北师大版-数学-八年级上册-《一次函数的应用(1)》导学案

合集下载

最新北师大版八年级数学上册《一次函数的应用第1课时》教学设计(精品教案)

最新北师大版八年级数学上册《一次函数的应用第1课时》教学设计(精品教案)
第一环节 复习引入
内容:提问:(1)什么是一次函数?
(2)一次函数的图象是什么?
(3)一次函数具有什么性质?
目的:学生回顾一次函数相关知识,温故而知新.
第二环节 初步探究
内容1:
展示实际情境
提供两个问题情境,供老师选用.
实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.
实际情境二:假定甲、乙二人在一项赛跑中路程 与时间
的关系如图所示.
(1)这是一次函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到 与 间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.
内容2:
想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.
2.本节课用到的主要的数学思想方法:数形结合、方程的思想.
目的:
引导学生小结本课的知识及数学方法,使知识系统化.
内容:
1.如图,直线 是一次函数 的图象,求它的表达式.
2.若一次函数 的图象经过A(-1,1),则 ,该函数图象经过点B(1,)和点C(,0).
3.如图,直线 是一次函数 的图象,填空:
(1) , ;
(2)当 时, ;
(3)当 时, .
4.已知直线 与直线 平行,且与y轴交于点(0,2),求直线 的表达式.
将 代入②,得 .

4.4.1一次函数的应用导学案北师大版数学八年级上册

4.4.1一次函数的应用导学案北师大版数学八年级上册

后“茶馆式”《一次函数的应用》教学设计学科 数学 课题 课型 新授 主备人xxx上课人xxx上课时间xxx教材分析 《一次函数的应用第一课时》是义务教育课程标准北师大版实验教科书八年级上册第四章第四节的内容。

本课时主要是利用图象、表格等信息,确定一次函数的表达式.本节内容特别注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法.第一次 学情分析 八年级学生已初步认识了变量之间的相依关系,积累了研究变量之间关系以及图象的一些方法和初步经验.在此基础上,学生能在“引导——探究——发现”式的课堂教学中积极参与讨论问题,大胆发表自己的见解和看法.但由于初中学生的年龄特点,他们借助直观、具体的图象更容易理解抽象的一次函数图象的变化规律及其性质。

第二次 学情分析 学生先学后,能学会的:能根据所给信息利用待定系数法确定一次函数的表达式. 学生先学后可能不会的:进一步利用所学知识解决实际问题. 教学目标 1.了解两个条件可以确定一个一次函数,一个条件可以确定一个正比例函数,并求出表达式. 2.会用待定系数法解决简单的实际问题.3.能根据函数的图象确定一次函数的表达式. 教学重点 利用一次函数解决复杂的实际问题. 教学难点 根据两个一次函数图象去分析解决问题.教学过程二次备课一、回顾旧知,探究新知前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?23=-+y x31=-y x思考:反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗? 活动一某物体沿一个斜坡下滑,它的速度v (m/s )与其下滑时间t(s)的关系如右图所示: (1)请写出v 与t 的关系式.(2)下滑3 s 时物体的速度是多少? 练一练 例1. 在弹性限度内,弹簧的长度 y (cm )是所挂物体质量 x (kg )的一次函数,某弹簧不挂物体时长14.5cm ,当所挂物体的质量为3kg 时,弹簧长16cm 。

数学北师大八年级上册(2013年新编)《一次函数的应用(1)》教案3

数学北师大八年级上册(2013年新编)《一次函数的应用(1)》教案3

《一次函数的应用(1)》教案一、教学目标①会借助图、表等手段分析题目中的数量关系或根据函数图象获取信息确定一次函数的解析式并画出函数图象. 能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数,结合自变量取值范围、函数图象解决实际问题。

渗透函数思想、数形结合的思想。

②让学生通过自主、合作、探究构建实际问题的数学模型,培养学生运用一次函数模型解决实际生活问题的能力,体会并感知数学建模的过程和一般思想。

③通过一次函数的应用教学,让学生体会数学的抽象性和广泛应用性,使他们在“问题解决”的过程中,充分体会数学与自然及社会生活的密切联系,了解数学的价值,增进对数学的理解和应用数学的信心,激发学生学习数学的兴趣。

二、教学重点、难点重点:根据实际问题抽象出数学模型,利用一次函数解析式,以及其图象与性质解决实际问题难点:寻找实际问题中的一次函数关系,通过确定一次函数,利用其解析式、图象与性质,以及自变量的取值范围,解决实际问题.三、教学过程:(一)回顾已知,引入课题(2012江苏连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.【分析】由题意得:y1=4x+400;y2=2x+820。

