一氧化碳变换反应工艺流程
一氧化碳的变换
项目三 一氧化碳的变换
③催化剂要有一定的抗毒能力,也就是能耐气体中含有的少量有毒气体。 ④催化剂的机械性能要好,以免在使用中破碎或粉碎,增加变换阻力。 ⑤催化剂有一定的热稳定性,在一定温度范围内,不致因反应后温度升
高而损坏催化剂。 ⑥催化剂要防止发生副反应,主要是一氧化碳分解析碳和生成甲烷的反
综上所述,影响变换反应的因素有以下几种。 1.压力 如前所述,压力对变换反应的平衡几乎无影响,但加压变换有以下优点。 ①可加快反应速度和提高催化剂的生产能力,从而可采用较大空速提高
生产强度。
上一页 下一页 返回
项目三 一氧化碳的变换
②设备体积小,布置紧凑,投资较少。 ③湿变换气中水蒸气冷凝温度高,有利于热能的回收利用。 但提高压力会使系统冷凝液酸度增大,使析炭和生成甲烷等副反应易于
上一页 下一页 返回
项目三 一氧化碳的变换
反应温度按最佳温度进行可使催化剂用量最少,但要控制反应温度严格 按照最佳温度曲线进行在目前是不现实和难于达到的。目前在工业上是 通过特催化剂床层分段来达到使反应温度靠近最佳温度进行。但对于低 温变换过程,由于温升很小,催化剂不必分段。
3.汽气比 CO变换的汽气比一般是指H2O/CO比值或水蒸气/干原料气的比值(摩尔
一、一氧化碳Leabharlann 换的原理一氧化碳变换是在催化剂的作用下,且在一定的温度(高于催化剂的起始 活性温度)条件下,CO和水蒸气发生反应,将CO转化为H2和CO 2。其 化学反应式为:
这是一个可逆、放热、反应前后体积不变的化学反应。压力对反应平衡 没有影响,降低温度和增大水/气比(水/气比是指进口气体水蒸气的分子 数与总干气分子数之比)会有利于反应平衡向右移动。
其他副反应如下。
年产36万吨合成氨一氧化碳变换工段工艺设计
摘要本设计为年产36万吨合成氨一氧化碳变换工段工艺设计。
变换工序是合成氨中最重要的工序之一,在合成氨工艺的流程中起着非常重要的作用。
介绍氨的基本性质和用途,阐述了变换工段工艺发展概况,优化了合成变换的工艺流程。
确定本设计采用中变串低变的工艺流程,本次设计利用 ASPEN PLUS V.11对设计过程进行模拟,统筹多种因素合理安排合成工艺中的各种设备及其形式、参数,通过 ASPEN 软件中的 Simulation、Energy analysis 模块完成各部分及全过程的物料及能量衡算。
并对第一变换炉、第二变换炉、煤气换热器以及变换气换热器等主要设备进行选型计算,做出了合成氨变换工段中变串低变的工艺流程图和设备布置图。
所得结果基本满足设计要求,工艺流程可行。
关键词:合成氨一氧化碳 ASPEN PLUS V.11 中低温变换第一章绪论1.1氨的基本性质氨(Ammonia),一种氮和氢的化合物,NH是一种无色气体,有强烈的刺激性3气味,易溶于水,室温和大气压力1体积的水可以溶解700倍体积的氨,水溶液也称为氨水。
它被冷却加压成液体,液氨是一种制冷剂。
氨也是制造硝酸、肥料和炸药的重要原料。
氨对地球上的生命很重要,它是许多食物和肥料的重要成分,氨水也是所有药物的直接或间接成分。
氨有多种用途,但也有腐蚀性和其他危险性。
由于其广泛的用途,氨是世界上最大的无机化合物生产商之一,其中80% 以上用于制造化肥。
氨也是路易斯碱,因为它提供了孤对电子。
1.2 一氧化碳变换反应的意义与目的在合成氨的生产过程的原料中存在着有害的一氧化碳成分,因此就要除去一氧化碳,在这一过程中CO变换起着至关重要的作用。
反应所需的反应气来自天然气,但是天然气中含有一氧化碳成分。
在合成过程所需的原料,不能用一氧化碳,因为毒害作用,会使催化剂失效。
因此必须除去CO成分,这一目的需要在催化剂的促使下通过变换反应来完成。
使用催化剂的情况下,发生CO+H2O=CO2+H2反应。
CO变换工艺发展过程及趋势
CO变换工艺发展过程及趋势摘要本文介绍了CO变换工艺的发展过程和趋势,论述了变换催化剂、反应器、节能工艺和数字模型的发展,论述了变换工艺的发展方向,指出了需要研究和解决的问题。
关键词 CO变换;催化剂;合成气;节能前言一氧化碳变换(也称水煤气变换,water gas shift)是指合成气中的一氧化碳借助于催化剂的作用,在一定温度下与水蒸气反应,生成二氧化碳和氢气的过程。
通过变换反应既降低了合成气中的一氧化碳含量,又得到了更多氢气,调节了碳氢比,满足不同的生产需要(例如合成甲醇等)。
其工业应用已有90多年历史。
在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO的去除,同时在环境科学甚至在民用化学方面所起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。
本文将从CO 变换工艺的几个因素展开论述。
一、CO变换原理[1]一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。
变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,主要反应为:CO+H2O=CO2+H2ΔH= - 41.2kJ/mol在某种条件下会发生CO分解等其他副反应,分别如下:2CO=C+CO22CO+2H2=CH4+CO2CO+3H2=CH4+H2OCO2+4H2=CH4+2H2O1.CO变换反应平衡受多种反应条件影响:(1)温度影响由于CO变换反应是个放热可逆反应,因此低温有利于平衡向右移。
(2)水碳比影响提高水碳比,可增加一氧化碳的转化率,有利于平衡向右移。
(3)原料气含CO2影响 CO2为反应产物,应尽量降低原料气中CO2的含量,确保平衡不向左移动。
2.CO变换反应速率受多种反应条件影响:(1)压力影响加压可提高反应物分压,在3MPa以下,反应速率与压力平方成正比。
