高中数学等比数列专项训练题(含答案)
高中数学等比数列专项训练题(含答案)
高中数学等比数列专项训练题(含答案)一、单选题1.设是等比数列,且。
则()A。
12 B。
24 C。
30 D。
322.记S_n为等比数列{a_n}的前n项和.若a_5–a_3=12,a_6–a_4=24,则A。
2n–1 B。
2–2^(1–n) C。
2–2n–1 D。
2^(1–n)–13.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()=()A。
3699块 B。
3474块 C。
3402块 D。
3339块4.在等差数列().A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项5.数列,则()中。
若,中。
.记,则数列A。
2 B。
3 C。
4 D。
56.设比()为等比数列的前___,已知。
则公A。
3 B。
4 C。
5 D。
67.在公比为2的等比数列{a_n}中,前n项和为S_n,且S_7–2S_6=1,则a_1+a_5=()A。
5 B。
9 C。
17 D。
338.已知正项等比数列,则n为()满足,若,A。
5 B。
6 C。
9 D。
109.已知数列成等差数列,则()1.缺少选项,无法回答。
2.缺少选项,无法回答。
3.答案为B。
根据等比数列的通项公式,第n项为$a_n=a_1q^{n-1}$,代入式中可得$\frac{a_1(q^n-1)}{q-1}=S_n$。
4.答案为D。
由于等比数列的公比为正数,所以只有选项D成立。
5.缺少选项,无法回答。
6.缺少选项,无法回答。
7.答案为A。
由于等比数列的通项公式为$a_n=a_1q^{n-1}$,所以$\frac{a_{n+1}}{a_n}=q$,即$a_{n+1}=a_nq$。
代入式中可得$\frac{a_1(q^{n+1}-1)}{q-1}=S_{n+1}$。
等比数列练习题(有答案) 百度文库
一、等比数列选择题1.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .220202.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .323.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-4.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .25.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q << B .61a > C .121T > D .131T > 6.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6B .16C .32D .647.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:310.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989B .46656C .216D .3613.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .414.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12215.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .816.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9817.设数列{}n a ,下列判断一定正确的是( )A .若对任意正整数n ,都有24nn a =成立,则{}n a 为等比数列B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列C .若对任意正整数m ,n ,都有2m nm n a a +⋅=成立,则{}n a 为等比数列D .若对任意正整数n ,都有31211n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列18.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102319.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11620.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40B .81C .121D .242二、多选题21.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 22.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1423.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8324.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34225.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列26.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=27.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列C .数列{}2lg na是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-30.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 31.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=-- 32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <33.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1034.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.2.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q -=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 3.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 4.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 5.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 6.C 【分析】根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q,所以55678123()1232a a a a a a q ++=++⋅=⨯=.故选:C . 7.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 8.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 9.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---,所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 12.B 【分析】第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1666n n n a -=⨯=到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 13.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 14.A 【分析】根据29T T =得到761a =,再由2121512a a a q ==,求得1,a q 即可.【详解】设等比数列{}n a 的公比为q ,由29T T =得:761a =, 故61a =,即511a q =. 又2121512a a a q ==,所以91512q =, 故12q =, 所以()()211122123411...2n n n n n n n T a a a a a a q--⎛⎫=== ⎪⎝⎭,所以n T 的最大值为15652T T ==.故选:A. 15.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=,则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 17.C 【分析】根据等比数列的定义和判定方法逐一判断. 【详解】对于A ,若24nna =,则2nn a =±,+1+12n n a =±,则12n na a +=±,即后一项与前一项的比不一定是常数,故A 错误;对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2m nm n a a +⋅=可得0n a ≠,则+1+12m n m n a a +⋅=,所以1+1222n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;对于D ,由31211n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若()10,0n n na q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2210n n n n a a a a ++=≠,则数列{}n a 为等比数列;(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列;(4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 18.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 19.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 20.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C.二、多选题21.BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 22.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=,解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 23.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 24.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 25.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 26.BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC=, 所以2()3AB BE AB BC +=+, 所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-, 所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,114n nn n a a a a +--=-,所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 27.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.30.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误.当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 31.ABD 【分析】 由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 32.BCD 【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 33.AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.。
