聚类分析详解ppt
合集下载
《聚类分析》PPT课件
应聘者 X Y Z
1 2 3 4 5 6 7 8 9 10 28 18 11 21 26 20 16 14 24 22 29 23 22 23 29 23 22 23 29 27 28 18 16 22 26 22 22 24 24 24
2021/8/17
5
2021/8/17
6
2021/8/17
Ch6 聚类分析
2021/8/17
1
聚类分析根据一批样品的许多观测指标,按 照一定的数学公式具体地计算一些样品或一些参 数(指标)的相似程度,把相似的样品或指标归为 一类,把不相似的归为一类。
例如对上市公司的经营业绩进行分类;据经 济信息和市场行情,客观地对不同商品、不同用 户及时地进行分类。又例如当我们对企业的经济 效益进行评价时,建立了一个由多个指标组成的 指标体系,由于信息的重叠,一些指标之间存在 很强的相关性,所以需要将相似的指标聚为一类, 从而达到简化指标体系的目的。
2021/8/17
29
(1) 所 选 择 的 亲 疏 测 度 指 标 在 实 际 应 用中应有明确的意义。如在经济变量分析 中,常用相关系数表示经济变量之间的亲 疏程度。
2021/8/17
30
(2)亲疏测度指标的选择要综合考虑已对样本观测 数据实施了的变换方法和将要采用的聚类分析方法。如在 标准化变换之下,夹角余弦实际上就是相关系数;又如若 在进行聚类分析之前已经对变量的相关性作了处理,则通 常就可采用欧氏距离,而不必选用斜交空间距离。此外, 所选择的亲疏测度指标,还须和所选用的聚类分析方法一 致。如聚类方法若选用离差平方和法,则距离只能选 用 欧氏距离。
剂的种类等。在名义尺度中只取两种特性状态的变量是很
重要的,如电路的开和关,天气的有雨和无雨,人口性别
聚类分析 PPT课件
(f) (f) p dij f 1 ij d (i, j) (f) p f 1 ij
f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise f is ordinal Compute ranks rif and Treat zif as interval-scaled
x1 x2 x3 x4
x1 0 3.61 5.1 4.24
x2 0 5.1 1
x3
x4
5
0 5.39
0
第二节 相似性的量度
一 样品相似性的度量
二 变量相似性的度量
含名义变量样本相似性度量
例: 学员资料包含六个属性:性别(男或女);外语语种
(英、日或俄);专业(统计、会计或金融);职业(教师 或非教师);居住处(校内或校外);学历(本科或本科以 下) 现有两名学员: X1=(男,英,统计,非教师,校外,本科)′ X2=(女,英,金融,教师,校外,本科以下)′ 对应变量取值相同称为配合的,否则称为不配合的 记配合的变量数为m1,不配合的变量数为m2,则样本之间 的距离可定义为
第五章 聚类分析
第一节 第二节 第三节 第四节 第五节 引言 相似性的量度 系统聚类分析法 K均值聚类分析 K中心点聚类
第六节
R codes
第一节 引言
“物以类聚,人以群分” 无监督分类聚类分析 分析如何对样品(或变量)进行量化分类的 问题 Q型聚类—对样品进行分类 R型聚类—对变量进行分类
用他们的序代替xif
zif
rif 1 M f 1
10
混合型属性
A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal 可以用加权法计算合并的影响
f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise f is ordinal Compute ranks rif and Treat zif as interval-scaled
x1 x2 x3 x4
x1 0 3.61 5.1 4.24
x2 0 5.1 1
x3
x4
5
0 5.39
0
第二节 相似性的量度
一 样品相似性的度量
二 变量相似性的度量
含名义变量样本相似性度量
例: 学员资料包含六个属性:性别(男或女);外语语种
(英、日或俄);专业(统计、会计或金融);职业(教师 或非教师);居住处(校内或校外);学历(本科或本科以 下) 现有两名学员: X1=(男,英,统计,非教师,校外,本科)′ X2=(女,英,金融,教师,校外,本科以下)′ 对应变量取值相同称为配合的,否则称为不配合的 记配合的变量数为m1,不配合的变量数为m2,则样本之间 的距离可定义为