(因为是复习课,此处函数关系比较简单,所以让学生直接思考,一次函数的应用离不开求函数解析式,此处通过写函数解析式,承上启下)(二)自主学习,合作探究上述问题中你认为选用哪种运输方式较好,为什么?(此处让学生分组讨论,通过合作探究解决问题,讨论后请学生回答,学生评价)【分析】令4x+400=2x+820,解得x=210。

∴当运输路程小于210千米时,y1<y2,选择邮车运输较好;当运输路程等于210千米时,y1=y2,两种方式一样;当运输路程大于210千米时,y1>y2,选择火车运输较好。

北师大版数学八年级上册 4.4.1 一次函数的应用学案

北师大版数学八年级上册 4.4.1 一次函数的应用学案

成都市中和中学“三阶四环”高阶思维导学案 4.4.1 一次函数的应用(第1课时)班级: 姓名: 〖学习目标〗1.能利用函数图象解决简单的实际问题.2.通过函数图象获取信息,培养数形结合的意识.3.理解一次函数与一元一次方程的关系.〖重点难点〗重点:利用函数图象解决简单的实际问题.难点:通过函数图象获取信息,一次函数与一元一次方程的关系.〖导学流程〗浅层加工一、知识回顾一次函数y =kx +b 的图象与y 轴的交点坐标为__________,与x 轴的交点坐标为__________.二、问题发现一次函数图象还可以获得哪些信息?深度建构一、问题情境由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少.蓄水量V (万米3)与干旱持续时间t (天)的关系如图所示,回答下列问题:(1)图象反映得是什么类型的函数?(2)水库干旱前的蓄水量是多少?(3)干旱持续10天,蓄水量为多少?连续干旱23天呢?(4)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报?(5)按照这个规律,预计大约持续多少天水库将干涸?二、问题探究【探究活动一】一次函数的图象例1.为了提高某种农作物的产量,农场通常采用喷施药物的方法控制其高度.已知该农作物的平均高度y (米)与每公顷所喷施学海拾贝 总结纠错药物的质量x (千克)之间的关系如图所示,经验表明,该农作物高度在1.25米左右时,它的产量最高,那么每公顷应喷施药物多少千克?即学即练1:1.某植物t 天后的高度为y 厘米,下图中l 反映了y 与t 之间的关系,根据图象回答下列问题:(1)3天后该植物的高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10厘米?【探究活动二】一次函数与一元一次方程的关系做一做:如图是某一次函数的图象,根据图象填空:(1)当y =0时,x =_________;(2)这个函数的表达式是____________.议一议:一元一次方程0.5x +1=0与一次函数y =0.5x +1有什么联系?一次函数和一元一次方程的联系:例2.一个冷冻室开始的温度是12 ℃,开机降温后室温每小时下降6 ℃,设T (℃)表示开机降温t h 时的温度.(1)写出T (℃)与t (h)之间的函数关系式,并画出其图象.(2)利用图象说明:经过几小时,冷冻室温度降至0 ℃?何时降至-9 ℃?即学即练2:1.已知一次函数y =2x +n 的图象如图所示,则方程2x +n =0的解是( )A .x =1B .x =23 C .x =21 D .x =-1例3.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100千米消耗多少升汽油?(4)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?即学即练3:某汽车离开某城市的距离y (千米)与行驶时间t (时)之间的关系式为y =kt +30,其图象如图所示:(1)在1时至3时之间,汽车行驶的路程是多少?(2)你能确定k 的值吗?这里k 的具体含义是什么?三、融合应用1.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区x/km y/L 10500 O。

