=5+24+37=66,它是一个两位数.学力训练1.现定义两种运算: ,对于任意两个整数a ,b , =a+b -1,=a b -1,那么 = .2.对于任意有理数a ,b ,c ,d ,我们规定bc ad dc b a -=,如果81122<--x ,那么x 的取值范围是 . 3.餐厅里有两种餐桌,方桌可坐4人,圆桌可坐9人,若就餐人数刚好坐满若干张方桌和圆桌,餐厅经理就称此数为“发财数”,在l ~100这100个数中,“发财数”有 个. (“五羊杯”竞赛题) 4.读一读:式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n ,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-50112n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果)。
初中数学竞赛辅导讲义及习题解答第30讲从创新构造入手
第三十讲从创新结构下手有些数学识题直接求解比较困难,可经过创建性结构转变问题而使问题获解.所谓结构法,就是综合运用各样知识和方法,依照问题的条件和结论给出的信息,把问题作适合的加工办理.结构与问题有关的数学模式,揭露问题的实质,进而交流解题思路的方法.结构法是一种创建性思想,是成立在对问题结构特色的深刻认识基础上的.结构法的基本形式是以已知条件为“原料” ,以所求结论为“方向”,结构一种新的数学形式,初中阶段常用的结构解题的基本方法有:1.结构方程;2.结构函数;3.结构图形;4.对于存在性问题,结构实例;5.对于错误的命题,结构反例;6.结构等价命题等.【例题求解】【例 1】设 a、 a、 b 、 b都为实数, a1a,知足 (a1b )( a b)(a2b )(a2b ) ,1212211212求证: (a1 b1 )(a 2b1 )(a1b2 )(a 2 b2 )1.思路点拨能够从睁开已知等式、按比率性质变形已知等式等角度试试.特色, a1、 a 2可看作方程(x b1 )( x b2 ) 1的两根,则( x b1 )( x b2 )认真察看已知等式1 ( x a1)( x a2 ) ,经过结构方程揭露题设条件与结论的内在规律,解题思路新奇而深刻.注:一般说来,结构法包括下述两层意思:利用抽象的广泛性,把实质问题转变为数学模型;利用详细问题的特别性,给所解决的问题设计一个框架,重申数学应用的数学建模是前一层意思的代表,尔后一层意思的“框架”含义更加宽泛,如方程、函数、图形、“抽屉”等.【例 2】求代数式x 2 2x2x24x 13 的最小值.思路点拨用一般求最值的方法很难求出此代数式的最小值.x 22x2x 24x 13( x1) 2(0 1)2( x 2)2(0 3) 2,于是问题转变为:在x轴上求一点 C(1 ,0),使它到两点A( 一 1,1)和 B(2, 3)的距离和 (CA+CB) 最小,利用对称性可求出 C 点坐标.这样,经过结构图形而使问题获解.【例 3】已知b、 c 为整数,方程52bx c 0的两根都大于1且小于 0,求 b 和c的值.x思路点拨利用求根公式,解不等式组求出 b 、c的范围,这是解本例的基本思路,解法繁难.因为二次函数与二次方程有深刻的内在联系,结构函数,令y 5x2bx c ,从议论抛物线与x 轴交点在 1 与0 之间所知足的拘束条件下手.【例 4】如图,在矩形ABCD 中, AD= a,AB= b ,问:可否在Ab 边上找一点E,使 E 点与 C、D 的连线将此矩形分红三个相互相像的三角形?若能找到,这样的 E 点有几个 ?若不可以找到,请说明原因.思路点拨假定在 AB 边上存在点 E,使 Rt△ADE ∽ Rt△ BEC ∽ Rt△ ECD ,又设 AE= x,则AD BE ,即 a b x ,于是将问题转变为对于x 的一元二次方程能否有实根,在必定条AE BC x a件下有几个实根的研究,经过结构方程解决问题.【例 5】试证:世界上任何 6 个人,总有 3 人相互认识或许相互不认识.思路点拨结构图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比方 2 个人相互认识就把连结 2 个人的对应点的线段染成红色; 2 个人相互不认识,就把相应的线段染成蓝色,这样,有 3 个人相互认识就是存在一个 3 边都是红色的三角形,不然就是存在一个 3 边都是蓝色的三角形,这样此题就化作:已知有 6 个点,任何 3 点不共线,每 2 点之间用线段连结起来,并染上红色或蓝色,而且一条边只好染成一种颜色.证明:不论怎么染色,总能够找出三边同色的三角形.注:“数缺形时少直观,形缺乏时难入微”数形相助是一种重要的思想方法,主要表此刻:(1)几何问题代数化;(2)利用图形图表解代数问题;(3)结构函数,借用函数图象商讨方程的解.利用代数法解几何题,常常是以较少的量的字母表示有关的几何量,依据几何图形性质列出代数式或方程 (组 ),再进行计算或证明.特别地,证明几何存在性的问题可结构方程,利用一元二次方程必然有解的的的代数模型求证;应用为韦达定理,议论几何图形地点的可能性.有些问题可经过改变形式或换个说法,结构等价命题或协助命题,使问题清楚且易于把握.对于存在性问题,可依据问题要求结构出一个知足条件的结论对象,即所谓的存在性问题的“结构性证明” .学历训练1.若对于 x 的方程 (1 m 2 )x 2 2mx 10 的全部根都是比 1 小的正实数, 则实数 m 的取值范围是.2.已知 a 、 b 、 c 、 d 是四个不一样的有理数,且(a c)( a d) 1 , (b c)(b d )1 ,那么(a c)(b c) 的值是.3.代数式x 24(12 x)29 的最小值为.4. A 、 B 、C 、 D 、 E 、 F 六个足球队单循环赛,已知 A 、 B 、 C 、D 、E 五个队已经分别比赛了 5、 4、 3、 2、 1 场,则还未与 B 队比赛的球队是.5.若实数 a 、 b 知足 a 2ab b21 ,且 tab a 2 b 2 ,则 t 的取值范围是.6.设实数分别 s 、 t 分别知足 19s299s 1 0 , t299t 190 ,而且 st 1 ,求st4s 1 的t值.7.已知实数 a 、 b 、 c 知足 (a c)(a bc) 0 ,求证: (b c) 24a(a bc) .8.写出 10 个不一样的自然数,使得它们中的每个是这 10 个数和的一个约数,并说明写出的10 个自然数切合题设条件的原因.9.求全部的实数 x ,使得 xx1 1 1 .xx10.假如不全为零且绝对值都小于6的整数.求证: a 2b 3c110 1021 .11.已知对于 x 的方程 x 2 2 3x 1 k 有四个不一样的实根,求 k 的取值范围.12.设 0 x ,y ,z 1 0,求证x(1 y)y(1 z) z(1 x) 1 .13.从自然数 l , 2, 3, 354 中任取 178 个数,试证:此中必有两个数,它们的差为177. 14.已知 a 、 b 、 c 、 d 、 e 是知足 abc d e 8 , a 2 b 2 c 2 d 2e 16 的实数,试确立 e 的最大值.15.如图,已知一等腰梯形,其底为 a 和 b ,高为 h .(1) 在梯形的对称轴上求作点 P ,使从点 P 看两腰的视角为直角;(2) 求点 P 到两底边的距离;(3) 在什么条件下可作出 P 点 ?参照答案。
初中数学九年级培优教程整理(全)
初中数学九年级培优目录第1讲二次根式的性质和运算(P2----7)第2讲二次根式的化简与求值(P7----12)第3讲一元二次方程的解法(P13----16)第4讲根的判别式及根与系数的关系(P16----22)第5讲一元二次方程的应用(P23----26)第6讲一元二次方程的整数根(P27----30)第7讲旋转和旋转变换(一)(P30----38)第8讲旋转和旋转变换(二)(P38----46)第9讲圆的基本性质(P47----51)第10讲圆心角和圆周角(P52----61)第11讲直线与圆的位置关系(P62----69)第12讲圆内等积证明及变换((P70----76)第13讲弧长和扇形面积(P76----78)第14讲概率初步(P78----85)第15讲二次函数的图像和性质(P85----91)第16讲二次函数的解析式和综合应用(P92----98)第17讲二次函数的应用(P99----108)第18讲相似三角形的性质(P109----117)第19讲相似三角形的判定(P118-----124)第20讲相似三角形的综合应用(P124-----130)第1讲二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【例1】 (荆州)下列根式中属最简二次根式的是( )A.【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B 中含分母,C 、D 含开方数4、9,故选A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是( )A.A .①,②B .③,④C .①,③D .①,④【例2】(黔东南)方程480x -=,当y >0时,m 的取值范围是( )A .0<m <1B .m ≥2C .m <2D .m ≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x -8=0,x -y -m =0.化为y =2-m ,则2-m >0,故选C.【变式题组】2.(宁波)若实数x 、y 2(0y =,则xy 的值是__________.3.2()x y =+,则x -y 的值为( )A .- 1B .1C .2D .34.有意义的x 的取值范围是( ) A .x >3B .x ≥3C .x >4D .x ≥3且x ≠45.(怀化)22(4)0a c --=,则a -b -c =________.【例3是同类二次根式的是( )A BCD 【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A = B 不能化简;=D ==.故本题应选D.【变式题组】6a =________. 7.在下列各组根式中,是同类二次根式的是( )ABCD8.已知最简二次根式ba =_______,b =______. 