(2)水碳比影响在水碳比低于4的情况下,提高水碳比可使变换反应速率加快。
一氧化碳低温变换工艺及应用
一氧化碳低温变换工艺及应用陈劲松(湖北省化学研究所,湖北武汉430074)1前言众所周知,一氧化碳变换反应是放热反应,反应温度愈低愈利于反应进行,也就愈利于节汽、节能、提高设备能力。
因此降低催化剂的活性温度成为变换催化剂科技工作者的奋斗目标。
自1912年Fe—Cr变换催化剂问世以来,催化剂的性能日益完善,低温活性也愈来愈好,随之而来的变换工艺也取得了长足的进步,特别是Co—Mo耐硫变换催化剂的开发成功给变换工艺带来了一场革命,利用该催化剂我国80年代成功开发了部分低温变换工艺即中变串低变工艺,取得明显的经济效益。
在此基础上又继续开发了中变串双低变(中低低),中变串三低变(中低低低)工艺和全部使用Co—Mo系变换催化剂的全低变工艺,显然,从中变一中串低一中低低一中低低低一全低变,其节能效果也越来越好。
2 Co—Mo耐硫变换催化剂的性能钴钼系变换催化剂是当今耐硫变换催化剂的主体,萝:组分为1%~5%CoO,8%~15%MoO。
/7/A1。
0。
常见的工业产品有美国UCI公司的C25—2-02;丹麦Tops忙公司的SSK;德国BASF 公司的K8—1l等,我国也有近20家催化剂厂生产,国家牌号只有三个,即上海化工研究院的B301,湖北省化学研究所的B302Q、B303Q。
2.1催化剂的制备及硫化Co—Mo系耐硫宽温变换催化剂的制备已有很多专利文献报道,一般都用硝酸钴、钼酸铵的氨溶液浸渍活性氧化铝而成,这种类型的催化剂的组分大体相同,其活性高低、抗低硫性、抗毒性取决于表面活性中心结构,即与其制备工艺和硫化方法密切相关。
催化剂以盐类或氧化物形态提供,在使用时要用硫化氢或CS:进行活化即硫化。
将其转化为硫化物才具有活性,这一过程称为硫化,其主要反·】84·应为:CoO+H2S=CoS+H20 △Ho一一13.6 kJ/toolM003+2H2S十H2一MoS2+3Hz0 △H。
=一48.1 kJ/mol 我们对这类催化剂的硫化方法及硫化剂进行了研究,常用的硫化剂有:(1)二硫化碳硫化,向系统添an--硫化碳;(2)采用高硫煤或人造高硫煤造气以提高煤气中的硫化氢含量;(3)固体硫化剂(我所发明专利)硫化,固体硫化剂在煤气的作用下产生硫化氢。
一氧化碳变换技术交流
℃
• 但实际上完全按最适宜温度曲线操作是不可能的,因 为在反应开始时,最适宜温度最高(以中温变换为例, 要达到620℃以上),大大超过催化剂的耐热温度, 而且热量的来源是个问题。随着反应的进行,要不断 地、准确地按照最适宜温度的需要移出反应热是极为 困难的,见二 段CO变换的T-x图。 图中: CD即为最适宜温度曲线,AB为平衡曲线,EF线为第 一段绝热反应线,FG线表示段间间接换热降温过程。 GH线表示第二段绝热反应线。。 • 变换过程的温度应综合各个方面因素来确定,主要原 则是: • 1)、反应开始温度应高于催化剂活性温度10~20℃ 左右。另外必须要高于气体露点温度20℃以上(防止 原料气析水,一是使催化剂粉碎结块,二是腐蚀设 备)。
CS2+4H2 2H2S+CH4+246 kJ∕mol MoO3+2H2S+H2 MoS2+3H2O+48.1 kJ∕mol CoO+H2S CoS+H2O+13.4 kJ∕mol • 升温硫化一般采用循环硫化法,升温硫化阶段所需要的热 量主要靠电加热器提供。 • 3)国内外Co-Mo系耐硫变换催化剂的发展历程 • ⑴1969年德国BASF公司开发成功的K8-11耐硫变换催化 剂(镁铝尖晶石复合材料为载体),1978年首次实现工业 化的应用,用于重油部分氧化法制合成气流程和加压煤气 化制合成氨流程的CO变换。它的主要特点是以镁铝尖晶 石为载体,硫化后活性高,耐高水蒸汽分压,可在高压下使用, 抗毒物能力强,能再生,平均寿命 3~5年。
• 由于变换反应是放热反应,降低温度有利于平衡 向右移动,因此平衡常数随温度的降低而增大。 例如:250℃时为86.51,450℃时为:7.311。 • 在工业生产中,受催化剂装填量、设备投资的经 济效益等因素影响,反应不可能也没必要达到平 衡,只能尽可能接近平衡。 • 实际生产的流程组合中,一般利用高温段之后再 进行低温变换,就是为了提高反应平衡常数,从 而提高变换率,降低变换气CO含量。
一氧化碳变换工艺流程及设备
脱硫剂
ZnO+H2S = ZnS+H2O
主要活性物质:ZnO 载体:Al2O3 促进剂:铜、钼、锰的氧化物生
不可再生,送往锌冶炼厂回收
职业教育应用化工技术专业教学资源库《甲醇生产技术》课程
模块三 一氧化碳变换
二、工艺流程及设备
徐州工业职业技术学院
第二节 一氧化碳变换工艺流程及设备
一、一氧化碳变换工艺流程
二、一氧化碳变换主要设备
1.变换炉
2.热交换器
3.变换气水冷器
4.余热回收器
三、氧化锌法
原理
转化吸收式脱硫——有机硫化物在氧化锌催化作用下与氢 发生转化反应,转化为硫化氢,然后被氧化锌吸收
实验十二一氧化碳中温—低温串联变换反应实验
实验十二 一氧化碳中温—低温串联变换反应实验一.实验目的一氧化碳变换反应是石油化工与合成氨生产中的重要过程,现代大型合成氨装置中一氧化碳的转化与净化采用中温—低温串联变换加甲烷化工艺。
本实验模拟中温—低温串联变换反应过程,不仅具有工艺类专业实验的典型特点,而且体现了本专业生产领域内的先进技术。
通过用直流流动法同时测定铜基与铁基催化剂的相对活性,并通过讨论与思考,要求达到:1.复习多相催化反应有关知识,初步接触工艺设计思想。
2.掌握气固相催化反应动力学实验研究方法及催化剂活性的评比方法。
3.获得两种催化剂上变换反应的速率常数k T 与活化能E 。
二.实验原理一氧化碳变换反应为CO+H 2O==CO 2+H 2反应必须在催化剂存在的条件下进行。