北师大版八年级数学上册4.1一次函数的应用教学设计

北师大版八年级数学上册4.1一次函数的应用教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组选择一个生活实例,讨论以下问题:“这个实例中,变量之间的关系是什么?”“如何用一次函数来表示这个关系?”“你能举出其他类似的生活实例吗?”
2.汇报交流:每个小组汇报讨论成果,其他小组进行评价、补充。教师适时给予点评,纠正错误,巩固知识点。
(四)课堂练习
1.注重基础知识的巩固,通过实例分析,帮助学生建立起一次函数与现实问题的联系,提高学生的知识迁移能力。
2.针对学生对一次函数图像和性质的理解差异,设计差异化教学活动,使学生在实践中逐步提高对函数图像的认识。
3.引导学生从实际问题中提炼数学模型,培养学生的数学抽象思维和建模能力,同时,关注学生在合作交流中的情感体验,提高学生的团队协作能力。
2.教师点评:教师对学生的总结进行点评,强调重点知识点,纠正错误观念。同时,对本节课的学习内容进行拓展延伸,如介绍一次函数在其他学科中的应用。
3.课后作业:布置课后作业,巩固所学知识。同时,鼓励学生继续关注生活中的一次函数实例,提高数学素养。
五、作业布置
为了巩固学生对一次函数的理解和应用能力,本次作业布置如下:
1.设计梯度性练习题:针对一次函数的定义、图像、性质等知识点,设计不同难度的练习题。让学生在解答过程中,巩固所学知识,提高解题能力。
2.小组合作解题:鼓励学生进行小组合作,共同解答练习题。教师巡回指导,关注学生解题思路和方法,及时解答学生疑问。
(五)总结归纳
1.学生总结:请学生谈谈对本节课一次函数的学习体会,包括一次函数的定义、图像、性质以及在实际问题中的应用。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一次函数的定义及其图像特点,一次函数在实际问题中的应用。

4.4 一次函数的应用 北师大版八年级数学上册教案

4.4  一次函数的应用 北师大版八年级数学上册教案

4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。

【最新】北师大版八年级数学《一次函数的应用》导学案

【最新】北师大版八年级数学《一次函数的应用》导学案

新北师大版八年级数学《一次函数的应用》导学案我的疑问【合作探究】【学习目标:】1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,发展学生的分析问题、解决问题的能力和数学应用意识.【学习重点:】一次函数图象的应用【学习难点:】从函数图象中正确读取信息【预习.导学:】一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系[来源:](3)由表达式你能求出降价前每千克的土豆价格是多少?[来源:Z#xx#](4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?(6)两条直线对应的函数中,k与b 1例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?2:深入探究例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?[来源:学科网ZXXK](5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?(3)B出发后经过多少小时与A相遇?海岸公海ABS (千米)t (时) O 1022.5 7.5 0.5 31.5 l B l A的实际意义是什么?【总结归纳】本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。

最新北师大课标版八年级数学上册《一次函数的应用(1)》教案1(优质课一等奖教学设计)

最新北师大课标版八年级数学上册《一次函数的应用(1)》教案1(优质课一等奖教学设计)

《一次函数的应用(1)》教案教学内容北师大版八年级上册《一次函数的应用(1)》P89-90. 教学目标1、了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.2、经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法.3、经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.教学重点会根据条件用待定系数法求解一次函数的表达式.教学难点用待定系数法求解方程以及数形结合的使用.教学过程一、复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.二、初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结.这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量k、b,所以需要两个条件来确定.三、深入探究内容1:例1在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,一根弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹簧长16cm.写出y与x之间的关系式,并求所挂物体的质量为4kg时弹簧的长度.解:设b=,根据题意,得y+kx14.5=b,①16=3k+b,②将5.14b代入②,得5.0=k.=所以在弹性限度内,5.14y.=x5.0+当4=x时,5.16⨯=y(厘米).+5.1445.0=即物体的质量为4千克时,弹簧长度为5.16厘米.目的:引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解.教学注意事项:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y与x间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.内容2:想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.求函数表达式的步骤有:1、设一次函数表达式.2、根据已知条件列出有关方程.3、解方程.4、把求出的k,b值代回到表达式中即可.目的:对求一次函数表达式方法的归纳和提升.在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.四、反馈练习内容:1、如图,直线l是一次函数b=的图象,求它的表达kxy+式.2、若一次函数b=2的图象经过A(-1,1),则=b___xy+_,该函数图象经过点B(1,5).3、如图,直线l是一次函数b=的图象,填空:kxy+(1)=b____,=k____.(2)当30x时,=y____.=x____.(3)当30y时,==4、已知直线l与直线x=平行,且与yy2-轴交于点(0,2),求直线l的表达式.目的:四个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程.效果:四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.五、课时小结内容:总结本课知识与方法1、本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出k,b 的值,从而确定函数解析式.其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;(4)把k,b代回表达式中,写出表达式.2、本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.六、作业布置习题4.5。