【例4】下列计算正确的是( ) A=B4=C= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D. 2(111=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( ) A.= B=C3=D3=-10.计算:200720074)(4⋅=_____________ 11.22-=_____________12.(济宁)已知a) A .a B .-a C .-1 D .0 13.已知a >b >0,a +b =的值为( )A.2B .2CD .12【例5】已知xy >0,化简二次根式的正确结果为( ) ABC.D.【解法指导】先要判断出y <0,再根据xy >0知x <0.故原式=选D. 【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15===中找出规律,并利用这一规律计算:1)++⋅=L _________.16.已知,则0<x <1=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中12a =,12b =.⑵已知x =,y =值为________. 【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当12a =,12b =时,ab =1,a +b⑵由题意得:xy =1,x +y =10, 10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a +b)-3a 2,其中2a =--2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y 满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A .-2008B .2008C .-1D .1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x 2=2008,所以3x 2-2y 2+3x -3y -2007=3x 2-2x 2+3x -3x -2007=x 2-2007=1,故选D.【变式题组】19.若a >0,b >0=的值.演练巩固·反馈提高01.若4m =,则估计m 的值所在的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <502.n 的最大值为( )A .12B .11C .8D .303.(黄石)下列根式中,不是..最简二次根式的是( )A.04.(贺州)下列根式中,不是最简二次根式的是( )A.05.下列二次根式中,是最简二次根式的是( )A.06.(常德)设a =20, b =(-3)2, c =11()2d -=, 则a 、b 、c 、d 、按由小到大的顺序排列正确的是( )A .c <a <d <bB .b <d <a <cC .a <c <d <bD .b <c <a <d07.(十堰)下列运算正确的是( )A =B =C .21)31=-D 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A .B C .D .09.2x -化简的结果为2x -3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >010.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a ,b ,定义一种运算a ※b =32=-那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a -+--,其中12a =. 培优升级01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a 、b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有________对.03.(全国)设a =5432322a a a a a a a+---+=-________. 04.(全国)设x =a 是x 的小数部分,b 是x 的小数部,则a 3+b 3+3ab =________.05.(重庆)已知2y =,则x 2+y 2=________.06.(全国)已知1a =,a =2a =,那么a 、b 、c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b07.(武汉)已知y =(x ,y 均为实数),则y 的最大值与最小值的差为( )A 3B .3C 3D08.(全国)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1B .0C .1D .209.(全国) )A .5-B .1C .5D .110.已知0(0,0)x y x y -=>>的值为( )A .13 B .12C .23 D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知9+9a 和b ,求ab -3a +4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值. 3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏析【例1】2=的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式511-【变式题组】1.若14aa +=(0<a <1)=________2=- ) A .1a a -B .1a a-C .1a a+D .不能确定【例2】(全国)满足等式=2003的正整数对(x ,y )的个数是( )A .1B .2C .3D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.0=,∴0=0>0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B . 【变式题组】3.若a >0,b >0=的值.【例3】1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x=a 的代数式表示x -2,x 2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a-+=++, 222142x x a a-=+-,∴化简原式=(3)(2)(2)3x x x x x x +--+g =2211()1()211()a a a a a a a a a a a++-+-=++--【变式题组】 4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值.5.(五羊杯)已知1m =1n =,且22(714)(367)8m m a n n -+--=,则a 的值等于( ) A .-5B .5C .-9D .9【例4】(全国)如图,点A 、C都在函数0)y x =>的图像上,点B 、D 都在x 轴上,且使得△OAB 、△BCD都是等边三角形,则点D的坐标为________.【解法指导】解:如图,分别过点A、C作x轴的垂线,垂足分别为E、F.设OE=a,BF=b,则a,CF,所以,点A、C的坐标为(aa)、(2a+b),所以2(2)a b=+=ab⎧=⎪⎨=⎪⎩因此,点D的坐标为(,0)【变式题组】6.(邵阳)阅读下列材料,然后回答问题.在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简:335333535=⨯⨯=;(一)36333232=⨯⨯=;(二)()()()131313132132-=-+-⨯=+;(三)以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+;(四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(2++L【例5】(五羊杯)设a、b、c、d为正实数,a<b,c<d,bc>ad.【解法指导】虽然不能用面积公式求三角形面积(为什么?)a、c为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形ABCD,使AB=b-a,AD=c,延长DA至E,使DE=d,延长DC至F,使DF=b,连结EF、FB、EB,则BF=,EF=,BE,从而知△BEF就是题设的三角形,而S△BEF=S长方形ABCD+S△BCF+S△ABE-S△DEF=(b-a)c+12(d-c)(b-a)-12bd=12(bc-ad)【变式题组】7.(北京)已知a、b均为正数,且a+b=2,求U演练巩固·反馈提高01.已知x=,y=值为__________02.设1a=,则32312612a a a+--=()A. 24 B.25 C.10D.1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京)若有理数x、y、z1()2x y z=++,则2()x yz-=__________05.(北京)正数m、n满足430m n+-==__________06.(河南)若1x=+,则32(2(15x x x-++的值是()A.2B.4C.6D.807.已知实数a满足2000a a-=,那么22000a-的值是()A.1999 B.2000 C.2001 D.200208.设a=b=c=a、b、c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b09.已知1x=培优升级01.(信利)已知1x =+2111242x x x +-=+--__________025==__________03.(江苏)已知(2002x y =,则2234x xy y --6658x y --+=__________04.7x =,则x =__________05.已知x =,y =,那么22y x x y +=__________06.(武汉)如果a b +=a b -=,3333b c b c +=-,那么333a b c -的值为( )A .B .2001C .1D .007.(绍兴)当x =32003(420052001)x x --的值是( ) A .0B .-1C .1D .20032-08.(全国)设a 、b 、c 为有理数,且等式a +=则29991001a b c ++的值是( ) A .1999 B .2000 C .2001 D .不能确定09.计算:(1(2(3+++L(410.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()a b-,将结果表示成不含b 的形式.11.已知21(0)a x a a +=>12.已知自然数x 、y 、z 0=,求x +y +z 的值.第3讲 一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程; 3.会应用一元二次方程解实际应用题。