中温变换采用铁基催化剂,反应温度为350~500℃,低温变换采用铜基催化剂,反应温度为220~320℃。
设反应前气体混合物中各个组分干基摩尔分率为d CO y ,0、d CO y ,02、d H y ,02、d N y ,02;初始汽化比为R 0;反应后气体混合物中各组分干基摩尔分率为d CO y ,、d CO y ,2、d H y ,2、dN y ,2,一氧化碳的变换率为 )1()1(,0,0,,,0,,0,222d CO d CO d CO d CO d CO d CO d CO d CO y y y y y y y y --=+-=α (1)根据研究,铁基催化剂上一氧化碳中温变换反应本征动力学方程可表示为: )1(2222125.01OH CO P H CO CO CO T CO CO p p K p p p p k dW dN dW dN r -==-=-)(,)()1(15.0121h g mol p f k p p k i T CO CO T ∙=-=-β (2)铜基催化剂上一氧化碳低温变换反应本征动力学方程可表示为: )(,)()1(22.05.02.0222222hg mol p f k p p p p k r i T H CO O H CO T ∙=-=--β (3) 式中:r i ——反应速率,)(h g m ol ∙;i T k ——反应速率常数,)(hg m ol ∙; CO N 、2CO N ——一氧化碳、二氧化碳的摩尔流量,)(h g m ol ∙; W ——催化剂量(g );p i ——各组分的分压;K p ——以分压表示的平衡常数 )]218.2100604.1106218.0ln 3026.21102.02185(3026.2exp[273-⨯-⨯+-⨯=--T T T T K P (4) T ——反应温度,(K )。
一氧化碳的变换.
11
(二)、氧化锌法
❖氧化锌脱硫性能的好坏用硫容 量表示。所谓硫容就是每单位质 量氧化锌能脱除S的量。一些数 据如图所示。一些定性结论如下: 温度上升,硫容增加;空速增加, 硫容降低;汽气比上升,硫容下 降。
2、氧化锌脱硫剂:
100
ya,ya’ —分别为原料及变换气中一氧化碳的摩尔分率(干 基)
2
二、变换催化剂
❖ 1、中(高)变催化剂:
▪
以三氧化二铁为活性中心
▪ 铬、铜、锌、钴、钾等氧化物,可提高催化剂的活性
▪ 镁、铝等氧化物,可提高催化剂的耐热和耐毒性能。
❖ 目前常见的中(高)变换催化剂有:
▪ 铁铬系催化剂:以FeO3加Cr2O3为助催化剂。 ▪ 钴钼系催化剂:针对重油含S量高的耐高S变换催化剂。
K
0 p
pH2O
/
pH2S
10
❖ 一些条件下平衡S含量的计算值如下:
水蒸气含量/%
0.50 10 20
平衡硫含量/10-6 200℃ 0.000025 0.00055 0.005
300℃ 0.0008 0.018 0.16
400℃ 0.009 0.20 1.80
❖ 实际上天然气等原料中水蒸气含量很低,所以即使温度在400℃也可满足S含量 <0.1× 10-6的要求。 200℃含水20%时,S<0.005× 10-6,因此氧化锌也用在变 换工序作变换催化剂的保护剂。
提高其稳定性。 ❖ (2)低变催化剂的还原: ❖ CuO+H2=Cu+H2O △H0298=-86.7kJ/mol ❖ CuO+CO=Cu+CO2 △H0298=-127.7kJ/mol
一氧化碳变换反应工艺流程
一氧化碳变换反响工艺流程一氧化碳变换流程有很多种,包含常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高 -低变串连变换工艺等等。
一氧化碳变换工艺流程的设计和选择,第一应依照原料气中的一氧化碳含量高低来加以确立。
一氧化碳含量很高,宜采纳中温变换工艺,这是因为中变催化剂操作温度范围较宽,使用寿命长并且价廉易得。
当一氧化碳含量大于 15%时,应试虑将变换炉分为二段或多段,以使操作温度靠近最正确温度。
其次是依照进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。
最后还要将一氧化碳变换和剩余一氧化碳的脱除方法联合考虑,若后工序要求剩余一氧化碳含量低,则需采纳中变串低变的工艺。
一、高变串低变工艺当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为 10%~13%(体积分数),只要采纳一段高变和一段低变的串连流程,就能将 CO含量降低至0.3%,图 2-1是该流程表示图。
图 2-1一氧化碳高变 -低变工艺流程图1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转变工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至 370℃左右进入高变炉 2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为 420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器 4 回收热量后进入低变炉 5。
低变炉绝热温升为 15~20℃,此时出低变炉的低变气中一氧化碳含量在 0.3%~0.5%。
为了提升传热成效,在饱和器6中喷入少许软水,使低变气达到饱和状态,提升在贫液再沸器7中的传热系数。
二、多段中变工艺以煤为原料的中小型合成氨厂制得的半水煤气中含有许多的一氧化碳气体,需采纳多段中变流程。
并且因为来自脱硫系统的半水煤气温度较低,水蒸气含量较少。
气体在进入中变炉以前设有原料气预热及增湿装置。
此外,因为中温变换的反响放热多,应充足考虑反响热的转移和余热回收利用等问题。