第五章 聚类分析
第一节 第二节 第三节 第四节 第五节 引言 相似性的量度 系统聚类分析法 K均值聚类分析 K中心点聚类
第六节
R codes
第一节 引言
“物以类聚,人以群分” 无监督分类聚类分析 分析如何对样品(或变量)进行量化分类的 问题 Q型聚类—对样品进行分类 R型聚类—对变量进行分类
用他们的序代替xif
zif
rif 1 M f 1
10
混合型属性
A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal 可以用加权法计算合并的影响
聚类分析(共8张PPT)
第4页,共8页。
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析法ppt课件全
8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
聚类分析解析课件
类间距的度量
类:一个不严格的定义
定义9.1:距离小于给定阀值的点的集合 类的特征
◦ 重心:均值 ◦ 样本散布阵和协差阵 ◦ 直径
类间距的定义
最短距离法 最长距离法 重心法 类平均法 离差平方和法 等等
最小距离法(single linkage method)
极小异常值在实际中不多出现,避免极 大值的影响
类的重心之间的距离
对异常值不敏感,结果更稳定
离差平方和法(sum of squares
method或ward method)
W代表直径,D2=WM-WK-WL
即
DK2L
nL nk nM
XK XL XK XL
Cluster K
Cluster M
Cluster L
◦ 对异常值很敏感;对较大的类倾向产生较大的距 离,从而不易合并,较符合实际需要。
如表9.2所示,每个样品有p个指标,共 有n个样品
每个样品就构成p维空间中的一个点
:第i个样品的第k个指标对应的取值
◦ i=1……n; k=1……p
:第i个样品和第j个样品之间的距离
◦ i=1……n; j=1……n
点间距离测量问题
样品间距离与指标间距离 间隔尺度、有序尺度与名义尺度 数学距离与统计距离 相似性与距离:一个硬币的两面
类图上发现相同的类
饮料数据
16种饮料的热量、咖啡因、钠及价格四种变量
SPSS实现
选择Analyze-Classify-Hierarchical Cluster, 然 后 把 calorie ( 热 量 ) 、 caffeine ( 咖 啡
因)、sodium(钠)、price(价格)选入 Variables, 在Cluster选Cases(这是Q型聚类:对观测 值聚类),如果要对变量聚类(R型聚类) 则选Variables, 为 了 画 出 树 状 图 , 选 Plots , 再 点 Dendrogram等。 可以在Method中定义点间距离和类间距 离
机器学习之聚类分析(PPT48页)
间中两点间的距离公式。 两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的
欧氏距离:
聚类的相似性度量
2. 曼哈顿距离(Manhattan Distance) 想象你在曼哈顿要从一个十字路口开车到另外一个十字
路口,驾驶距离是两点间的直线距离吗?显然不是,除非 你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”, 也称为城市街区距离(City Block distance)。 两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼 哈顿距离
密度聚类——DBSCAN
3)密度直达:如果xi位于xj的ε-邻域中,且xj是核心对象,则称xi由xj密 度直达。注意反之不一定成立, 除非且xi也是核心对象。
4)密度可达:对于xi和xj,如果存在样本序列p1,p2,...,pT满足 p1=xi,pT=xj且pt+1由pt密度直达,则称xj由xi密度可达。密度可达满足传递 性。此时序列中的传递样本p1,p2,...,pT−1均为核心对象,因为只有核心 对象才能使其他样本密度直达。 5)密度相连:对于xi和xj,如果存在核心对象样本xk,使xi和xj均由xk密度 可达,则称xi和xj密度相连。
什么是聚类?
• “物以聚类,人以群分” • 所谓聚类,就是将相似的事物聚集在一 起,而将不相似
的事物划分到不同的类别的过程,是数据分析之中十分 重要的一种手段。
什么是聚类?