初中数学八年级竞赛强化辅导讲义31讲:第 6讲直角三角形
第6讲直角三角形知识方法有一个角是直角的三角形叫作直角三角形.它的两个锐角互为余角,两直角边的平方和等于斜边的平方(即勾股定理,我们会在另外一讲专题讨论).关于直角三角形有如下两个重要的定理:(1) 直角三角形斜边上的中线等于斜边的一半.(2)在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半.上述两个命题的逆命题也是成立的:(1) 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(2) 在直角三角形中,若有一条直角边等于斜边的一半,则它所对的角等于30°.判定两个直角三角形全等,除了一般的三角形全等的方法外,还有“斜边、直角边”的方法.经典例题解析【例6-1】如图6-1所示,已知Rt△ABC 中,∠C=90°,沿过点B 的一条直线BE 折叠这个三角形,使点C落在AB 边上的点D 处,要使点D 恰为AB 的中点,问:在图中还需添加什么条件?(1) 写出两个满足边的条件.(2) 写出两个满足角的条件.(3) 写出一个满足除边、角以外的其他条件.解要使D 为AB 的中点,可添加下列条件之一.角的关系:①∠A=∠DBE; ②∠A=∠CBE;③∠DEA=∠DEB; ④∠DEA=∠BEC;⑤∠A=30°; ⑥∠CBD=60°;⑦∠CED=120°; ⑧∠AED=60°.边的关系:①AB=2BC; ②AC=√3BC;③2AC=√3AB;④BE=AE.三角形的关系:△BEC≌△AED.【例6-2】如图6-2所示,D、E 是等边△ABC 两边上的两个点,且AE=CD,连接BE、AD 交于点P,过B 点作BQ⊥AD 于Q,求证:BP : PQ=2.证明在△CAD 与△ABE 中,CA=AB,∠C=∠EAB,CD=AE,故△CAD≌△ABE,于是∠CAD=∠ABE.所以∠QPB=∠PAB+∠PBA=∠PAB+∠PAE=60°.又BQ⊥AD,所以∠QBP=30°,于是PQ=1BP,即BP : PQ=2.2【例6-3】如图6-3 所示,已知△ABC 中,AB =AC,∠A=120°,D 是BC 的中点,DE⊥AB于E,求证:BE=3AE.证明因为AB=AC,∠A=120°,故∠B=∠C=30°.又D 是BC的中点,故AD⊥BD.在Rt△ADB 中, AD=1AB.2因为DE⊥AB,∠ADE=90°−∠BAD=∠B=30°,所以AE=1AD.于是BE= AB-AE =2AD-AE2=4AE-AE=3AE.【例6-4】如图6-4 所示,已知△ABC中, ∠B=30°,∠C=15°,,D 是BC 上一点,∠CAD=90°,求证:CD=2AB.证明如图6-5所示,取DC中点M,连接AM,则AM=NC=MD,于是∠CAM=∠C,所以∠AMD=∠CAM+∠C=2∠C=30°=∠B,即AM=AB.故CD=2AM=2AB.【例6-5】如图6-6 所示,在△ABC 中,BD、CE 是两条高,F、G 分别是BC、DE 的中点,求证:FG⊥DE.证明如图6-7 所示,连接FD、FE.因为BD⊥AC,F 为BC 的中点,所以DF=1BC.2同理,EF=1BC,所以DF=EF.2而G 为DE 的中点,所以FG⊥DE.【例6-6】在△ABC 中,∠B=90°,M 为AB 上一点,使AM=BC,N 为BC 上一点,使得CN=BM,连接AN、CM 交于P 点,试求∠APM的度数,并写出推理证明的过程.解如图6-8所示,过C作CD∥AB,且CD=AM,连接AD、DN,DN 交CM 于Q,则四边形AMCD为平行四边形, 有AD∥CM,AD=CM.因AM=BC,故DC=BC.又∠DCN=∠B=90°,CN=BM,故Rt△DCN≌Rt△CBM.所以DN=CM,从而有DN=AD.而且∠ADN=∠MQN=∠MCB+∠QNC=∠MCB+∠CMB=90°,故△AND 是等腰直角三角形,∠DAN=45°,于是∠APM=∠DAN=45°.【例6-7】如图6-9所示,∠BAC=90°,AB=AC,M 是AC 边的中点,AD⊥BM 交BC 于D,交BM 于E.求证:∠AMB=∠DMC.分析从图形观察∠AME 与∠DMC 所在的两个三角形△AME 与△DMC 显然不全等,但是这两个三角形中有其他相等元素:AM=MC.若能利用已知条件在现有的三角形中构造出新的对应相等的元素,形成全等三角形,这是理想不过的事.由于∠C=45°,∠BAC=90°,若作∠BAC 的平分线AG,则在△AGM 中, ∠GAM=45°=∠C..结合求证中的∠AMB=∠DMC(这当然不能作为已知,但在分析中可以“当作已知”来考虑,以便寻找思路),我们可以断言△AGM“应该”与△CDM 全等!为此,只要在这两个三角形中求得一组边相等即可.图形及条件启发我们可考虑去证明△AGB≌△CDA.证明如图6-10所示,作∠BAC 的平分线AG,交BM 于G.在△AGB 与△CDA 中,因为AB=CA,∠BAG=∠ACD=45°,∠ABG=90°−∠AMB,①∠MAD=90°−∠EAB.②由于在Rt△MAB 中,AE⊥BM,所以∠AMB=∠EAB.由式①、式②得, ∠ABG=∠MAD,所以△AGB≌△ADC,于是AG=CD.在△AMG 与△CMD 中,还有AM = MC,∠GAM =∠DCM = 45°,所以. △AMG≅△CMD,从而∠AMB=∠DMC.【例6-8】如图6-11 所示,在Rt△ABC 中,CD 是斜边AB 上的高,O、O₁、O₂分别是△ABC、△ACD、△BCD 的角平分线的交点,求证:(1) O₁O⊥CO₂.(2)OC=O₁O₂.证明(1) 由题设O、O₁都在∠A 的平分线上,设该平分线交( CO₂于E.因∠A=∠DCB,故∠EAC=∠O₂CB.于是. ∠EAC+∠ACE=∠O₂CB+∠ACE=90°,故∠AEC=90°,O₁O⊥CO₂.(2) 由于点O₁、O₂分别在∠ACD 和∠DCB 的平分线上,故∠O₁CO₂=45°,由(1)∠O₁EC=90°,有CE=EO₁.同理设O₂O交CO₁于F,则O₂F⊥CF,∠OO₂E=45°,有O₂E=EO.又∠CEO=∠O₂EO₁,故△CEO≌△O₂EO₁,于是OC=O₁O₂.强化训练一、选择题1.如图6-12所示,在△ABC中,∠C=90°,AD 是∠BAC 的平分线,且BD: DC=2: 1,则∠B 的大小满足( ).(A)0°<∠B<15° (B)∠B=15°(C)15°<∠B<30°(D)∠B=30°2.如果三角形两条边的垂直平分线的交点在第三边上,那么这个三角形是( ).(A) 锐角三角形(B) 钝角三角形(C) 直角三角形(D) 等腰直角三角形3.如图6-13所示,在锐角△ABC中,BC<AB,AH 是BC 边上的高,BM 是AC 边上的中线,AH=BM,那么( ).(A)∠MBC=30° (B)∠MBC=45°(C) ∠MBC>30° (D)∠MBC<30°4.在△ABC中,∠C=90°,∠B=67°,那么△ABC斜边上的中线和高所夹的角等于( ).(A) 43° (B) 44° (C) 45° (D) 46°5.已知等腰三角形一边上的高等于这边的一半,那么这个等腰三角形的顶角的度数是( ).(A) 30° (B) 30°或150°(C) 120°或150° (D) 30°或90°或150°二、填空题6.如图6-14所示,AD 是Rt△ABC(∠ACB=90°)的角平分线,EF⊥AD 于D,与AB 及AC 的延长线分别交于E、F,图中的一对全等三角形是.7.已知△ABC 中,∠ACB=90°,CD⊥AB 于D,CE 为AB 边上的中线,且DE=DC,则△ABC 中较小部分的那个锐角的度数是.8.如图6-15所示,在等腰三角形ABC 中,AB=AC,∠BAC=120°,D 是BC边上的一点,BD=1,DC=2,则AD= .9.已知△ABC 中,高AD 所在的直线与高BE 所在的直线相交于H,且BH=AC,则∠ABC= .10.△ABC 中,∠C<∠B,∠A 的三等分线恰为BC 边上的中线和高,则∠B= .三、解答题11. 如图6-16所示,以△ABC 的顶点A 为直角顶点,AC 和AB 为直角边向. △ABC外作等腰直角三角ABD 和ACE,连接DE,自A向BC作垂线AH,垂足为H,延长HA 交DE 于M.求证:M 是DE 的中点.12.如图6-17 所示,CD 是Rt△ABC 斜边上的高,∠A 的平分线AE 交CD 于H,交∠BCD的平分线CF于G,求证:HF∥BC.13.如图6-18所示,△ABC 是等腰直角三角形,∠C=90°,点M、N 分别是边AC 和BC的中点,点D 在射线BM 上,且BD =2BM,点E 在射线NA 上,且NE = 2NA,求证:BD⊥DE.,DE+14. 如图6-19 所示,在△ABC 中,∠C=90°,D 为AB 上一点,作DE⊥BC 于E,若B E=AC,BD=12BC=1求证:∠ABC=30°.15.如图6-20 所示,已知△ABC 中,∠ACB=90°,AD⊥AB,AD=AB,BE⊥DC,AF⊥AC,求证:CF平分∠ACB.一、选择题1.【答案】D.【解析】过点D 作DE⊥AB 于E,则△AED≌△ACD,所以DE=DC=1BD,所以∠B=30°.22.【答案】C.【解析】如答图6-1 所示,在△ABC 中,AC、BC的垂直平分线的交点M 在AB 上,则AM=CM=BM,于是∠A =∠ACM,∠B =∠BCM,而∠A+∠ACM+∠B+∠BCM=180°,故∠A+∠B=90°,这个三角形是直角三角形.3.【答案】A.【解析】如答图6-2所示,作MD⊥BC,D 为垂足,则AH ∥MD.又M 是AC 的中点,所以MD = 12AH=12BM,在Rt△MBD 中, MD=12BM,所以∠MBC=30°.4.【答案】B.【解析】如答图6-3 所示,CH是高,CM 是中线.因CM=BM,故∠MCB=∠B=67°,又∠BCH=90°-∠B = 23°, 所以∠MCH =∠MCB -∠BCH=44°.5.