一氧化碳变换
一氧化碳变换概述一氧化碳的变换是指煤气借助于催化剂的作用,在一定温度下,与水蒸气反应,一氧化碳生成二氧化碳和氢气的过程。
通过变换反应既除去了煤气中的一氧化碳,又得到了制取甲醇的有效气体氢气。
因此,变化工段既是转化工序,又是净化工序。
前工段来的煤气中,一氧化碳含量高,通过变换反应以后,要求达到工艺气体中的CO/H2约为2.05~2.1的关系,以满足甲醇合成的要求。
一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。
60年代以前,变换催化剂普遍采用Fe-Gr催化剂,使用温度范围为350~550℃,60年代以后,开发了钴钼加氢转化催化剂和氧化锌脱硫剂,这种催化剂的操作温度为200~280℃,为了区别这两种操作温度不同的变换过程,习惯上将前者称为“中温变换”,后者称为“低温变换”。
按照回收热量的方法不同,变换又可分为激冷流程和废锅流程,冷激流程中,冷激后的粗原料气已被水蒸气饱和,在未经冷却和脱硫情况下直接进行变换,因此,两种流程按照工艺条件的不同选用不同的催化剂,激冷流程采用Co-Mo耐硫变换催化剂,废锅流程采用Fe-Cr变换催化剂。
第一节变换反应原理变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,除了主要反应CO+H2O=CO2+H2以外,在某种条件下会发生CO分解等其他副反应,分别如下:2CO=C+CO22CO+2H2=CH4+CO2CO+3H2=CH4+H2OCO2+4H2=CH4+2H2O这些副反应都消耗了原料气中的有效气体,生成有害的游离碳及无用的甲烷,避免副反应的最好方法就是使用选择性好的变换催化剂。
一、变换反应的热效应一氧化碳变换反应是一个放热反应,CO+H2O=CO2+H2+41kJ/gmol反应的热效应视H2O的状态而定,若为液态水,则是微吸热反应,若是水蒸气,则为放热反应。
变换反应的反应热随温度的升高而降低,具体反应热列表如下:表1 CO+H2O=CO2+H2的反应热温度℃25 200 250 300 350 400 450 500 550 △HkJ/gmol 41 39.8 39.5 39 38.5 38 37.6 37 36.6压力对变换反应的反应热影响较小,一般不做考虑。
一氧化碳变换工艺流程
一氧化碳变换工艺流程温馨提示:该文档是小主精心编写而成的,如果您对该文档有需求,可以对它进行下载,希望它能够帮助您解决您的实际问题。
文档下载后可以对它进行修改,根据您的实际需要进行调整即可。
另外,本小店还为大家提供各种类型的实用资料,比如工作总结、文案摘抄、教育随笔、日记赏析、经典美文、话题作文等等。
如果您想了解更多不同的资料格式和写法,敬请关注后续更新。
Tips: This document is carefully written by the small master,if you have the requirements for the document, you can download it, I hope it can help you solve your practical problems. After downloading the document, it can be modified and adjustedaccording to your actual needs.In addition, the store also provides you with a variety of types of practical information, such as work summary, copy excerpts, education essays, diary appreciation, classic articles, topic composition and so on. If you want to know more about the different data formats and writing methods, please pay attentionto the following updates.一氧化碳是一种具有毒性的有害气体,它对人类健康和环境造成了严重的危害。
一氧化碳变换
中温变换工艺设计方案目录前言 (2)1、背景 (2)2、分类 (2)3、工艺方法的选择 (2)反应原理 (3)中温变换催化剂 (4)工艺流程 (6)工艺条件 (7)设计体会与收获 (8)参考文献 (9)前言氨是一种重要的化工产品,主要用于化学肥料的生产。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
合成氨的生产主要分为:原料气的制取;原料气的净化与合成。
粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其转化为易于清除的CO2和氨合成所需要的H2。
因此,CO变换既是原料气的净化过程,又是原料气造气的继续。
最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。
1、背景变换是合成氨生产中的重要工序,同时也是一个耗能重点工序,而外加蒸汽量的大小,是衡量变换工段能耗的主要标志。
因此,尽量减少其用量对其过程的节能降耗具有重要意义。
从70年代以来,我国在变换工艺的节能降耗方面,进行了大量的科研开发和技改工作,先后开发了中变、中变串低变、全低变等变换工艺,使蒸汽消耗量从传统的中变消耗1 t/tNH 以上,降低到200 kg/tNH,从而形成一种能耗低、稳定可靠、周期长的变换工艺。
2、分类一氧化碳变换的工艺流程包括中变-低变串联流程、多段中变流程、全低变流程、中低低流程等。