等比数列基础练习题及答案
等比数列基础练习题及答案一.选择题1.已知{an}是等比数列,a2=2,a5=,则公比q=4.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是7.已知数列{an}满足,其中λ为实常数,则数列{an} *n12.已知等比数列{an}中,a6﹣2a3=2,a5﹣2a2=1,则等比数列{an}的公比是15.在等比数列{an}中,,则tan=17.设等比数列{an}的前n项和为Sn,若=3,则= 222.在等比数列{an}中,若a3a4a5a6a7=243,则的值为2二.填空题28.已知数列{an}中,a1=1,an=2an﹣1+3,则此数列的一个通项公式是29.数列30.等比数列{an}的首项a1=﹣1,前n项和为Sn,若,则公比q等于 _________ .的前n项之和是22参考答案与试题解析一.选择题1.已知{an}是等比数列,a2=2,a5=,则公比q=4.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是7.已知数列{an}满足,其中λ为实常数,则数列{an} 数列测试题优能提醒:请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题:1.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于B2.设数列{an}的前n项和,则a8的值为A3.数列1,﹣3,5,﹣7,9,…的一个通项公式为A. an=2n﹣1C. an=nB. an=n D. an=nB4.已知数列?an?的前n项和为Sn,且Sn?2an?1,则a5? A.?16B.1C.31 D.32B5.在公比为整数的等比数列{an}中,如果a1+a4=18,a2+a3=12,那么该数列的前8项之和为C6.已知数列{an}满足:a1=1,an=2an﹣1+1,则a4=A.0 B. 1C.1 D. 15D7.设等差数列?an?的公差d不为0,a1?9d 若ak是a1与a2k的等比中项,则k?等差数列{an}中,已知a3?5,a2?a5?12,an?29,则n?__________. 1511.在等比数列?an?中,已知a1a2a3?5,a7a8a9?40,则a5a6a7?2012.已知数列{an}满足an?2n?1?2n?1,则数列{an}的前n 项和Sn?_______.Sn?2n?n2?113.在等差数列?an?中,已知a2?a7?a8?a9?a14?70,则a8?.1414.在数列?an?中,已知a1?a2?1,an?2?an?1?an815.已知?an?等差数列Sn为其前n项和.若a1??n?N?,则a*6 ?___________.1,S2?a3,则a21等差数列{an}中,已知a3?5,a2?a5?12,an?29,则n?__________ 1517.在各项均为正数的等比数列{an}中,若a3a8=9,则log3a1+log3a10218.已知{an}是首项a1=1,公差d=3的等差数列,如果an=2005,则序号n等于.66919.等比数列{an}中,已知a+a2+a3=7,a1a2a3=8,且{an}为递增数列,则a4820.已知三个数﹣7,a,1成等差数列,则a等于.﹣321.等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______-222.在等比数列{an}中,若,则公比q的值等于.﹣或123.等比数列{an}中,公比q?1,其前3项和S3?3a1,则q=?2考点:等比数列求和24.设数列{an},{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=___________?3525.若等比数列?an?满足a2a4?1,则a1a32a5?__________.1426.已知递增的等差数列?an?满足a1?1,a3?a2?4,则an=____?2n-127.s13设等差数列?an?的前n项和为Sn,若a7?7a4,则s7= .1328.设数列{an}的前n项和Sn?n2?n,则a7的值为__.1429.参考答案与试题解析一.选择题1.已知{an}是等比数列,a2=2,a5=,则公比q=4.已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是7.已知数列{an}满足,其中λ为实常数,则数列{an} *n。
2023高考数学复习专项训练《等比数列》(含答案)
2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。
高中数学--数列大题专项训练(含详解)
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
高考等比数列专题及答案doc
一、等比数列选择题1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-2.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n =C .13(1)n a n n =--D .{}3n S 是等比数列5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n6.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>07.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项8.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( )A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f9.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .3210.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .311.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .612.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 13.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9B .10C .11D .1214.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .815.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()*122n n a S n N ++=∈,则满足2100111100010n nS S 的n 的最大值为( ). A .7B .8C .9D .1016.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202017.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( ) A .2 B .1或2 C .-2或2 D .-2或1或2 18.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定19.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74 D .15820.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 二、多选题21.题目文件丢失!22.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列 23.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列24.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩25.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T27.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-28.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值29.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 30.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列31.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为n S ,则( )A .2qB .2nn a = C .102047S = D .12n n n a a a +++<32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <33.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列C .S 8=510D .数列{lga n }是公差为2的等差数列34.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;35.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.A 【分析】由等比数列的通项公式可计算得出()6456135a a a q a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.【详解】由6326456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.故选:A. 3.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=,所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 5.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 7.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a q a -===,所以12q =, 则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n=或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B.. 8.B 【分析】根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】解:根据题意得该单音构成公比为因为第六个单音的频率为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =. 所以第八个单音的频率为1262f f =故选:B. 9.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q -=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 10.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 11.C 【分析】根据等比数列的通项公式求解即可.由题意可得等比数列通项5111122n n n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C 12.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 13.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 14.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=.15.C 【分析】根据()*122n n a S n N ++=∈可求出na的通项公式,然后利用求和公式求出2,n n S S ,结合不等式可求n 的最大值. 【详解】1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,212a =;则{}n a 是首项为1,公比为12的等比数列,100111111000210n⎛⎫<+< ⎪⎝⎭,1111000210n⎛⎫<< ⎪⎝⎭,则n 的最大值为9. 