北师大版八年级数学《一次函数的应用》导学案

北师大版八年级数学《一次函数的应用》导学案

3、预习自测 当得知周边地区的干旱情况后, 育才学校的小明意识到节约用水的 重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的 积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数 量相同,最后全校师生都参加了活动,并且参加该活动的家庭数 S (户)与宣传时间 t (天)的函数关系如图所示.根据图象回答下 列问题: (1)活动开始当天,全校有多少户家庭参加了该活动? (2)全校师生共有多少户?该活动持续了几天? (3)你知道平均每天增加了多少户? ( 4 )活动第几天时,参加 该 活 动 的 家 庭 数 达到 800 S(户) 户? 1000 · ( 5 )写出参加活动的家庭 0 数 S 与活动时间 t 之间的函 数关系式
200 0 20 t(天)
4、我的疑惑: (请你将预习中未能解决的问题和有疑惑的问题写下 来,与老师和同学探究解决。 )
探 究 案
.
2:王大强和张小勇两人比赛跑步,路程和
时间的关系如图: 根据图象回答下列问题: ⑴王大强和张小勇谁跑的快? ⑵出发几秒后两人相遇? ⑶相遇前谁在前面?相遇后谁在前面? ⑷你还能读出什么信息?
本的基础知识和例题,完成预习自测及我的疑惑栏目。
预 习 案
知识回顾 确定正比例函数的表达式需要几个条件?确定一次函数的表达式 呢? 2、教材助读 由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减 少.干旱持续时间 t (天)与蓄水量 V (万米 3)的关系如下图所示,回 答下列问题: (1)干旱持续 10 天后蓄水量为多少?连续干旱 23 天后呢?于 400 万 米 3 时, 将发生严重干旱警报. 干旱多少天后将发出严重干旱警报? (3)按照这个规律,预计持续干旱多少天水库将干涸? (根据图象回答问题,有困难的可以互 (2)蓄水量小相交流. )

北师大版八年级数学上册一次函数的应用导学案1

北师大版八年级数学上册一次函数的应用导学案1

神木县第五中学导学案年级八班级学科数学课题4.4一次函数的图象第2课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1、能通过函数图象获取信息,解决简单的实际问题.(重难点)2、在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。

3、通过对函数图象的观察与分析,培养自己数形结合的意识,发展形象思维。

学法指导温故知新确定一次函数的表达式时可以用待定系数法,即先设出表达式,再根据题目条件(根据图象、表格或具体问题)求出k,b的值,从而确定函数表达式.其步骤如下:(1)设函数表达式;(2) ;(3) ;(4)把k,b代回表达式中,写出表达式.(5分钟)先独立思考,学生个别回答教学一、创设情境,导入新课。

二、思考探究,获取新知(感知)。

(15分钟)自主学习课本P91,完成以下(一)和(二)中的问题。

(一)知识探究1.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万米3) 与干旱持续时间t(天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?(二)自学反馈1.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示,当1≤x≤2时,y关于x的函数表达式为y=100x-40;那么当0≤x≤1时,y关于x的函数表达式为.学生独立完成小组代表展示讲解。

流程2.某公司销售人员的个人月收入与其每月的销售量成一次函数关系,图象如图所示,则此销售人员的销售量为3千件时的月收入是元.3.一次函数y=kx+b的图象与y轴相交于点(0,-3),且方程kx+b=0的解为x=2,试求这个一次函数的表达式.三、合作探究(理解)(7分钟)例某种摩托车的油箱加满油后,油箱中剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?四、运用新知,深化理解(拓展提高)。

北师大版-数学-八年级上册-4.4.1一次函数的应用 导学案

北师大版-数学-八年级上册-4.4.1一次函数的应用  导学案

初中-数学-打印版初中-数学-打印版学生自主学习方案1. 怎样快速地画出一次函数y=kx+b(k ≠0)的图象?2. 一次次函数y=kx+b(k ≠0)的图象有何影响?1.程?2.从图象方面考虑,一般需要知道图象上的几个点的坐标,就可以 确定一次函数的表达式?3.仔细体会课本例1的解题过程,这种解体的方法叫知识点1:待定系数法确定一次函数表达式例1 已知正比例函数的图象经过(-2,8)求这个正比例函数的表达式。

问题1:要确定正比例函数的表达式,需要求出几个未知量?需要已科目 北师大版八年级数学下册授课时间 课题授课教师学习 目标1.了解待定系数法,会根据所给信息用待定系数法求一次函数表达式,发展解决问题的能力。

2.通过独立思考,小组交流,进一步体验“数形结合”思想的方法。

3.激情投入,享受学习成功的快乐。

教材助读 新知探究初中-数学-打印版初中-数学-打印版知几个条件即可?问题2:已知正比例函数图象上的一个点的坐标,能不能确定正比例函数的表达式?怎样求此正比例函数的表达式?知识点2:利用一次函数图象确定表达式某物体沿斜坡下滑,它的速度v (m/s )与其下滑时间t(s)的关系如课本4-6图所示。