3、工艺方法的选择变换工艺流程的设计,首先应依据原料气中的一氧化碳含量高低来加以确定。
以煤为原料气的中小型氨厂制得的半水煤气中含有较高的一氧化碳,所以需采用多段中变流程。
中变催化剂操作温度范围较宽,而且价廉易得,使用寿命长。
因此,在一氧化碳转换工艺设计中,我组选用中温变换工艺。
反应原理变换反应可用下式表示:此外,一氧化碳与氢之间还可发生下列反应(1-2) O H C H CO 22+⇔+(1-3)但是,由于变换所用催化剂对反应式(1-1)具有良好的选择性,从而抑制了其他副反应的发生。
水煤气的变换工艺
(3)合成氨变换CO的确定? 液氮洗冷量回收的一部分,1%的CO含量可以维持液氮 洗的冷量平衡,少加液氮提供冷量。 作为液氮洗的处理气体,CO在整个流程中可以控制即 通过控制变换工艺使CO含量降低至0.4%,可以有效的减 少液氮洗去燃料气管网的CO气量! 哪一种更经济! 液氮洗冷量: ①高压氮气产生J-T效应而获得了液氮洗工序所需的绝大 部分冷量。 ②从空分装置引入的液氮向液氮洗工序提供补充冷量。 ③燃料气和回收氢气的冷量回收。
3.水汽比 (1)定义:是指水蒸汽与水煤气中干基 工艺气的体积比。 (2)计算方法:水蒸汽/工艺气 或 在饱和状态下:P水/(P总-P水); (3) 作用:水汽比增加能够提高变换反 应的平衡变换率,加快反应速度。 从反应方程式来看,提高水气比即增 加水的含量有利于CO 的转化。 同时,一定的水气比可以带走大量的反 应热,起到降低床层温度的作用。
甲醇变换1.2.3分离器 不凝气去硫回收 高闪气来至气化 来至洗氨塔
氨变换1.2分离器 变换冷凝液槽 冷凝液气提塔
高温冷凝液去气化
0.3Mpa蒸汽
冷凝液去气化
高压冷凝液泵
低压冷凝液泵
高温冷凝液:去冷凝液槽经加压后去水洗 塔; 低温冷凝液:去蒸发热水塔:
公用工程在变换: 锅炉给水:脱盐水经加热后进入除氧槽,使水中 的O2<15ug/l,然后由锅炉给水泵送到各废锅。 脱盐水经换热器加热后由30℃升高到90℃左右。 脱盐水指标: PH=8.8-9.2; Fe:《50ug/L; 电导率:《20ug/cm; Cu:《10ug/L; SiO2: 《20ug/L; O2: 《15ug/L; 硬度: 《0.2mmol/cm;
降温后的变换气与甲醇来的驰放气进入低温变换 炉,炉内装有两段耐硫变换触媒,出口变换气 CO浓度为1.0%(干);出低温变换炉的变换气 276℃经低变废热锅炉降温至205℃,同时生产 1.2MPaG蒸汽,然后进入第一水分离器分离掉冷 凝液;分离掉冷凝液后的变换气进入低压废热锅 炉降温,同时生产0.4MPaG饱和蒸汽,然后进入 第二水分离器分离掉冷凝液后再依次经并列的低 压锅炉给水加热器Ⅰ脱盐水加热器Ⅰ、变换气水 冷器Ⅰ温度降至40℃,然后进入洗氨塔Ⅰ的底部 洗涤氨后送至低温甲醇洗。
变换-净化工艺流
(2)
上述硫化过程中的H2S是靠粗煤气提供的,由于粗煤气中H2S含量很低,所以为了保证足够的
H2S含量,以保证硫化过程顺利进行,我厂采用向系统内连续添加CS2的方法,使其发生氢解反应生
成H2S:
CS2+4H2=2H2S+CH4
2.2 操作参数
出变换工序变换气CO 含量 21%
变换炉入口温度
265-280℃
Qcs-03型钴钼耐硫变换催化剂。由于它采用了新的组分和制造工艺,区别于原有的钴钼耐硫 变换触媒体系,其变换活性高,特别是低温变换活性和在低H2S浓度下的活性尤为明显,对高空 速,低水气比的适应能力和稳定性优于K8-11,可用于硫化物含量≥100ppm的工艺气,从而它既 可作为中温耐硫变换触媒使用,也可作为低温变换触媒使用。
HV 2005
E2005
HV
FIQ 2006
TI 2012
2006
LV 2004
HV 2008
HV 2007
LV
V2002
2006
TI 2013
V2003
LV
LV
2005
FIQ
2007
2007
P2012 M
V2009
地沟 冷凝液去气化
冷凝液来自低温甲醇洗 锅炉给水去气化 高压闪蒸气来自气化
V2006
P2001A/B P2002A/B P2003A/B
P2004A/B
P2005A/B
P2006A/B
P2007A/B P2008A/B
P2009A/B
P2010A/B
P20011A/B
冷凝液泵Ⅰ 冷凝液泵Ⅱ 低压锅炉给水泵Ⅰ 低压锅炉给水泵Ⅱ 中压锅炉给水泵Ⅰ 中压锅炉给水泵Ⅱ 密封水泵 脱氧加药泵 低压锅炉加药泵 高压锅炉加药泵 甲醇合成锅炉加药泵
CO的变换
合成氨原料气的净化1.绪论氨是一种重要的化工产品,主要用于化学肥料的生产。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
合成氨的生产主要分为:原料气的制取;原料气的净化与合成。
粗原料气中常含有大量的C,由于CO是合成氨催化剂的毒物,所以必须进行净化处理,通常,先经过CO变换反应,使其转化为易于清除的CO2和氨合成所需要的H2。
因此,CO变换既是原料气的净化过程,又是原料气造气的继续。
最后,少量的CO用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。
变换工段是指CO与水蒸气反应生成二氧化碳和氢气的过程。
在合成氨工艺流程中起着非常重要的作用。
目前,变换工段主要采用中变串低变的工艺流程,这是从80年代中期发展起来的。
所谓中变串低变流程,就是在B107等Fe-Cr系催化剂之后串入Co-Mo系宽温变换催化剂。
在中变串低变流程中,由于宽变催化剂的串入,操作条件发生了较大的变化。
一方面入炉的蒸汽比有了较大幅度的降低;另一方面变换气中的CO含量也大幅度降低。
由于中变后串了宽变催化剂,使操作系统的操作弹性大大增加,使变换系统便于操作,也大幅度降低了能耗。