故选:C 16.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.17.C 【分析】设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】设等比数列{}n a 的公比为q , 当1q =时,4121422S a S a ==,不合题意;当1q ≠时,()()41424222111115111a q S q q q S qa q q---===+=---,解得2q =±. 故选:C. 18.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 19.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 20.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.二、多选题 21.无22.AD 【分析】利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】对于A ,若{}n a 是等差数列,设公差为d ,则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则11111n n n n n n n n n na q a A a a a qq a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 23.AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q -=,A .23513a a q a a ==,1a ,3a ,5a 成等比数列,正确;B ,32a q a =,363aq a =,在1q ≠时,两者不相等,错误;C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .36936a a q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列. 24.ABD 【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-,可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD.【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 25.CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 26.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 27.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.28.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n n a a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】由题意,当1n =时,1122S a =-,解得12a =,当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n na q a a a q +-⨯--+++===--,故选项C 错误; 6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 29.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 30.BCD 【分析】根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】当0n S >时,取2111222222n d d dd d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r+->1112222da ra dr rn N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,11n n x x q-=,若1q >,则对任意正数r ,当11log 1q r n x ⎛⎫+>+ ⎪ ⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立,若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去;若()1,1q ∈-,取0a =,1log 11q rN x ⎡⎤=++⎢⎥⎣⎦, 当n N >时,11110n n rx x q x r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N >=时,110n nr S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题.31.ABD【分析】由条件可得32242q q q =+,解出q ,然后依次计算验证每个选项即可. 【详解】由题意32242q q q =+,得220q q --=,解得2q (负值舍去),选项A 正确; 1222n n n a -=⨯=,选项B 正确;()12212221n n n S +⨯-==--,所以102046S =,选项C 错误;13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.故选:ABD【点睛】本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 32.BCD【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12n n a +=,即21n n a =-, 又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212121212121n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确.故选:BCD .【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题.33.BC【分析】先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项.【详解】由题意,根据等比中项的性质,可得a 2a 3=a 1a 4=32>0,a 2+a 3=12>0,故a 2>0,a 3>0.根据根与系数的关系,可知a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根.解得a 2=4,a 3=8,或a 2=8,a 3=4.故必有公比q >0,∴a 12a q=>0. ∵等比数列{a n }是递增数列,∴q >1.∴a 2=4,a 3=8满足题意.∴q =2,a 12a q==2.故选项A 不正确. a n =a 1•q n ﹣1=2n .∵S n ()21212n-==-2n +1﹣2.∴S n +2=2n +1=4•2n ﹣1.∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确.S 8=28+1﹣2=512﹣2=510.故选项C 正确.∵lga n =lg 2n =n .∴数列{lga n }是公差为1的等差数列.故选项D 不正确.故选:BC【点睛】本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.34.ABD【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列,若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.故选:ABD .【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AD【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案.【详解】 98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”; 67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”.故选:AD .【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。
高考数学等比数列习题及答案百度文库
一、等比数列选择题1.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312C .15D .63.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( ) A .3B .505C .1010D .20205.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2506.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .37.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n nb b +,则b 2020=( )A .22017B .22018C .22019D .220208.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -9.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4B .5C .4或5D .5或610.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .411.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-12.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1613.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12214.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3715.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1 B .2 C .4 D .8 16.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定17.正项等比数列{}n a 的公比是13,且241a a =,则其前3项的和3S =( ) A .14B .13C .12D .1118.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列19.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102320.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T二、多选题21.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1422.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 23.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-124.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列25.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25 B .26C .27D .2826.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( )A .8B .12C .-8D .-1227.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8328.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列29.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++30.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=31.