回答问题 (1)写出v 与t 之间的关系式。

(2)下滑时间3s 时物体的速度是多少/1.已知一次函数y=kx-4的图象经过P (2,-1),此函数的表达式为_____________________2.若函数y=3x+b 的图象经过(2,-6)求该函数的表达式.问题1:要确定函数表达式,只要求出什么即可?需要列几个方程?问题2:怎么列方程并求解?已知一次函数的图象经过(0,1),(-4,-5)两点,求这个函数表达式。

问题1:两点能否确定一条直线?学以致用考题链接初中-数学-打印版问题2:怎样求函数的表达式/达标检测1.如果一次函数y=kx+b的图象经过(0,-4),那么b的值是()A.1B.-1C.-4D.42.已知一次函数y=kx+k-3的图象经过点(2,3),则k的值为________________3.若函数y=kx+b(k 0)的图象过点A(1,5)且与y轴交点的纵坐标是3,则k=_____________4.课本随堂练习数学日记初中-数学-打印版。

2019-2020学年八年级数学上册 4.4 一次函数的应用(1)导学案(新版)北师大版.doc

2019-2020学年八年级数学上册 4.4 一次函数的应用(1)导学案(新版)北师大版.doc
2、能熟练求出一次函数的关系式
总结升华
3分钟
达标反馈(展台)
5分钟
活动安排
【情境引入】正比例函数的一般表达式是
一次函数一般表达式是
【学习探究】
探究任务:确定正比例函数的表达式
问题1:1、如果一个正比例函数的图象经过点A(3,-1),那么这个正比例函数的解析式为()A.y=3xB.y=-3xC.y= xD.y=- x
2、在弹性限度内,弹簧的长度 (厘米)是所挂物体的质量 (千克)的一次函数,当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出 与 之间的关系式,并求出所挂物体的质量)x+2m+4的图象过直线y=- x+4与y轴的交点M,求此一次函数的解析式.
2019-2020学年八年级数学上册4.4一次函数的应用(1)导学案(新版)北师大版
课题
4.4.1一次函数的应用(1)
活动安排
问题3:如图,直线 是一次函数 的图象,
(1)求这个的函数关系式.
(2)当 时,求y
(3)当 时,求
【小结】确定一次函数的表达式需要条件,确定待定系数k、b的值。
达标小测:
1、已知:一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式。
新知拓展:一次函数 与正比例函数 的图象经过点(2,-1),
(1)分别求出这两个函数的表达式;
(2)求这两个函数的图象与 轴围成的三角形的面积.
【总结升华】
1、本节课知识上你有哪些收获?
2、在学法和解题方法上你有什么经验与大家分享?
3、本节课是否还有疑惑?
【达标反馈】
教学反思:
学习目标
1、能熟练求出正比例函数的关系式

八年级数学上册 4.4.1 一次函数的应用教案 (新版)北师大版(1)

八年级数学上册 4.4.1 一次函数的应用教案 (新版)北师大版(1)