2.一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。
合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。
变换反应如下:CO+H2O→H2+CO2 =-41.2kJ/mol由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。
第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。
因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件3.Co变换的基本原理一氧化碳变换反应式为:CO+H2O=CO2+H2+Q (1-1)CO+H2 = C+H2O (1-2)其中反应(1)是主反应,反应(2)是副反应,为了控制反应向生成目的产物的方向进行,工业上采用对式反应(1—1)具有良好选择性催化剂,进而抑制其它副反应的发生。
甲醇原料气中一氧化碳的变换工艺分析
合成氨厂CO变换工艺设计说明书
68t氨/d 合成氨厂CO变换工艺设计摘要氨是一种重要的化工产品,主要用于化学肥料的生产。
合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。
合成氨的生产主要分为:原料气的制取;原料气的净化与氨合成。
一氧化碳变换是指一氧化碳与水蒸气反应生产二氧化碳和氢气的过程。
在合成氨工艺流程中起着非常重要的作用。
在合成氨生产中,原料气中的一氧化碳都来源于含碳氢物质,如煤、天然气、油等。
半水煤气则是以煤为原料制得的含有氢气和一氧化碳等多种气体的混合物。
一氧化碳会使催化剂中毒,而合成氨工艺中所需的氢气则是一氧化碳和水反应制得。
因此在氨合成过程中必须进行一氧化碳变换。
这样不但去除了一氧化碳同时产生了合成氨的原料气氢气。
本次设计的主要任务是设计完成合成氨过程中净化车间一氧化碳多段变换的工艺流程。
本次设计采用中变串低变的工艺流程,在本流程中使用宽变催化剂可使操作条件有较大变化。
它使入炉煤气的蒸汽比有较大幅度的降低,而且使一氧化碳含量降低。
正是由于选用宽温催化剂,使得反应条件得以大大改进。
选用该流程的目的是为了让原料气净化程度高,流程简单,操作方便,稳定性好,催化剂使用时间长。
设计说明书包括三部分:工艺设计说明、变换工段的工艺计算及主要设备的工艺计算。
另外,附有四张设计图纸:一张管道及仪表流程图,一张平面布置图,一张物料流程图及一张设备一览表。
关键词:半水煤气、CO变换、催化剂The CO Transform Process DesignOf 68t ammonia/d Synthetic Ammonia plantAbstractAmmonia is an important chemical product, mainly for the production of chemical fertilizers. The production of synthetic ammonia has developed into a mature chemical production process through years of development. It is mainly divided into: the preparation of the raw gas; the purification of the raw gas and a the synthesis of mmonia.The transformation of carbon monoxide refers to the production of carbon monoxide and hydrogen response with carbon dioxide and water. It plays a very important role in the synthetic ammonia process. In the production of synthetic ammonia the carbon monoxide is containing comes from hydrocarbon, such as coal, oil and gas, etc. Semi-water gas is made for the raw coal and a mixture of gases including hydrogen and carbon monoxide. Carbon monoxide will make catalyst poisoned in the process , but hydrogen is made for the reaction of water and carbon monoxide. Therefore in the ammonia synthetic process must have the transformation of carbon monoxide. In addition to this , it also products the hydrogen gas which is the materal gas of synthetic ammonia. The main task of the design is to complete the transformation of carbon monoxide which is a part of the purification workshop of ammonia synthetic process . This design use the