【答案】D.【解析】有三种情况:如答图6-4(a)所示,AB=AC,高AD=12BC;如答图6-4(b)所示,AB =AC,高BD=12AC;如答图6-4(c)所示,AB=AC,高BD=12AC.不难算出顶角分别是90°、150°和30°.二、填空题6.【答案】△AED≌△AFD.7.【答案】22.5°.8.【答案】1.9.【答案】45°或135°.【解析】有两种情况:(1)若∠B 是锐角,如答图6-5(a)所示,可先证明Rt△ADC≌Rt△BDH,从而AD=BD,△ADB是等腰直角三角形,∠ABC=45°.(2) 若∠B 是钝角,如答图6-5(b)所示,可先证明Rt△ADC≌Rt△BDH,从而AD=BD,△ADB 是等腰直角三角形,∠ABD=45°,∠ABC=135°.10.【答案】60°.【解析】如答图6-6所示,∠1=∠2=∠3,AH⊥BC,BM=CM.故BH=MH=1MC.2作MD⊥AC 于D,易证△AHM≌△ADM, MD=MH=1MC,于是∠C = 30°.故∠2+∠3=60°.于是∠1=∠2=∠23=30°,∠B=60°.三、解答题11.【答案】证明:自 E 与 D 作 EE ₁⊥AM,DD ₁⊥AM,E ₁、D ₁为垂足,先证明 Rt △AHC ≌Rt △EE ₁A,Rt △AHB ≌Rt △DD ₁A,从而得到. AH =EE₁=DD ₁,再证明 Rt △EE ₁M ≌Rt △DD ₁M,就可得到 EM=DM.12.【答案】证明:易证∠BCD=∠CAD,于是∠ECG=∠HCG=∠CAH =∠DAH.∠ACG +∠CAG =∠ACH + ∠HCG + ∠CAG = ∠ACH +∠HAD+∠CAG=90°,于是 CG ⊥AG.又易证CE=CH,故 HG =GE.又可证CG=GF,而∠CGE = ∠FGH, 故 △CGE ≌ △FGH,∠ECG=∠HFG,于是 HF ∥BC.13.【答案】证明:如答图 6-7 所示,作 EF ⊥AD 于F,可证△ACN ≌△EFA ≌BCM ≌△EFD ≌△DAM,可得∠EDF+∠ADM=90°.14.【答案】证明:如答图6-8所示,延长 BC 到 F,使CF=DE,连接 AF,因为 BC+DE=1,所以BF=1.易证△ACF ≌△BED,故 AF =BD =12,∠FAC=∠B,∠FAB=∠FAC+∠BAC=∠B+∠BAC=90°,又 AF =12=12BF,所以∠B=30°.15.【答案】证明:由 BE ⊥CD,AD ⊥AB 及∠BPE=∠DPA, 可 得 ∠ABF=∠D;由 AD ⊥ AB,AC ⊥AF 可得∠BAF=90°-∠CAB=∠DAC;又AB=AD,故有△ADC ≌△ABF,从而AC=AF.△CAF 是等腰直角三角形,故有∠ACF=45°,于是 ∠BCF =90°−45°=45°,,所以 CF 是∠ACB 的平分线..。
人教版八年级数学培优竞赛之欧阳科创编
目录第1讲全等三角形的性质与判定(P2----11)第2讲角平分线的性质与判定(P12----16)第3讲轴对称及轴对称变换(P17----24)第4讲等腰三角形(P25----36)第5讲等边三角形(P37----42)第6讲实数(P43----49)第7讲变量与函数(P50----54)第8讲一次函数的图象与性质(P55----63)第9讲一次函数与方程、不等式(P64----68)第10讲一次函数的应用(P69----80)第11讲幂的运算(P81----86)第12讲整式的乘除((P87----93)第13讲因式分解及其应用(P94----100)第14讲分式的概念•性质与运算(P101----108)第15讲分式的化简求值与证明(P109----117)第16讲分式方程及其应用(P118----125)第17讲反比例函数的图像与性质(P126----138)第18讲反比例函数的应用(P139----146)第19讲勾股定理(P147-----157)第20讲平行四边形(P158-----166)第21讲菱形矩形(P167-----178)第22讲正方形(P179-----189)第23讲梯形(P190-----198)第24讲数据的分析(P199-----209)BAC D E F 模拟测试一 模拟测试二 模拟测试三第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等. 经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( )A .5对B .4对C .3对D .2对 【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90.A F CEDB 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠∴△ABE ≌∴△DCE ∴BE =CE⑶在Rt △EFB 和Rt △EFC 中∴Rt △EFB ≌Rt △EFC (HL )故选C .【变式题组】01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E为OB 的中点,F 为OC 的中点,连接EF (如图所示). ⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ;⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题 2.命题1是______命题,命题2是_______命题 A BC D O FE(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中,AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE中,AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2B .3C .4D .502.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________.03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .A E第1题图A BCDE BCDO第2题图A CEFBD【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC中,AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF ∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCA 【变式题组】01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点AFECB DB(E )OC F 图③DAP 处.若∠CDE =48°,则∠APD 等于( ) A .42°B .48°C .52°D .58°02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( ) A .△ABC ≌△DEFB .∠DEF =90° C . AC =DF D .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠PAQEFB ACDG 第2题图=90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°,∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中,2AB QCBP CA =⎧⎪=⎨⎪=⎩∠1∠∴△APB ≌△QAC ,∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90°∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED 的中点,求证:AF ⊥CD .02斜靠在墙上,梯子顶端距地面的垂直距离此时梯子的倾斜角为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a b m +B .2a bm -C .bmD .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是AECBA 75° C45°BNM第2题图第3题图D21ABCPQEF D( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D为圆心,以大于12CD长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )A .SASB .ASAC .AASD .SSS04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( ) A . CB =CDB .∠BAC =∠DACC . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45°D . AC ∥BE第1题图a αcca50° b72° 58°06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( )A . 小华、小明都对B . 小华、小明都不对C . 小华对、小明不对D .小华不对、小明对07.如图,已知AC =EC , BC =CD ,AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB=2, CD =6,则AE =_____.11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .DAC.Q P.BDBACEFA E FB DC ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明;⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等; 对于这两个三角形均为钝角三角形,可证明它们全等(证明略);对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)ABCDA 1B 1C 1D 1AEBFD C⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( )A .4对B .5对C .6对D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( )A .①②B .②③C .①③D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BCC . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等 05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH=AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交F 第6题图 2 1 A B C E N M 3 2 1 A D E B C F A D E CO AEOB FC D第1题图 B 第2题图第3题图A E F CD B AE B D C AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
