导数计算公式(最新整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数公式
一、基本初等函数的导数公式
已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=;1
x
(5)y =f (x )=.
x 问题:上述函数的导数是什么?
提示:(1)∵===0,∴y ′= =0.Δy Δx f (x +Δx )-f (x )Δx
c -c Δx lim Δx →0
Δy
Δx 2)(x )′=1,(3)(x 2)′=2x ,(4)
′=-,(5)()′=.(1x )1x 2x 12x
函数(2)(3)(5)均可表示为y =x α(α∈Q *)的形式,其导数有何规律?
提示:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1,(5)()′=(x
)′=x
x 1
2
12
=
,∴(x α)′=αx α-1.
112
-12x
基本初等函数的导数公式
原函数
导函数f (x )=c (c 为常数)f ′(x )=0f (x )=xα(α∈Q*)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f(x)=ax
f′(x)=axln a
f(x)=ex f′(x)=ex f(x)=logax f′(x)=1xln a f(x)=ln x
f′(x)=
1x
二、导数运算法则
已知f (x )=x ,g (x )=.
1
x
问题1:f (x ),g (x )的导数分别是什么?
问题2:试求Q (x )=x +,H (x )=x -的导数.
1x 1
x 提示:∵Δy =(x +Δx )+-=Δx +,
1x +Δx (x +1
x )
-Δx x (x +Δx )
∴=1-,∴Q ′(x )===1-.Δy Δx 1x (x +Δx )
lim Δx →0Δy Δx lim Δx →0[
1-1x (x +Δx )]
1
x 2同理H ′(x )=1+.
1x
2问题3:Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系?
提示:Q (x )的导数等于f (x ),g (x )导数的和,H (x )的导数等于f (x ),g (x )导数的差.导数运算法则
1.[f (x )±g (x )]′=f ′(x )±g ′(x )
2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x )
3.
′=(g (x )≠0)
[f (x )
g (x )
]
f ′(x )
g (x )-f (x )g ′(x )[g (x )]2题型一 利用导数公式直接求导
[例1] 求下列函数的导数:(1)y =10x ;(2)y =lg x ;(3);
x y 2
1log =(4)y =;(5).
4
x 312cos 2sin 2
-⎪⎭⎫ ⎝
⎛
+=x x y [解] (1)y ′=(10x )′=10x ln 10;(2)y ′=(lg x )′=
;1
x ln 10
(3)y ′=
=-;(4)y ′=()′=;(5)∵y =2
1
x ln 12
1x ln 24x 3344x (
sin x 2+cos x 2)
-1=sin 2+2sin cos +cos 2-1=sin x ,∴y ′=(sin x )′=cos x .
x 2x 2x 2x
2
练习 求下列函数的导数:(1)y =
x ;(2)y =x ;(3)y =lg 5;(4)y =3lg ;(5)y =2cos 2-1.(1e )(110)
3x x 2解:(1)y ′=
′=x ln =-=-e -x ;(2)y ′=′=
[(1
e
)x ](1e )
1e 1e
x [(110)x
](1
10
)
x ln
==-10-x ln 10;(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′110-ln 1010
x =0;
(4)∵y =3lg =lg x ,∴y ′=(lg x )′=;(5)∵y =2cos 2-1=cos 3x 1x ln 10x
2
x ,
∴y ′=(cos x )′=-sin x .
题型二 利用导数的运算法则求函数的导数[例2] 求下列函数的导数:
(1)y =x 3·e x ;(2)y =x -sin cos ;(3)y =x 2+log 3x ;(4)y =.
x 2x 2e
x +1e x -1
[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -sin x ,∴y ′=x ′-(sin x )′=1-cos x .
12121
2(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +
.
1
x ln 3
(4)y ′==
=
(e x +1)′(e x -1)-(e x +1)(e x -1)′
(e x -1)
2e x (e x -1)-(e x +1)e x
(e x -1)
2
.
-2e x (e x -1)2
练习 求下列函数的导数:(1)y =;(2)y =x sin x +
;(3)y =
+;(4)y =lg x -.
cos x
x
x 1+
x 1-
x 1-x 1+
x
1x 2解:(1)y ′=′===-
(cos x x )
(cos x )′·x -cos x ·(x )′x 2-x ·sin x -cos x
x 2.
x sin x +cos x
x 2
(2)y ′=(x sin x )′+()′=sin x +x cos x +
.
x 12
x (3)∵y =+==-2,∴y ′=′=
(1+x )21-x (1-x )21-x 2+2x
1-x 41-x (
41-x -2)
=
.
-4(1-x )′(1-x )
2
4(1-x )
2