process of low temperature combined middle temperature, and the use of the wide temperature shift catalyst can make a significant changes in the operating conditions. It makes the ratio of steam into the furnace gas reduced significantly, and reduce the level of carbon monoxide. The reaction conditions can be improved greatly because of the selection of the wide temperature catalyst. The choice of using the process is to let the raw gas have a high degree purification, have a simple process , easy to operate, stability is good, catalyst have a long use time.The design specification includes three components: the design specifications of the process, the process calculation of the transform section and the process calculation ofmain equipment. In addition, four design drawings is accompanied: a piping and instrumentation diagrams, a layout plan, a material flow chart and an equipment list. Keywords: Semi-water gas, CO shift, catalyst目录摘要 (I)Abstract (II)前言 (1)第一章一氧化碳变换的工艺说明 (2)1.1设计依据 (2)1.2原料动力学消耗定额和消耗量 (2)1.3一氧化碳变换原理 (2)1.4一氧化碳变换催化剂 (3)1.4.1 铁-铬系一氧化碳中温变换催化剂 (3)1.4.2 一氧化碳宽温耐硫变换催化剂 (4)1.5工艺流程说明 (5)1.6设备选型及布置 (8)1.6.1设备选型的基本要求 (8)1.6.2 设备布置说明 (8)1.7三废治理说明 (9)1.8本工段各种工艺操作指标 (10)第二章一氧化碳变换工艺计算 (11)2.1设计条件 (11)2.2中温变换炉物料及热量计算 (12)2.2.1干变换气量及变换率的计算 (12)2.2.2 总蒸汽比(汽/气)的计算 (13)2.2.3中变炉一段催化剂层物料及热量衡算 (14)2.2.4 中变炉二段催化剂层物料及热量计算 (20)2.3低温变换炉物料及热量计算 (24)2.3.1 物料计算 (24)2.3.2 热量衡算 (25)2.3.3平衡曲线、最适宜温度曲线及操作线计算 (26)2.4饱和热水塔出口温度的估算 (27)2.4.1 水加热器出口变换气温度计算 (27)2.4.2 热水塔出口排水温度 (27)2.4.3饱和塔出口半水煤气温度 (28)2.5中间换热器物料及热量计算 (28)2.5.1蒸汽过热段 (28)2.5.2 半水煤气换热器 (30)2.6主热交换器物料及热量横算 (31)2.6.1 已知条件 (31)2.6.2 进设备半水煤气温度计算 (32)2.6.3 出热交换器的变换气温度计算 (33)2.7调温水加热器中变换气放出的热量计算 (34)2.8水加热器中低变气放出热量计算 (35)2.9饱和热水塔物料及热量计算 (36)2.9.1饱和塔物料及热量计算 (36)2.9.2热水塔物料及热量计算 (38)2.9.3 进饱和塔水温核算 (41)第三章典型设备计算 (41)3.1中温变换炉计算 (42)3.1.1已知条件 (42)3.1.2催化剂用量计算 (43)3.1.3催化剂床层直径的确定 (44)3.2低温变换炉计算 (46)3.2.1 已知条件 (46)3.2.2 催化剂用量计算 (47)3.2.3 催化剂床层直径的确定 (47)3.3饱和热水塔计算 (48)3.3.1 饱和塔计算 (48)3.3.2 热水塔计算 (53)参考文献 (59)附录1 (60)附录2 (61)附录3 (62)附录4 (63)致谢 (64)前言合成氨是化学工业的重要组成部分,在国民经济中有相当重要的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一氧化碳变换反应工艺流程
一氧化碳变换流程有许多种,包括常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高-低变串联变换工艺等等。
一氧化碳变换工艺流程的设计和选择,首先应依据原料气中的一氧化碳含量高低来加以确定。
一氧化碳含量很高,宜采用中温变换工艺,这是由于中变催化剂操作温度范围较宽,使用寿命长而且价廉易得。
当一氧化碳含量大于15%时,应考虑将变换炉分为二段或多段,以使操作温度接近最佳温度。
其次是依据进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。
最后还要将一氧化碳变换和残余一氧化碳的脱除方法结合考虑,若后工序要求残余一氧化碳含量低,则需采用中变串低变的工艺。
一、高变串低变工艺