中考培优竞赛专题经典讲义第30讲几何三大变换之翻折
第30讲几何三大变换之翻折翻折的性质(轴对称的性质)如图,将A ABC沿着DE翻折,使得点A落在BC的点F处结论有:①ADE FDE (即AD=DF,AE=EF,/ A= / DFE,/ ADE= / FDE,/ AED = / FED )②DE垂直平分AF函数的对称变换①一次函数y kx b关于x轴对称后的解析式:y kx b关于y轴对称后的解析式:y kx b②二次函数y ax2 bx c关于x轴对称后的解析式:y ax2 bx c关于y轴对称后的解析式:y ax2 bx c【例题讲解】例题1.如图,ABC中,AB AC , BAC 54 , BAC的平分线与AB的垂直平分线交于点0,将C沿EF(E在BC 上, F在AC上)折叠,点C与点0恰好重合,则0EC的度数是_____解: 如图, 连接OB、OC,Q BAC54,AO [为BAC的平分线,11BAO BAC-5427,22又Q AB AC,11ABC(1802BAC)(180 54 ) 63,Q D0是AB的垂直平分线, OA OB,ABO BAO 27,OBC ABC ABO6327 36,Q AO为BAC的平分线,AB AC,AOB AOC (SAS),OB OC ,点O在BC的垂直平分线上,又Q DO是AB的垂直平分线,点O是ABC的外心,OCB OBC 36 ,Q将C沿EF(E在BC 上, F在AC上)折叠,点C与点O恰好重合,OE CE,COE OCB 36,在OCE 中,OEC 180 COE OCB 180 36 36 108,例题2•如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为与边AD、BC交于点F、H,点C落在Q处,EQ与BC交于点G.(1)尺规作图作出折痕FH ;(2)求折痕FH的长;(3)求AEBG的周长;(4)若将题目中的点E为AB中点”改为点E为AB上任意一点”,其它条件不变,则A EBG的周长是否发生变化,若不变,请求出该值,若发生变化,请说明理由.例题3、如图,矩形ABCD中,AB 8,BC 6,P为AD上一点,将ABP沿BP翻折至EBP,PE与CD相交于点0,且OE OD,则AP的长为解:Q四边形ABCD是矩形,D A C 90 , AD BC 6 , CD AB 8 ,由折叠的性质可知ABP EBP ,EP AP,E A 90,BE AB 8,在ODP和OEG中,DOP EOGOD OED EODP OEG(ASA),OP OG , PD GE ,DG EP ,设AP EP x,贝U PD GE 6 x , DG x , CG8 x,BG 8 (6 x) 2 x,根据勾股定理得:BC2 CG2 BG2,即62(8 x)2 (x 2)2,解得:x 4.8,AP 4.8,故答案为:4.8.例题4.如图1,在矩形纸片ABCD中,AB 8J3,AD 10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE ;第二次折叠纸片使点N与点E重合,如图3,点B落到B处,折痕为HG,连接HE,则tan EHGD E£D c D-7A NB A图一解:如图2中,作NF CD 于F . 设DMQ DE EC , AB CD8灵,1DE —CD24廳,在RT DEM 中,Q DM2DE2EM2,L 2 2(4 J3) x(102 x),解得x 2.6 ,DM 2.6 , AM EM7.4 ,Q DEM NEF90 , NEF ENF DEM ENF,Q D EFN 90 ,DME s FEN ,x90,贝y AM EM 10 x,H・*DE EM FN EN,4 37.4 10EN,EN37 3 ,6AN 37厂EN —•3 ,6ANtan AMNAM53,如图3中,Q ME EN , HG EN EM //GHNME NHGQ NME AMN , EHG NHG , AMN EHGtan EHG tan AMN -^3.6故答案为5 3 .6例5.如图,已知YABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m n 0),作YABCD关于直线AD的对称图形ABC i D(1) 若m 3,试求四边形CGRB面积S的最大值;(2) 若点B1恰好落在y轴上,试求-的值.m解:(1)如图1,QY ABCD与四边形AB1C1D关于直线AD对称,四边形AB1C1D是平行四边形,CC1 EF,BB EF,BC//AD//BG,CC1//BB1,四边形BCEF、B1C1EF是平行四边形,SY BCEF SY BCDASY B1 C1 DA S< B1C1EF ,方法二,tan EHG tan EMN EN EMBCDEA y BS Y BCC 1 B1 2S Y BCDAQ A(n,0)、 B(m,0)、 D(0,2 n)、m 3 ,在 Rt AOB 1 中,(m n)2,整理得3m 23m 8n 0,AB m n 3 n , OD 2n ,S YBCDA AB OD3 n 2n 2 n 2 3n 3 2 2(n )2 2 9 —, 2 S Y BCC1 B1 2S YBCDA 4(n 狞 2 9 .Q 4 0 , 当n 3 时, S Y BCC IBI 最大值为9 ;(2) 2, Q DF BB , , DB , OB ,BDF DB ,F 90 , B ,BOOB ,B 90 ,BDF OBB , .Q DOA BOB , 90 ,AOD s △ B ,OBOA OD n 2n OB ,OB ,OB ,m ,OB ,由轴对称的性质可得 AB , AB m2当占■=1 B 1恰好落在y 轴上,如图卸图2例题6.如图,在平面直角坐标系xOy中,矩形OABC的边0A、OC分别在y轴和x轴的正半轴上, 边AB的中点,一抛物线y x2 2mx m(m 0)经过点A、D(1)求点A、D的坐标(用含m的式子表示);(2)把OAD沿直线OD折叠后点A落在点A处,连接OA并延长与线段BC的延长线交于点E ,①若抛物线经过点E,求抛物线的解析式;②若抛物线与线段CE相交,直接写出抛物线的顶点P到达最高位置时的坐标:A(0, m),当y m时,x 0或2mD(2m,m);(2)①如图,设AD与x轴交于点Q,过点A作A N x轴于点N .Q把OAD沿直线OD折叠后点A落在点A处,OAD △ OA D , OA OA m , AD A D 2m , OAD OAD 90 , ADO ADO ,Q 矩形OABC 中,AD / /OC ,ADO DOQ ,ADO DOQ ,DQ OQ .设 DQ OQ x ,贝U AQ 2m x , m 时,y 有最大值2 〔 2 〔 m m (m ) 2 4 在 Rt △ OAQ 中, 2 2 QOA AQ OQ 2 , 2 2m (2 m x) 解得x 54m ,Q S VOAQ ^OQgA N2 ,OAgAQ4 3A N 4 m 5 5m4 ON .OA^__AN 2 45m,4A 点坐标为(—m ,3 m) 5 易求直线OA 的解析式为y 当x 4m 时,y 3 4m4 3m,E 点坐标为(4 m, 3m). 代入y x 2 2mx m(m 0)得 0 (舍 ), 抛物线的解析式为: x 2 ②当 x 4m 时, x 2 2mx m 2(4 m) 2mg4m 2 m 8m 即抛物线I 与直线CE 的交点为 2(4m, 8m m), Q 抛物线I 与线段CE 相交,3m 剟 8m 2 m 0 ,8m解得:2 x 2mx m (x 2 m)1 1 2当-剟时,m m 随m 的增大而增大,1 21 21 3当m -时,顶点P 到达最高位置,m m ㊁4,【巩固练习】1、如图,在矩形ABCD 中,点E 为边CD 上一点,沿AE 折叠,点D 恰好落在BC 边上的F 点处,若AB 3 ,BC 5,则tan EFC 的值为 _____________ .3、点E 、F 分别在一张长方形纸条 ABCD 的边AD 、BC 上,将这张纸条沿着直线 EF 对折后如图,BF 与DE 交于点 G ,长方形纸条的宽 AB=2cm ,那么这张纸条对折后的重叠部分的面积的 S GEF 最小值为4). 2.如图,先将一平行四边形纸片ABCD 沿AE , EF 折叠,使点E , B , C 在同一直线上,再将折叠的纸 片沿EG 折叠,使AE 落在EF 上,贝U AEG _______ 度.(第3題)5、在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动•第一小组的同学将矩形纸片ABCD 按如下顺序进行操作:对折、展平,得折痕EF (如图1);再沿GC 折叠,使点B 落在EF 上的点B 处(如图2),请求出 BGC 的度数. 6. 如图,在 ABC 中,CA CB , C 90,点D 是BC 的中点,将 ABC 沿着直线EF 折叠,使点 A 与点D 重合,折痕交 AB 于点E ,交AC 于点F ,那么sin BED 的值为 ___________ .________ J Rcffil 4.如图①,在长方形ABCD 中,E 点在AD 上,并且ABE 30,分别以BE 、CE 为折痕进行折叠并压E平,(用含n 的代数式表示) * ■ h47、如图,直线y —X 8与x 轴,y 轴分别交于点 A 和B , M 是OB 上的一点,若将 ABM 沿AM 折叠,3点B 恰好落在x 轴上的点B 处,则直线 AM 的解析式为8.