课题:4.4.1 一次函数的应用教学目标:1.了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.2.经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;3.经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.教学重点与难点重点:根据所给信息,利用待定系数法确定一次函数的表达式.难点:在实际问题情景中寻找条件,确定一次函数的表达式.课前准备教师准备:彩色粉笔,对多媒体课件.学生准备:三角尺.教学过程一、创设情境,导入新课活动内容:回顾与思考下列问题.(多媒体出示)问题1.一次函数的一般形式是什么?正比例函数呢?问题2.一次函数图像是什么?正比例函数的图像呢?问题3.一次函数具有什么性质?问题4.已知一次函数表达式,如何画一次函数图像?处理方式:学生口答,教师用多媒体展示上述各题.然后教师提出问题:若已知一次函数的图像,你能确定一次函数表达式吗?(师板书课题——4.4一次函数的应用)设计意图:学生回顾一次函数正比例函数相关知识,使学生深信确定了两点,一次函数图像也就确定了.为下边根据题意(或图像)确定函数表达式做好铺垫.二、探究学习,感悟新知活动内容1:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?问题1:观察图象,你知道它是什么函数吗?问题2:如何写出v与t之间的关系式?问题3:求下滑3秒时物体的速度是多少,实质是已知什么?求什么?处理方式:学生讨论交流,在完成上述3个问题后再完成(1)、(2)题的解答,学生之间互相补充.教师适时点评,强调:图象是一条过原点的直线,确定函数的类型是正比例函数,然后设它对应的解析式,再把已知点的坐标代入解析式求出k即可.教师要规范解题过程.设计意图:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数除原点外只需一个点坐标.想一想:问题:确定正比例函数的表达式需要几个条件?为什么?一次函数呢?处理方式:学生讨论交流后展示学习成果,强调:确定正比例函数的表达式需要一个条件(一个点坐标),因为确定正比例函数表达式就是确定k的值,猜想:确定一次函数表达式就是确定k,b的值,所以,确定一次函数的表达式需要两个条件(两个点的坐标).设计意图:在实践的基础上学生加以归纳总结.一次函数图像是直线画图时需要两个点,要确定函数关系式则需要两点的坐标来确定k,b的值.让大部分学生认识到确定一个字母k的值需要一个条件.要确定两个字母k,b的值则需两个条件.三、例题解析,应用新知活动内容1:确定正比例函数表达式(就是确定k的值),除原点外,还需一个点的坐标.那么要确定一次函数表达式(确定k和b的值)就需要两个点的坐标,接下来我们一起看下面的例题:例1 如图所示,已知直线AB和x轴交于点B,和y轴交于点A,①写出A、B两点的坐标.②求直线AB的表达式.处理方式: (教师点拨)通过图像看出两点的坐标A(0,B(4,0),然后师生共同完求出表达式,教师板书做题步骤并做好示范.解:设一次函数表达式为y=kx+b.把x= 0,y=2代入y=kx+b,得2=b.①把x= 4, y= 0代入y=kx+b,得 0= 4×k+b②把b=2代入②,得k= -0.5.所以一次函数表达式是y=-0.5x+2.设计意图:用列表的方式列出已知点的坐标,学生上节课已经很熟悉了本例意在让学生体会从题意中得出点坐标的过程,这一点是求一次函数表达式的前提,下边例题找点坐标就有难度,本例做个过渡,同时让学生初步认识确定一次函数表达式的一般步骤.议一议:怎样确定一次函数的表达式?处理方式:小组讨论交流,由小组代表讲一讲求一次函数的表达式步骤.教师用多媒体显示并强调:1. 设一次函数表达式;2. 根据已知条件列出有关方程;3. 解方程;4. 把求出的k,b代回表达式即可.说明:这种求函数解析式的方法叫做待定系数法.设计意图:结合上题,使学生发现、体会、总结出确定一次函数表达式的一般步骤,从中使学生学会探究数学问题的方法和过程,提高学生学习的能力.例2 在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.问题1:不挂物体时长14.5厘米,是什么意思.问题2:当所挂物体的质量为3千克时,弹簧长16厘米怎样理解?问题3:你能写出y与x之间的函数关系式吗?问题4:当所挂物体的质量为4千克时,弹簧的长度是多少?处理方式:学生讨论交流,使学生明白:当x=0时y=14.5;当x=3时,y=16.就相当于已知两点坐标(0,14.5),(3,16).然后有学生试着写出做题步骤,教师在对学生学习成果进行评价时进一步规范做题步骤.解:设y kx b=+,根据题意,得14.5=b①16=3k+b,②将14.5k=.b=代入②,得0.5所以在弹性限度内,0.514.5=+.y x当4y=⨯+=(厘米).x=时,0.5414.516.5即物体的质量为4千克时,弹簧长度为16.5厘米.设计意图:本题选取的是弹簧被拉长一个生活现象,从不同的情景中获取信息求一次函数表达式,并利用函数表达式解决实际问题. 通过问题的探究,使学生进一步体会函数表达式是刻画现实世界的一个很好的数学模型,体会一次函数的应用价值.预设:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y与x间的关系式.对此,我给予肯定.四、巩固训练,拓展提升1.若一次函数2=+的图象经过A(-1,1),则b=,该函数图象经过y x b点B(1,)和点C(,0).2.如图,直线l是一次函数y kx b=+的图象,填空:(1)b=,k=;(2)当30x=时,y=;(3)当30y=时,x=.3.已知直线l与直线2=-平行,且与y轴交于点y x(0,2),求直线l的表达式.处理方式:三名同学到黑板做题.教师巡视指导,关注困难生,对第2题要求写出做题步骤,第3题指导学生合理设出表达式.在学生练习结束后评价黑板学生做题情况.并予以鼓励.设计意图:三个练习意在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程.三个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题2,我让学生写出做题步骤并进行规范.对于问题3,我引导学生分析,平行的位置关系确定了k的值相等,直接设y=-2x+b代入(0,2)求b.学生出现解题格式不规范的情况,我给予示范,训练学生规范答题的习惯.五、回顾反思,提炼升华活动内容:通过本节课的学习你有何收获?有何困惑?有何感想?处理方式:多由几名学生讲述,学生相互补充、完善.教师给予引导。