•在图像分析中,人们希望将图像分割成具有类似性质的 区域 •在文本处理中,人们希望发现具有相同主题的文本子集 •在顾客行为分析中,人们希望发现消费方式类似的顾客 群,以便制订有针对性的客户管理方式和提高营销效率
G1
G2
欧氏距离:
聚类的相似性度量
2. 曼哈顿距离(Manhattan Distance) 想象你在曼哈顿要从一个十字路口开车到另外一个十字
路口,驾驶距离是两点间的直线距离吗?显然不是,除非 你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”, 也称为城市街区距离(City Block distance)。 两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼 哈顿距离
密度聚类——DBSCAN
3)密度直达:如果xi位于xj的ε-邻域中,且xj是核心对象,则称xi由xj密 度直达。注意反之不一定成立, 除非且xi也是核心对象。
4)密度可达:对于xi和xj,如果存在样本序列p1,p2,...,pT满足 p1=xi,pT=xj且pt+1由pt密度直达,则称xj由xi密度可达。密度可达满足传递 性。此时序列中的传递样本p1,p2,...,pT−1均为核心对象,因为只有核心 对象才能使其他样本密度直达。 5)密度相连:对于xi和xj,如果存在核心对象样本xk,使xi和xj均由xk密度 可达,则称xi和xj密度相连。
什么是聚类?
• “物以聚类,人以群分” • 所谓聚类,就是将相似的事物聚集在一 起,而将不相似
的事物划分到不同的类别的过程,是数据分析之中十分 重要的一种手段。
什么是聚类?
•在图像分析中,人们希望将图像分割成具有类似性质的 区域 •在文本处理中,人们希望发现具有相同主题的文本子集 •在顾客行为分析中,人们希望发现消费方式类似的顾客 群,以便制订有针对性的客户管理方式和提高营销效率
G1
G2
聚类分析ppt课件
第七章 聚类分析
第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号
购物环境
样本
A商厦
73
B商厦
66
C商厦
84
D商厦
91
E商厦
94
服务质量 68 64 82 88 90
• 把商厦分成两类:A、B为一类,C、D、E为一类 • 把商厦分为三类:A、B为一类,C为一类,D、E为一类 • 没有指定分类标准,大家为什么会这么分呢? • 从数据出发,根据性质上的亲疏程度进行分类!
(3) 计算新类G M 与任一G 类J
之间距离的递
推公式为 D M Ji G m M ,ijn G Jdij m ini G m K,ijn G Jdij,i G m L,ijn G Jdij
m inD K J,D L J
-
最短距离法的聚类步骤
在D 0 中G ,K G L 和
所在的行和列合并成一
个新行新G列M ,对应
,该行列上的新距离值由
(6.3.2)式求得,其余行列上的距离值不变,这
样就得到新的距离矩D 阵1 ,记作
。
(4) 对D 1
重复上述D 0对
的D两 2 步得
,
如此下去直至所有元素合并成一类为止。
如果某一步D m 中最小的元素不止一个,则称 此现象为结(tie),对应这些最小元素的类可以任 选一对合并或同时合并。
xiaxjb,a(0) b i, j i, j
cij 1
-
相似系数
c ij 1 cij c ji
xiaxjb,a(0) b i, j i, j
cij 1
-
相似系数
编号 A商厦
B商厦
购物环境 73 66
服务质量 68 64
-
相似系数
参考教材:《应用多元统计分析》高惠璇,北京大学出版社
-
主要内容
购物环境 7Βιβλιοθήκη 66 84 91 94服务质量 68 64 82 88 90
• 把商厦分成两类:A、B为一类,C、D、E为一类 • 把商厦分为三类:A、B为一类,C为一类,D、E为一类 • 没有指定分类标准,大家为什么会这么分呢? • 从数据出发,根据性质上的亲疏程度进行分类!