如图①,点D 为一等腰直角三角形纸片的斜边 AB 的中点,E是BC 边上的一点,将这张纸片沿 DE 折,10,则图②中CEF 的周长为9. 如图,正方形 ABCD 的边长是16,点E 在边AB 上, AE 3,点F 是边BC 上不与点B 、C 重合的 cF ,若图①中ABDE 翻折得到厶ADE ,若△ A EC 是直角三角形,贝U AD 长为_________CDB 恰为等腰三角形,则 DB 的长为AB 4 , D 是边AB 上一点,DE//BC 交AC 于点E ,将 ADE 沿B 落在B 处.若11.如图,Rt ABC中,ACB 90 , AC 3 , BC 4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B处,两条折痕与斜边AB分别交于点E、F ,12、如图,ABC中,BAC 90 , AB 3 , AC 4,点D是BC的中点,将ABD沿AD翻折得到AED ,连CE,则线段CE的长等于13. 如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0) , (0,1),点D是线段BC上的动点(与端点B、C 不重合),过点D作直线y 1 X b交折线OAB于点E .2(1)记ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O.ARG 与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.14. 如图,将二次函数y x2 3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象,当直线y x b与此图象有两个公共点时,求b的取值范围 ________ .15. 如图1,在矩形ABCD中,AB 4 , AD 2,点P是边AB上的一个动点(不与点A、点B重合),点Q在边AD 上,将CBP和QAP分别沿PC、PQ折叠,使B点与E点重合,A点与F点重合,且P、E、F三点共线.(1)若点E平分线段PF,则此时AQ的长为多少?(2)若线段CE与线段QF所在的平行直线之间的距离为2,则此时AP的长为多少?(3)在“线段CE ”、“线段QF ”、“点A ”这三者中,是否存在两个在同一条直线上的情况?若存在,求出此时AP的长;若不存在,请说明理由.备用图16. 如图,矩形ABCD 中,AB 4 , AD 3 , M 是边CD 上一点,将 ADM 沿直线AM 对折,得到 ANM(1) 当AN 平分 MAB 时,求DM 的长;(2) 连接BN ,当DM 1时,求 ABN 的面积;(3) 当射线BN 交线段CD 于点F 时,求DF 的最大值.恰好落在CD 边的中点P 处.(1) 求矩形ABCD 的边AD 的长.(2) 若P 为CD 边上的一个动点,折叠纸片,使得 A 与P 重合,折痕为 MN ,其中M 在边AD 上,N 在 边BC 上,如图2所示.设DP x cm , DM y cm ,试求y 与x 的函数关系式,并指出自变量 x 的取 值范围.(3) ①当折痕MN 的端点N 在AB 上时,求当 PCN 为等腰三角形时x 的值;②当折痕MN 的端点M 在CD 上时,设折叠后重叠部分的面积为 S ,试求S 与x 之间的函数关系式. 17.如图1 ,已知矩形纸片 ABCD 中,AB 6cm ,若将该纸片沿着过点 B 的直线折叠(折痕为BM),点A18•如图,已知矩形ABCD中,AB 4 , AD m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A 运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m 6,求当P , E , B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC 的距离等于3,求所有这样的m的取值范围.19.如图,在平面直角坐标系中,矩形OABC的顶点A , C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE ,设点B的对应点为F,折痕DE所在直线与y 轴相交于点G ,经过点C , F , D的抛物线为y ax2 bx c .(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0, 3),求该抛物线的解析式;1(3)在(2)的条件下,设线段CD的中点为M ,在线段CD上方的抛物线上是否存在点P,使PM -EA ?2若存在,直接写出点P的坐标;若不存在,说明理由.参看答案1.解:根据题意可得:在 Rt ABF 中:AB 3 , AF AD BC 5 , 则 BF . AF 1 2 3 AB 2 4 ,又 Q EFC AFB 90 , AFB BAF 90 ,BAF CFE ,故 tan EFC tan BAF -.3故答案为:4 .3(^n30),Q AD / /BC ,BCE 2(1 n 30)AEB AEB ,CEF C EF , Q AEB AEB CEFC EF 180 ,AEB C EF 90 , Q 点E , B , C 在同一直线上,AEF 90 ,Q 将折叠的纸片沿 EG 折叠,使AE 落在EF 上, AEGGEA 1 -AEF 2 45 , 故答案为:45. 3.2.解:根据沿直线折叠的特点, 4.解:Q BE 2AE 2A E , A A 90 , ABE 、△ ABE 都为 30、 60、 90 的三角形, 1 AEB 60 ,AED 180 1AEB 180 60 60 60 , DED AED AED n 60 (n 60),ABE △ AB E, CEF △ C EF ,1故答案为:(―n 30).25.解:如图2,连接BB ,由题意得EF 垂直平分BC ,故BB由翻折可得,BC BC ,△ BBC 为等边三角形,BCB 60 ,BCG 30 ,BGC 60 ;6.解:Q DEF 是 AEF 翻折而成,DEF AEF , A EDF ,Q ABC 是等腰直角三角形,EDF 45,由三角形外角性质得 CDF 45 BEDBED CDF ,DF 5故答案为:357.解:法一:4 设CD 1 , CF x ,贝U CA CB 2 ,DF FA 2 x ,在Rt CDF中, 由勾股定理得, 2 2 2 2 CF CD DF ,即 x解得x 32 1 (2 x), 圍②D45 , sin BED sin CDF CF 3当x 0 时,y —x 8 8,即B(0,8),3QCA CB ,ACB 90 ,AD BD , CD DBAD DB , DCB DCA 45 , B DH DM DN ,B DCA 45 当 y 0 时,x 6,即 A(6,0),所以 AB AB 10 ,即卩 B( 4, 0),因为点B 与B 关于AM 对称,所以BB 的中点为(0 4 . 设直线AM 的解析式为y 代入可得y lx 3.2法二:4直线y x 8与x 轴,3A(6,0) , B(0,8)/ 2 2 AB 6 8 10AB 10设 OM x ,贝U BM BM BO MO 8 x , BO AB AO 10 64 2 2 2 x 4(8 x)x 3M (0,3)又 A(6,0)1直线AM 的解析式为y — x 32故答案为y 1x 3 .2 J 0),即(2,4)在直线 AM 上,2kx b ,把(2,4) ; (6,0), y 轴分别交于点A 和B , 8.解:如图,作 DM AC 于M , DH BC 于 H , DN EB 于 N ,连接 DF .ADFB DFC , 在 DFB 和 DFC 中,B DCFDFB DFC ,DF DFDFB DFC ,CF BF ,Q EFC 的周长 EFCF EC (EF FB) EC EB EC CB , Q AB .10 ,CB AB gcos45币2 2 5 , (解法二 、:连接BC :,只要证明 BF CF ,即可推出 EFC 的周长 BC ) 故答案为、5 .(iii )如图2所示:Q BFM EFC ,9.解:(i )如图1所示:当BD BC 时,过B 点作GH / /AD ,则 BGE 90 . 当BC BD 时,AG DH ^DC 28 .由AE 3, AB 16,得 BE 13.由翻折的性质,得B E B E13 EG AG AE 83 5, BG BE 2 EG 2 132 52 12 ,BH GH BG 1612 4 ,DB/ 2 2 • BH DH 42 2 8 4 5 (ii)当 DB CD 时,贝U DB 16 (易知点 F 在BC 上且不与点C 、B 重合).点E 、C 在BB 的垂直平分线上,EC 垂直平分BB ,由折叠可知点F 与点C 重合,不符合题意,舍去.综上所述,DB 的长为16或4-、5 .故答案为:16或4、、5 .9 7,AB 3 tan ACB , AD -;4 825解得x 4 (不合题意舍去),X2 ?故AD 长为-或25.8 8 7 25 故答案为:7或25.8 8 11.解:QRt ABC 中, ACB 90 , AC 3 , BC 4 ,A D当CB CD 时,Q EB EB , CB CB , AC 5 ,Q DE //BCAD : AB AE:AC , 即 AD : AE AB : A C 4:5 ,设 AD x , 贝U AE A E 5 x ,EC 5 5x , A B 2x 4 ,4 4 在 Rt △ A BC 中,AC .(2x 4)2 3210•解:在 ABC 中, B 90 , BC 3, AB 4 , Q △ A EC 是直角三角形,①当A 落在边AB 上时, EAC 90 , BAC ACB②点A 在线段AB 的延长线上(•. (2 x 4)2 32 )2 (5 5、2;x)(|x)2,4AB 5 , 根据折叠的性质可知AC CD , A CDE , CE AB ,B D BC CD 4 3 1 ,Q B DF CDE ,A B DF ,Q B B ,ABC s △DB F ,B FBC B FB DAB 145,B F 4 5,12.解: 如图连接BE交AD于0,作AH BC于H . 在Rt ABC 中,Q AC 4 , AB 3,BC.32 425,QCD DB ,AD DC DB 5,2Q 1gBCgAH 1gABgAC ,2 AH2 125,Q AE AB ,点A在BE的垂直平分线上Q DE DB DC ,点D在BE的垂直平分线上,BCE是直角三角形, AD垂直平分线段BE ,Q 1gAD gBO 11gBDgAH,OB 12 5,BE 2OB13.