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 32.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =34.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;35.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q =,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 2.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =, 2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 3.D 【分析】由2n n S a =-利用11,1,2nn n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由2(1)0n n nS T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以221131(1)1022n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C 5.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 6.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=,则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 7.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.8.D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭.故选:D. 9.C 【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解. 【详解】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值. 故选:C. 10.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=, 所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 11.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 12.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 13.A 【分析】根据29T T =得到761a =,再由2121512a a a q ==,求得1,a q 即可.【详解】设等比数列{}n a 的公比为q ,由29T T =得:761a =, 故61a =,即511a q =. 又2121512a a a q ==,所以91512q =, 故12q =, 所以()()211122123411...2n n n n n n n T a a a a a a q--⎛⎫=== ⎪⎝⎭,所以n T 的最大值为15652T T ==.故选:A. 14.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算.15.C 【分析】根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】因为数列{}n a 是等比数列,由17138a a a =,得378a =,所以72a =,因此231174a a a ==.故选:C. 16.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 17.B 【分析】根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以231a =. 所以31a =,211a q ∴=,因为13q =,所以19a =. 因此()3131131a q S q-==-.故选:B 18.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23n n n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D . 【点睛】关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 19.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 20.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确; 因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.二、多选题21.BD【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 22.ABC 【分析】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.【详解】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,所以123n n a -=⨯,在第3分钟内,该计算机新感染了3132318a -=⨯=个文件,故选项A 正确;经过5分钟,该计算机共有()551234521311324313a a a a a ⨯-+++++=+==-个病毒文件,故选项B 正确;10分钟后,计算机感染病毒的总数为()101051210213111310132a a a ⨯-++++=+=>⨯-,所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得n a .23.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确;若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法 (1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.24.AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q -=,A .23513a a q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32a q a =,363a q a =,在1q ≠时,两者不相等,错误; C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .36936a aq a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列. 25.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 26.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】5721624a q q a ==⇒=±, 当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 27.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 28.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确;因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 29.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 30.BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以 231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD 【点晴】本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 31.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 32.ABC 【分析】由1418a a +=,2312a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得1a ,q ,可得n a ,n S ,进而判断出结论.【详解】∵1418a a +=,2312a a +=且公比q 为整数,∴31118a a q +=,21112a q a q +=,∴12a =,2q或12q =(舍去)故A 正确, ()12122212n n n S +-==--,∴8510S =,故C 正确;∴122n n S ++=,故数列{}2n S +是等比数列,故B 正确;而lg lg 2lg 2nn a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.故选:ABC . 【点睛】本题主要考查了等比数列的通项公式和前n 项和公式以及综合运用,属于中档题. 33.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.故选:AC.【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.ABD【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列,若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.故选:ABD .【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列,2213a a a ∴=,()461r ∴=+, 解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
高中数学等比数列10例(附答案)
高中数学等比数列10例一.选择题(共10小题)1.已知等比数列{a n}的前n项和为S n,S4=1,S8=3,则a9+a10+a11+a12=()A.8 B.6 C.4 D.22.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 3.已知正项等比数列{a n}满足a3=1,a5=,则a1的值为()A.4 B.2 C.D.4.在等差数列{a n}中,已知a4,a7是函数f(x)=x2﹣4x+3的两个零点,则{a n}的前10项和等于()A.﹣18 B.9 C.18 D.205.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里B.48里C.36里D.24里6.设{a n}是等比数列,则下列结论中正确的是()A.若a1=1,a5=4,则a3=﹣2 B.若a1+a3>0,则a2+a4>0C.若a2>a1,则a3>a2 D.若a2>a1>0,则a1+a3>2a27.已知等比数列{a n}的前n项和为S n,a1+a3=,且a2+a4=,则等于()A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣18.等比数列{a n}的前n项和为,则r的值为()A.B.C.D.9.已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或10.已知等比数列{a n}满足a1+a2=6,a4+a5=48,则数列{a n}前8项的和S n=()A.510 B.126 C.256 D.512高中数学等比数列10例参考答案与试题解析一.选择题(共10小题)1.已知等比数列{a n}的前n项和为S n,S4=1,S8=3,则a9+a10+a11+a12=()A.8 B.6 C.4 D.2【解答】解:∵等比数列{a n}的前n项和为S n,S4=1,S8=3,由等比数列的性质得S4,S8﹣S4,S12﹣S8成等比数列,∴1,3﹣1=2,S12﹣S8=a9+a10+a11+a12成等比数列,∴a9+a10+a11+a12=4.故选:C.2.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.3.已知正项等比数列{a n}满足a3=1,a5=,则a1的值为()A.4 B.2 C.D.