4 4一次函数的应用(第一课时)导学案(表格式) 北师大版数学八年级上册

4 4一次函数的应用(第一课时)导学案(表格式)   北师大版数学八年级上册

交流:
例1】如图是直线m的正比例函数图象,试求这个正比例函数的表达式.
【例2】如图是直线n的一次函数图象,求这个一次函数表达式.
想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?并思考
一下,在上面的两个题目中,有哪些步骤是相同的,
你能否总结出求一次函数表达式的步骤
精讲:深入探究
【例3】某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3 s时物体的速度是多少?
1.易错点:
在求一次函数表达式时,将k,b的值代回,避免表达式中字母书写错误.
2.归纳小结:
求函数表达式的步骤
(1)设一次函数表达式.
(2)根据已知条件列出有关方程.
(3)解方程.
(4)把求出的k,b值代回到表达式中.
检测:
1.若一次函数y=2x+b的图象经过A(-1,1),则b= ,该
函数图象经过点B(1, )和点C( ,0).
2.如图,直线l是一次函数y=kx+b的图象,填空:
(1)b= ,k= ;
(2)当x=30时,y= ;。

北师大版八年级数学上册4.1一次函数的应用优秀教学案例

北师大版八年级数学上册4.1一次函数的应用优秀教学案例
2.学生通过合作交流,分享解题思路,互相学习,培养团队协作能力。
3.教师巡回指导,解答学生疑问,给予鼓励和评价,提高学生的自信心。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结一次函数在购物、出行等方面的应用。
2.学生总结一次函数的图像特征和性质,加深对一次函数的理解。
3.教师强调一次函数在实际生活中的重要性,激发学生的学习兴趣。
三、教学策略
(一)情景创设
1.利用多媒体展示购物、出行等实际场景,让学生身临其境,引发学生的学习兴趣。
2.设计具有挑战性和趣味性的数学问题,激发学生的求知欲。
3.以生活实例为载体,引导学生发现数学规律,感知数学与生活的紧密联系。( Nhomakorabea)问题导向
1.引导学生提出问题,激发学生的思考,培养学生的问题意识。
五、案例亮点
1.生活情境导入:通过购物、出行等生活场景的展示,引导学生发现数学问题,激发学生的学习兴趣,增强学生的数学应用意识。
2.问题导向:本节课以问题为导向,引导学生主动探究、积极思考,培养学生的问题意识和解决问题的能力。
3.小组合作:组织学生进行小组讨论,培养学生的团队协作能力和沟通能力,提高学生的学习效果。
(四)反思与评价
1.引导学生对学习过程进行反思,总结经验,提高学生的学习能力。
2.组织学生进行自我评价、同伴评价,培养学生的评价能力。
3.教师对学生的学习过程和结果进行多元化评价,激发学生的学习动力。
本节课的教学策略旨在充分发挥学生的主体作用,引导学生主动探究、积极思考,提高学生的数学素养。通过情景创设、问题导向、小组合作和反思与评价等策略,培养学生的问题意识、团队协作能力和自我评价能力,使学生在学习一次函数的应用过程中,既能掌握数学知识,又能培养良好的学习习惯和价值观。

北师大版数学八年级上册4《一次函数的应用》教案1

北师大版数学八年级上册4《一次函数的应用》教案1

北师大版数学八年级上册4《一次函数的应用》教案1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课主要让学生了解一次函数在实际生活中的应用,学会利用一次函数解决实际问题,培养学生的数学应用能力。

教材通过实例引导学生理解一次函数的定义,掌握一次函数的性质,并能运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,具备了一定的问题解决能力。

但部分学生对实际问题与数学知识的联系还不够明确,需要老师在教学中加以引导。

此外,学生对数学应用题的兴趣不高,教师应注重激发学生的学习兴趣,提高他们的数学应用意识。

三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。

2.学会利用一次函数解决实际问题,提高数学应用能力。

3.培养学生的团队协作能力和问题解决能力。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。

2.启发式教学法:引导学生主动探究一次函数的定义和性质,培养学生的思维能力。

3.小组合作学习:鼓励学生分组讨论,共同解决实际问题,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示一次函数的定义、性质及实际应用。