解: (1) Q 四边形OABC 是矩形,点 A 、C 的坐标分别为(3,0) , (0,1),B(3,1),若直线经过点A(3,0)时,则b 4 525若直线经过点B(3,1)时,贝U b -2若直线经过点C(0,1)时,贝U b 13① 若直线与折线OAB 的交点在OA 上时,即1 b,-,如图1,2此时 E(2b,0)1 1 S OEgCO 2b 1 b ;2 2② 若直线与折线OAB 的交点在BA 上时,即-b 5,如图22 2M , OA 与CB 相交于点N ,则矩形OAB1G 与矩形OABC 的重叠部 分的面积即为四边形 DNEM 的面积.4此时 E(3,b -) , D(2b 2,1),S OCD S OAE S DBE 1 [—(2b 2 2) 1 3(b 自 (5 b)] 5b 2 b 2, b(1 b , 2) 2b b 2(3 b(2 5)在 Rt BCE 中,EC . BC 2 BE 2 2 2425宙(2)如图3,设04与CB 相交于点由题意知,DM //NE , DN / /ME ,四边形DNEM为平行四边形根据轴对称知,MED NED又Q MDE NED ,MED MDE,MD ME ,平行四边形DNEM为菱形.过点D作DH OA,垂足为H,设菱形DNEM的边长为a , 由题意知,D(2b 2,1), E(2b,0),DH 1 , HE2b (2 b 2) 2 ,HN HE NE2 a,则在Rt DHN 中, 由勾股定理知:a2 (2 a)2 12,5 a -4S四边形DNEM NE DH 5.4矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为—414..解:二次函数yx 2 3与x 轴的交点坐标为(.3 , 0)、C 、3 , 0),、.3 b 3 ,所以b 的取值范围为b 13或,3b. 3 . 4故答案为b 13或・.3 b 3 .4 15.解:(1)由 CBP 和 QAP 分别沿 PC 、PQ 折叠,得到 QFP 和 PCE ,则 AQP FQP , CPB CPE PA QEF PF , PB EP ,PE , QPA QPF , CPB CPE .AB AP PB FP PB EF EP PB 3PB .Q AB 4,4PB38AP3 .Q180 QPA QPF CPB CPE 2( QPA CPB),QPA CPB 90 .Q 四边形ABCD 是矩形,A B 90 ,CPB PCB 90 ,QPA PCB ,在QAP 和PBC 中,A BQPA PCB ,当直线y x b 与yx 2 3( 3 x 3)有一个公共点时, x 2 x 3 b 0 ,△ 1 4( 3 b) 0 ,解 13得b 上,所以当b 4 兰时, 4直线y x b 与此图象有两个公共点时, 当直线y x b 经过点0)与点C.3 , 0)之间时,直线 y x b 与此图象有两个公共点时,解得QAP s PBC ,QA PB AP BC,QATQA16(2)由题意,得PF EP 2或EP FP 2.当EP PF2时,QEP PB , PF AP ,PB AP 2 .Q AP PB4,2BP 6 ,BP 3 ,AP 1 .当PF EP2时,QEP PB , PF AP ,AP PB 2 .Q AP PB4,2AP 6 .AP 3 .(3)①若CE与点A在同一直线上,如图2,连接AC,点E在AC 上, 在AEP 和ABC 中,AEP B 90EAP BACAEP s ABC ,AP AC EP BC .设AP x,贝U EP BP 4 x ,故AP的长为1或3.在Rt ABC 中,Q AB 4 , BC 2 ,AC 2 5 ,x 2,54 x 2解得x 5 .5 .②若CE 与QF 在同一直线上,如图 3,Q AQP EQP , CPB CPE ,AP EP BP ,2AP 4,AP 2 .16.【解答】 解:(1)由折叠性质得: ANM ADM ,MAN DAM ,Q AN 平分 MAB, MAN NAB ,DAM MAN NAB ,Q 四边形ABCD 是矩形,DAB 90 ,DAM 30 ,\3 厂 DM ADg:an DAM 3 tan30 33 ;3 (2)延长MN 交AB 延长线于点Q ,如图1所示:Q 四边形ABCD 是矩形,AB//DC ,DMA MAQ ,Q ANM 90 ,ANQ 90 , 在Rt ANQ 中, 由勾股定理得: 2 x ,AQ 2AN 2 NQ 2 , (x 1)2 32 解得:x 4 , NQ 4, AQ 5,Q AB 4, AQ 5 ,44 1 4 124 ; SNAB - ■ S NAQ — ANgNQ 3 45 5 2 5 2 5 (3) 过点 A 作AH BF 于点H ,如图 2 所示 :Q 四边形ABCD 是矩形,AB//DC ,HBABFC , Q AHBBCF 90 , ABH sBFC , BH CFAH BCQ AH, AN 3, AB 4可以看到点N 是在以A 为圆心3为半径的圆上运动,所以当射线BN 与圆相切时,DF 最大,此时B 、N 、 M 三点共线,如图3所示:由折叠性质得:AD AH ,Q AD BC ,AH BC ,HBA BFC在 ABH 和 BFC 中, AHB BCF ,AH BC由折叠性质得: ANMDMA AMQ , ANMAQ AMQ ,MQ AQ ,设 NQ x ,贝U AQ MQADM , AD 3, MN MD 1 , 1 x ,ABH BFC(AAS),CF BH ,由勾股定理得:BH . AB AH 4 3 7 ,CF 7 ,17.【解答】解:(1)根据题意得:BP AB 6cm ,Q四边形ABCD是矩形,C 90 , AB//CD , CD AB 6cm,PC1CD 3cm,2根据勾股定理得:BC BP2PC2AD3、.3(cm);(2) 根据题意得:AM MP 3 32x y2 (3 3 y)2.3 2 3、勺y x18 2QP为CD的中点,y,在Rt MPD 中,PD2MD2MP2,.V其中,0x3 ;(3)①当点 N 在 AB 上, x--3 ,PC, 3 , 而 PN T 3 , NC -3.3 .PCN 为等腰三角形,只可能 NC NP ; 过N 点作NQ CD 于Q ,如图3所示:1 11 则 PQ CQ -(6 x) 3 —x , NP AN 6 CQ 3 x ,2 22 在 Rt NPQ 中, PQ 2 NQ 2 NP 2 .(3 2x)2 (3 3)2 (3 lx)2 .解得:x 9 . 2②当点M 在CD 上时,N 在AB 上;如图4所示:根据题意得:MN垂直平分AP ,OA OP ,Q AB//CD , OM ON ,四边形ANPM 是平行四边形,又 Q PM AM ,四边形ANPM 是菱形,折叠后重叠部分的面积 S PMN 的面积,设 MP y ,在 Rt ADM 中,AD 2 DM 2 AM 2 ,(x y)2 (3 .3)2 y 2 . 解得: y x 22X 27,S 1MPgBC 2 —丫少寸§ 3危2 81応2 ' 4xQ P 、B 、E 共线,BPC DPC ,Q AD//BC ,DPC PCB ,BPC PCB ,BP BC 6,在 Rt ABP 中,Q AB 2 AP 2 PB 2 ,2 2 2 4 (6 t) 6 ,t 6 2 5 或 6 25 (舍弃),PD 6 2.5 ,t (6 2、、5)s 时,B 、E 、P 共线.(2)如图2中,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为3 . 作 EQ BC 于 Q , EM DC 于 M .则 EQ 3, CE DC 4c 18.【解答】解:(1)如图1中,设PD t .则PA 6 t .團11易证四边形 EMCQ 是矩形,CM EQ 3 , M 90 ,EM 、EC 2 CM 2 . 42 32 .,7 ,Q DAC EDM , ADC M ,ADC s DME , AD DCDM EM ,AD 4T 7,AD 4 j ,(当AD 4: 7时,直线BC 上方还有一个点满足条件,见图2)如图3中,当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3 . 作EQ BC 于Q ,延长QE 交AD 于M .则EQ 3, CE DC 4在 Rt ECQ 中,QC DM . 42 32 ,7 ,由 DME s CDA , DM EMCD AD ,4 AD4 眉Ar>AD -7综上所述, 在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3 ,这样的m的取值范围心,m 4^7 .719.[解答】解:(1)根据折叠的性质得:CF AB m , DF DB, DFC DBA 90 , CE AE ,CED AED ,设CD x,贝U DF DB 2m x ,根据勾股定理得:CF2 DF 2 CD2,2 2 2即m (2 m x) x ,解得:x 5m ,45点D的坐标为:(-m, m);4(2)方法一:Q四边形OABC是矩形,OA 2m , OA//BC ,CDE AED ,CDE CED ,5CE CD -m ,45AE CE m ,43OE OA AE -m,4QOA//BC ,OEG s CDG ,OE OGCD CG3 m即5 m4解得:m 2,5C(0,2) , D(- , 2),作FH CD 于H ,如图1所示:则 FHC 90 DFC ,Q FCH FCD ,FCH s DCF ,45,FH— N CC CH 22-5-2 FH CH F (8把点C(0,2) D (2,解得:a 抛物线的解析式为: 2-5-2 16 "5 2), 25,F (8, (3)存在;点P 的坐标为: (8 如图2所示:Q CD CE CE CD EA ,Q 线段CD 的中点为 DFC MF 1 CD 1 EA ,点2 2 P 与点 8 16点p 的坐标为:(5, ?;d)代入y5 25x 2 ; 12 2 ax 156),或(?5 - EA , 90 , F 重合, 由抛物线的对称性得另一点P 的坐标为(冬 10 bx 1f); 在线段CD 上方的抛物线上存在点 P ,使 PM 25 a4 -b 2 2 2 64 8_ 16 a b c —25 5 5 c 2c 得: 理由如下: 1尹,点p 的坐标为:(? 詈),或團2图\。