当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为10%~13%(体积分数),只需采用一段高变和一段低变的串联流程,就能将CO含量降低至0.3%,图2-1是该流程示意图。
图2-1一氧化碳高变-低变工艺流程图
1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转化工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至370℃左右进入高变炉2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器4回收热量后进入低变炉5。
低变炉绝热温升为15~20℃,此时出低变炉的低变气
中一氧化碳含量在0.3%~0.5%。
为了提高传热效果,在饱和器6中喷入少量软水,使低变气达到饱和状态,提高在贫液再沸器7中的传热系数。
二、多段中变工艺
以煤为原料的中小型合成氨厂制得的半水煤气中含有较多的一氧化碳气体,需采用多段中变流程。
而且由于来自脱硫系统的半水煤气温度较低,水蒸气含量较少。
气体在进入中变炉之前设有原料气预热及增湿装置。
另外,由于中温变换的反应放热多,应充分考虑反应热的转移和余热回收利用等问题。
图2-2为目前中小型合成氨厂应用较多的多段中温变换工艺。
半水煤气首先进入饱和热水塔1,在饱和塔内气体与塔顶喷淋下来的
130~140℃的热水逆流接触,使半水煤气提温增湿。
出饱和塔的气体进入气水分离器2分离夹带的液滴,并与电炉5来的300~350℃的过热蒸汽混合,使半水煤气中的汽气比达到工艺条件的要求,然后进入主热交换器3和中间换热器4,使气体温度升至380℃进入变换炉,经第一段催化床层反应后气体温度升至
480~500℃,经蒸汽过热器、中间换热器与蒸汽和半水煤气换热降温后进入第二段催化床层反应。
反应后的高温气体用冷凝水冷激降温后,进入第三段催化剂床层反应。
气体离开变换炉的温度为400℃左右,变换气依次经过主热交换器、第一水加热器、热水塔、第二热水塔、第二水加热器回收热量,再经变换气冷却器9降至常温后
图2-2 一氧化碳多段中温变换工艺流程
1-饱和热水塔2-气水分离器3-主热交换器4-中间换热器5-电炉6-中变炉7-水加热器
8-第二热水塔9-变换气冷却器10-热水泵11-热水循环泵12-冷凝水泵送下一工序。
三、中低低工艺
上述全低变工艺相比于传统中变工艺和低变工艺具有能抗硫、能耗低等优势,但也暴露出一段钴钼耐硫催化剂怕氧、怕油、易反硫化以及要求气体中硫化氢含量高,容易对设备造成腐蚀等弊病,难以维持长周期稳定生产。
鉴于此提出了“中-低-低”变换工艺,如图2-2所示,变换炉分为三段,各段间均采用气体与热水间接换热降温,一段采用铁-铬系中变催化剂,二、三段用钴-钼耐硫系催化剂。
为了加强热量回收,采用以饱和热水塔为中心,高效段间水加热器相结合的热量回收系统。
图2-3 中低低变换工艺流程
1-饱和热水塔2-水加热器3-气水分离器4-热交换器5-调温水加热器Ⅰ
6-电炉7-变换炉8-调温水加热器Ⅱ 9-冷却塔10-热水泵
四、全低变工艺
近20年来,在变换催化剂和变换技术的工业实践中发现Fe-Cr系中变催化剂的一些问题,最普遍的问题是相当多的中小型化肥厂每年大修时都对中变催化剂进行1/3~1/2不等的更换处理,不仅劳动强度大,而且增加了购买催化剂的费用。
经调查研究发现,无论是中串低工艺还是中低低工艺,Fe-Cr系催化剂都会表现出以下突出的缺点:①活性温度高,导致热损大,蒸汽消耗高,阻力相对也大;②相对于耐硫低变催化剂而言,易粉化,易被硫等毒物中毒,使用寿命
短;③在相同的生产能力前提下,使用Fe-Cr催化剂需要较大型的设备,因此一次性投资和维修费用均高于全低变工艺。
全低变工艺是针对传统中变、低变工艺存在的缺点,使用宽温区的钴钼耐硫低温变换催化剂取代传统的铁铬系耐硫变换催化剂,并且由于催化剂的起始活性温度低,使全低变工艺变换炉的操作温度大大低于传统中变炉的操作温度,使变换系统处于较低的温度范围内操作,入炉的汽气比大大降低,蒸汽消耗量大幅度减少。
但也由于入炉原料气的温度低,气体中的油污、杂质等直接进入催化剂床层造成催化剂污染中毒,活性下降。
全低变工艺流程如图2-4所示。
全低变工艺是将原中温变换系统热点温度降低100℃以上,从而非常有利于一氧化碳变换反应的平衡,实际吨氨蒸汽消耗量仅为250 kg左右,且热回收设备面积小。
该工艺带来的效益是显而易见的,具体优点如下:①原中变催化剂用量减少1/2以上,降低了床层阻力,提高了变换炉的设备能力。
②床层温度下降100~200℃,气体体积缩小25%,降低了系统阻力,减少了压缩机功率消耗。
③换热面积减少50%左右。
④从根本上解决了中变催化剂的粉化问题,改善了催化剂的装卸劳动卫生条件。
⑤提高了有机硫的转化能力,在相同操作条件和工况下全低变工艺比中串低或中低低工艺有机硫转化率提高5%。
⑥操作容易,启动快,增加了有效运行时间。
降低了对变换炉的材质要求,催化剂使用寿命长,一般可使用5年左右。
图2-4 钴钼耐硫系全低变工艺流程图
1-饱和热水塔2-水加热器3-气水分离器4-热交换器5-电炉
6-变换炉7-调温水加热器8-锅炉给水加热器9-热水泵
近年来开发的无饱和塔全低变流程的优点更为明显,从根本上杜绝了设备的腐蚀,减少了因变换腐蚀而导致的停车,设备减少,系统的阻力降低,压缩机出力提高,减少了原饱和塔循环热水泵的用电,降低了热水排放的能耗,减轻了对设备的腐蚀,更重要的是提高了有机硫的转化能力。
因为在传统的饱和热水塔工艺中,煤气中的各种有机硫通过循环热水溶解,再通过变换气释放出来。
无饱和塔流程可以解决这个问题,不仅精脱硫中的有机硫转化部分可以去掉,同时煤气中非COS等有机硫也不会串到后工段,对甲烷化或合成催化剂是极为有利的。