2.实例材料:收集一些与生活密切相关的一次函数实例,用于引导学生学习。

3.练习题:准备一些有关一次函数的应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一次函数在生活中的应用实例,如线性增长、直线距离等,引导学生关注一次函数的实际意义。

2.呈现(10分钟)(1)介绍一次函数的定义:y=kx+b(k≠0,k、b为常数)。

(2)讲解一次函数的性质:随着x的增大,y的值会按照k的的正负和大小变化。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,分析实例中的一次函数关系,并绘制函数图像。

教师巡回指导,解答学生疑问。

北师大版数学八年级上册4《一次函数的应用》教学设计1

北师大版数学八年级上册4《一次函数的应用》教学设计1

北师大版数学八年级上册4《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课的主要内容是一次函数在实际生活中的应用,通过实例让学生了解一次函数的性质,学会用一次函数解决实际问题。

教材通过丰富的实例,引导学生探究一次函数的图象和性质,培养学生的动手操作能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了函数的概念、一次函数的定义和图象,具备了一定的函数知识基础。

但学生对实际问题与函数关系的理解还不够深入,解决实际问题的能力有待提高。

因此,在教学过程中,教师需要关注学生的认知基础,通过实例引导学生将实际问题转化为函数问题,培养学生解决实际问题的能力。

三. 教学目标1.知识与技能:让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

2.过程与方法:通过实例分析,让学生掌握一次函数的图象和性质,提高学生解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生运用数学解决实际问题的意识。

四. 教学重难点1.重点:一次函数在实际生活中的应用。

2.难点:如何将实际问题转化为函数问题,并运用一次函数解决。

五. 教学方法1.情境教学法:通过生活实例,引导学生了解一次函数在实际中的应用。

2.启发式教学法:引导学生主动探究一次函数的图象和性质,培养学生解决问题的能力。

3.小组合作学习:让学生在小组内讨论实际问题,共同寻找解决方法,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示一次函数的图象和实例。

2.实例材料:准备一些实际问题,作为教学案例。

3.练习题:准备一些练习题,巩固学生对一次函数应用的理解。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与数量的关系等,引导学生思考这些实际问题是否可以用一次函数来表示。

2.呈现(10分钟)教师展示一次函数的图象,引导学生观察图象,了解一次函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2
-13
2
04211x
y
课题:一次函数的应用 (1)
【学习目标】了解两个条件可确定一次函数;能根据所给信息(图象、表格、实
际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.
【学习重点】经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数
法求一次函数的表达式,进一步发展数形结合的思想方法;
【学习难点】经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维
【使用说明和学法指导】在20分钟内完成预习学案,独立完成....
,相信自己,锻炼自己,诚实的对待学习.......
,对待自己。

了解探究学案,使得自己在课堂上能主动听课。

通过预习把自己的疑惑记录下来,以便在课堂上很好解决。

【预习案】1.一次函数y=kx+b 的图象如图所示,看图填空:
(1)当x=0时,y=____________,当x=____________时,y=0; (2)k=__________,b=____________;
(3)当x=5时,y=__________,当y=30时,x=___________.
2.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q (升)与流出时间t(分钟)的函数关系是( ).
A .t Q 2.0=
B .t Q 2.020-=
C .Q t 2.0=
D .Q t 2.020-=
3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y 元是行李质量x (千克)的一次函数,其图象如下图所示.
(1)写出y 与x 之间的函数关系式;
(2)旅客最多可免费携带多少千克行李?
【探究案】
实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x
的关系如图所示.
(1)这是一次多少米的赛跑?
(2)甲、乙二人谁先到达终点?
(3)甲、乙二人的速度分别是多少?
(4)求甲、乙二人y与x的函数关系式.
实际情境三:
在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量
x(千克)的一次函数,一根弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹簧长16cm。

写出y与x之间的关系式,并求所挂物体的质量为4kg时弹
【课堂小结】1、这节课的收获。

2、还有哪些疑惑。

【课堂检测】(5分钟)
1.如图,直线l 是一次函数b kx y +=的图象,求它的表达式.
2.若一次函数b x y +=2的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0).
3.如图,直线l 是一次函数b kx y +=的图象,填空:
(1)=b ,=k
(2)当30=x 时,=y ;
(3)当30=y 时,=x .
4.已知直线l 与直线x y 2-=平行,且与y 轴交于点(0,2),求直线l 的表达式.
5.已知直线b kx y +=经过点(
0,25)且与坐标轴围成的三角形的面积为4
25,求该直线的表达式.
【学习反思】。

相关文档
最新文档