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三十讲 创新命题计算机技术与网络技术的迅猛发展,深刻改变了我们的学习方式、生活方式与思维方式.IT 技术、Cyber 空间、bemgdigital(数字化生存)等新概念层出不穷.与时俱进,科学的发展对数学的需求,不断提出了新问题,在解决新问题的过程中又产生了许多新方法.近年各地中考、各级竞赛出现了丰富的以考查创新意识、创造精神为目的的创新命题,归纳起来有以下类型:1.定义一种新运算; 2.定义一类新数;3.给定一定规则或要求,然后按上述规则要求解题; 4.注重跨学科命题.解创新命题时,需要在新的问题情境下,尽快适应新情况,充分运用已学过的数学知识方法去创造性地思考解决问题,对培养阅读理解能力、创新能力、提高学习兴趣有重要的促进作用.例题【例1】 一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是 . (北京市竞赛题) 思路点拨 自然数可分为奇数与偶数,从分析奇数与偶数中“智慧数”的特征入手. 注: 定义新数,即给出一种特殊的概念或满足某种特殊的关系,解这类问题的关键是准确全面理解“新数”的意义,通过推理解决问题.【例2】 在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ⋅,在乙组图形的(a)、(b)、(c)、(d)4个图中,表示“D A ⋅”和“C A ⋅”的是( ) .A .(a),(b)B .(b),(c)C . (c),(d)D .(b),(d) (江苏省竞赛题)思路点拨 从甲组图形中,两两比较A 、B 、C 、D 分别代表的哪种线段,哪种圆.【例3】 有依次排列的3个数:3,9,8.对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少?( “希望杯”邀请赛试题)思路点拨 用字母表示数,通过对一般性的考查,探求新增数之和的规律,以此作为解题的突破口. 【例4】 设[x]表示不超过x 的最大整数(如[3.7]=3,[-3.7]=-4)解下列了程: (1)[-l. 77x]=[-1.77]x ;(x 为非零自然数) (四川省选拔赛试题) (2)[3x+1]=2x -21(全国初中数学联赛题) 思路点拨 解与[x]相关的问题,关键是去掉符号“[ ]”,需灵活运用[x]的性质,并善于把估算、等式与不等式知识综合起来.注:解决实际问题及计算机的运算时,常常需要对一些数据进行取整运算,即用不超过它的最大整数取而代之.[x]有以下基本性质:(1)x=[x]+r ,0≤r<l ; (2) [x]≤x <[x]+1; (3)x -1<[x]≤x ; (4)[n+x]=n+[x]; (5)[x+y]≥[x]+[y]其中当n 为整数,当且仅当x 为整数时等号成立.【例5】 如图,沿着圆周放着一些数,如果有依次相连的4个数a ,b ,c ,d 满足不等式(a 一d)(b 一c)>0,那么就可以交换b ,c 的位置,这称为一次操作.(1)若圆周上依次放着数1,2,3,4,5,6,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0?请说明理由.(2)若圆周上从小到大按顺时针方向依次放着2003个正整数1,2…,2003,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0 ?请说明理由.(全国初中数学竞赛题)思路点拨 (1)从1~6中选取满足(a 一d)(b 一c)>0的四个数,按题设条件操作, 直至符合结论的要求;(2)略.注:解按规则要求操作类的问题或写出具体操作步骤,或指出按规则要求不能实现的理由.解题的关键是善于在变化中把握不变量,利用不变量解题,此外,还要能灵活运用整数的整除性、奇偶性、通过赋值数学化等知识与方法.【例6】 假设a#a+b 表示经过计算后a 的值变为a 的原值和b 的原值的和,又b#b.c 表示经过计算后b 的值变为b 的原值和c 的原值和乘飘假设计算开始时a=0,b=1,c=1,对a 、b 、c 同时进行以下计算:(1) a#a+b ;(2) b#b.c ;(3) c#a+b+c(即c 的值变为所得到的a 、b 的值与c 的原值的和).连续进行上述运算共三次,试判断a 、b 、c 三个数值之和是几位数?思路点拨 对a 、b 运算次数1 2 3 a 1 2 5 b 1 3 24 c3837经过三次运算后,a+b+c=5+24+37=66,它是一个两位数.学力训练1.现定义两种运算: ,对于任意两个整数a ,b , =a+b -1,=a b -1,那么 = .2.对于任意有理数a ,b ,c ,d ,我们规定bc ad dc b a -=,如果81122<--x ,那么x 的取值范围是 . 3.餐厅里有两种餐桌,方桌可坐4人,圆桌可坐9人,若就餐人数刚好坐满若干张方桌和圆桌,餐厅经理就称此数为“发财数”,在l ~100这100个数中,“发财数”有 个. (“五羊杯”竞赛题) 4.读一读:式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n ,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-50112n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果)。
(2003牟无锡市中考题)5.现规定一种运算: a ※b=ab+a -b ,其中a 、b 为有理数,则a ※b +(b -a) ※b 等于( ). A .a 2—6 B .b 2一b C .b 2 D .b 2一a (大原市中考题) 6.“△”表示一种运算符号,其意义是:a △b=2a-b ,如果x △(1△3)=2,那么x 等于( ). A .1 B .21 C .23D .2 7.设[a]表示不超过a 的最大整数,如[4.3]=4,[-4.3]=-5,则下列各式中正确的是( ). A .[a]=a B .[a]=1-a C .[a]=-a D .[a]> a 一1 ( “希望杯”邀请赛试题) 8.设记号“※”表示a ※b=2ba +,试写出两边均含有运算符号“※”和“+”且对任意3个数a ,b ,c 都成立的等式(不少于两个). (上海市春季高考题) 9.设[x] 表示为不超过x 的最大整数,解下列方程: (1) x +2[x]+4[x]+8[x]+16[x]+58=0; (2)[2x+1]=x -31(重庆市竞赛题)10.一个自然数a ,若将其数字重新排列可得到一个新的自然数b ,如果a 恰是b 的3倍,我们称a 是一个“希望数”.(1)请你举例说明“希望数”一定存在; (2)请你证明:如果a ,c 都是“希望数”,则ac 一定是729的倍数. (“希望杯”邀请赛试题)11.△表示一种运算,它的含义是x △y=))(1(11A y x xy +++,已知2△1=32)1)(12(1121=+++⨯A ,那么2001△2002= . 12.若规定a △b=22ba +,那么方程3△x =4的解x= . 13.对一切正整数n ,有f (n+1)=f (n)+n ,且f (1)=1,则f (n)= .14.将自然数N 接写在每一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N 整除,那么N 称为“魔术数”.在小于130的自然数中,魔术数的个数为 . (全国初中数学联赛) 15.若[x]=5,[y]=-3,[z]=-1,则[x 一y 一z]可以取值的个数是( ).A .3B .4C .5D .6 (2002年重庆市竞赛题) 16.用min (a ,b)表示a 、b 两数中的较小者,用max (a 、b)表示a 、b 两数中的较大者,例如min (3,5)= 3,max (3,5)= 5,min (3,3)=3,max (5,5)=5.设a 、b 、c 、d 是互不相等的自然数,min(a ,b)=p ,min (c ,d)=q ,max (p,q)=x ,max(a ,b)=m ,max(c ,d)=n ,min(m ,n)=y ,则( ).A .x>yB .x<yC .x =yD .x>y 和x<y 都有可能 (江苏省竞赛题) l7.设[x]表示不超过x 最大整数,又设x 、y 满足方程组[][]⎩⎨⎧+-=+=52332x y x y ,如果x 不是整数,那么x+y 是( ). (第33届美国数学竞赛题)A .一个整数B .在4与5之间C .在-4与4之间D .在15与6之间E .16.518.对任意有理数x 、y 定义运算如下:x △y =ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a =1,b=2,c=3时,l △3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d 使得对任意有理数x △d =x ,求a 、b 、c 、d 的值.19.有三堆石子的个数分别是19,8,9,现在进行如下的操作:每次从这三堆石子中的任意两堆中各取出1个石子,然后把这2个石子都加到另一堆中去,试问能否经过若干次这样的操作后,使得: (1)三堆石子的数分别是2,12,22; (2)三堆都是12.如能,请用最快的操作完成;不能,则说明理由.[注:若从第一、二堆各取1个到第三堆,可表示为 (19,8,9) →(18,7,11)等] (五城市联赛题)20.n 为自然数,若n+6│n+1996,则称n 为1996的吉祥数.比如:4+6│43+1996,4就是1996的一个吉祥数,试求1996年的所有吉祥数的和.21.下面给出表甲和表乙,若将表甲中相邻的两个小方格(指有公共边的两个小方格)中的数都加上或减去同一个数,称作一次操作,问经过若干次操作之后,能否将表甲变成表乙?若能,请写出一种操作过程;若不能,请说明理由.表甲 表乙 (北京市竞赛题)22.规定:正整数n 的“H 运算”是:①当n 为奇数时,H =3n+13;②当n 为偶数时,H= ⨯⨯⨯2121n ,(其中H 为奇数).如数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果是11,经过3次“H 运算”的结果是46.请解答:(1)数257经过257次“H 运算”得到的结果;(2)若“H 运算”②的结果总是常数a ,求a 的值. ( “希望杯”邀请赛试题)第三十讲创新命题参考答案。