-
聚类分析特点 变量
聚类分析
报告人:
-
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
-
引言
“物以类聚,人以群分” 市场营销中的市场细分和客户细分问题。可从客户分类入
手,根据客户的年龄、职业、收入、消费金额、消费频率、 喜好等方面进行单变量或者多变量的客户分组。 不足:客户群划分带有明显的主观色彩,需要有丰富的行 业经验才能做到比较合理和理想的客户细分。主要表现在, 同一客户细分段中的客户在某些方面并不相似,而不同客 户细分段中的客户在某些特征方面却又很相似。 解决方法:从数据自身出发,充分利用数据进行客户的客 观分组,使诸多有相似性的客户被分在同一组,而不相似 的客户被区分到另一组中。这时便可采用聚类分析方法。
-
-
-
-
28
二、最长距离法
类与类之间的距离定义为两类最远样品间的距离, 即
DKLiG m Ka,j xGLdij
-
聚类分析定义
聚类分析定义: 聚类分析是将样品或变量按照他们性质上的亲疏程度进行
分类的多元统计分析方法。进行聚类分析时,用来描述物 品或变量的亲疏程度通常有两个途径: 一是把每个样品或变量看成是多维空间上的一个点,在多 维坐标中,定义点与点、类与类之间的距离,用点与点间 距离来描述样品或变量的亲疏程度; 二是计算样品或变量的相似系数,用相似系数来描述样品 或变量之间的亲疏程度。
-
亲疏程度的度量方法
亲疏程度的度量也叫相似性度量,方法主要有两个: (1) 距离常用来度量样品之间的相似性; (2)相似系数常用来度量变量之间的相似性。
编号
样本
A商厦
B商厦
C商厦
D商厦
E商厦
变量
购物环境 73 66 84 91 94
服务质量 68 64 82 88 90
-
距离
-
距离
欧氏(Euclidean)距离 平方欧氏(Squared Euclidean)距离 明氏(明科夫斯基 Minkowski)距离 切比雪夫(Chebychev)距离 兰氏(Lance和Willianms)距离 马氏(Mahalanobis)距离 斜交空间距离 其他
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
-
聚类分析的种类
(1)系统聚类法(也叫分层聚类或层次聚类) (2)动态聚类法(也叫快速聚类) (3)模糊聚类法 (4)图论聚类法
-
系统聚类法
对比
-
常用的系统聚类方法
一、最短距离法 二、最长距离法 三、中间距离法 四、类平均法 五、重心法 六、离差平方和法(Ward方法)
-
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
-
聚类分析定义
聚类: 聚类(clustering)是对大量未知标注的数据集,按数据
的内在相似性将数据集划分为多个类别,使类别内的数据 相似度较大而类别间的数据相似度较小,其过程被称为聚 类。
-
一、最短距离法
定义类与类之间的距离为两类最近样品间的距离, 即
DKLiG m K,ijnGLdij
详细步奏和实例
-
最短距离法的聚类步骤
(1) 规定样品之间的距离,计算n 个样品的距离
矩D阵 0
,它是一个对称矩阵。
(2) 选择D 0 中的最小元素,设D K为L
G,K 则G L
将
和 合并成一G个M 新类G ,M 记为G KU G L,即
详细定义请参考教材: 《信息分析方法与应用》王伟军,清华大学出版社 《SPSS统计分析方法及应用》薛薇,电子工业出版社
-
距离
编号 A商厦 B商厦
-
购物环境 73 66
服务质量 68 64
距离
编号 A商厦 B商厦 E商厦
购物环境 73 66 94
服务质量 68 64 90
-
相似系数
c ij 1 cij c ji
-
聚类分析特点
聚类分析是一种建立分类的多元统计分析方法,它能将一 批样本(或变量)数据根据其诸多特征,按照在性质上的 亲疏程度在没有先验知识的情况下进行自动分类,产生多 个分类结果。类内部的个体在特征上具有相似性,不同类 间个体特征的差异性较大。
-
聚类分析特点
编号 A商厦 B商厦 C商厦 D商厦 E商厦