【解答】解:∵正项等比数列{a n}满足a3=1,a5=,∴,解得,∴a1的值为2.故选:B.4.在等差数列{a n}中,已知a4,a7是函数f(x)=x2﹣4x+3的两个零点,则{a n}的前10项和等于()A.﹣18 B.9 C.18 D.20【解答】解:a4,a7是函数f(x)=x2﹣4x+3的两个零点,由韦达定理可知:a4+a7=4,,故选:D.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里B.48里C.36里D.24里【解答】解:由题意得,每天行走的路程成等比数列{a n},且公比为,∵6天后共走了378里,∴S6=,解得a1=192,∴第三天走了a3=a1×=192×=48,故选:B.6.设{a n}是等比数列,则下列结论中正确的是()A.若a1=1,a5=4,则a3=﹣2 B.若a1+a3>0,则a2+a4>0C.若a2>a1,则a3>a2 D.若a2>a1>0,则a1+a3>2a2【解答】解:A.由等比数列的性质可得:=a1•a5=4,由于奇数项的符号相同,可得a3=2,因此不正确.B.a1+a3>0,则a2+a4=q(a1+a3),其正负由q确定,因此不正确;C.若a2>a1,则a1(q﹣1)>0,于是a3﹣a2=a1q(q﹣1),其正负由q确定,因此不正确;D.若a2>a1>0,则a1q>a1>0,可得a1>0,q>1,∴1+q2>2q,则a1(1+q2)>2a1q,即a1+a3>2a2,因此正确.故选:D.7.已知等比数列{a n}的前n项和为S n,a1+a3=,且a2+a4=,则等于()A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣1【解答】解:∵等比数列{a n}的前n项和S n,且a1+a3=,a2+a4=,∴两式相除可得公比q=,∴a1=2,∴a n==,S n==4(1﹣),∴=2n﹣1,故选:D.8.等比数列{a n}的前n项和为,则r的值为()【解答】解:当n≥2时,a n=S n﹣S n﹣1=32n﹣1+r﹣32n﹣3﹣r=8•32n﹣3,当n=1时,a1=S1=32﹣1+r=3+r,∵数列是等比数列,∴当a1满足a n=8•32n﹣3,即8•32﹣3=3+r=,即r=﹣,故选:B.9.已知等比数列{a n}公比为q,其前n项和为S n,若S3、S9、S6成等差数列,则q3等于()A.﹣ B.1 C.﹣或1 D.﹣1或【解答】解:若S3、S9、S6成等差数列,则S3+S6=2S9,若公比q=1,则S3=3a1,S9=9a1,S6=6a1,即3a1+6a1=18a1,则方程不成立,即q≠1,则=,即1﹣q3+1﹣q6=2﹣2q9,即q3+q6=2q9,即1+q3=2q6,即2(q3)2﹣q3﹣1=0,解得q3=,故选:A.10.已知等比数列{a n}满足a1+a2=6,a4+a5=48,则数列{a n}前8项的和S n=()【解答】解:由a1+a2=6,a4+a5=48得得a1=2,q=2,则数列{a n}前8项的和S8==510,故选:A.。
高考数学等比数列习题及答案百度文库
一、等比数列选择题1.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±2.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20073.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+( ) A1B1C.3-D.3+4.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n6.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭7.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭8.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .169.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:310.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:l g38≈1.58 A .34B .35C .36D .3711.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n+的最小值为( ) A .53B .32C .43D .11612..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C .2-D13.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .314.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4B .-4C .±4D .不确定15.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 16.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-17.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .618.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( ) A .312或112B .312 C .15D .619.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102320.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8二、多选题21.题目文件丢失!22.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列23.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-24.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >25.关于递增等比数列{}n a ,下列说法不正确的是( )A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 26.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( )A .113()2n n a -=⋅-B .36nn S a =+C .若数列{}n a 中存在两项p a ,s a 3a =,则19p s +的最小值为83D .若1n n t S m S ≤-≤恒成立,则m t -的最小值为11627.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n n aC .21nn S =- D .121n n S -=-28.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 29.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( ) A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩30.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍31.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 32.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---33.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--34.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列35.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于198【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩, 故选:C. 2.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 3.D 【分析】 根据1a ,312a ,22a 成等差数列可得3121222a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将91078a a a a ++化简即可求解.【详解】因为{}n a 是正项等比数列且1a ,312a ,22a 成等差数列, 所以3121222a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,解得:1q =+1q =(222291078787813a a a q a q q a a a a ++====+++,故选:D 4.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列, 所以1111()222n n n a -==, 2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 5.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n ,故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 7.D 【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列.当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 8.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 9.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 10.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =, 所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 11.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 12.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 13.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可 【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 14.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 15.D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 16.D利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 17.C 【分析】根据等比数列的通项公式求解即可. 【详解】由题意可得等比数列通项5111122nn n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n =故选:C 18.B 【分析】首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】正项等比数列{}n a 中,2432a a a =+∴,2332a a =+∴,解得32a =或31a =-(舍去) 又112a =, 2314a q a ==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 19.A根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 20.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C .二、多选题 21.无22.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 23.BD 【分析】根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,逐项判断选项可得答案. 【详解】由638a a =,可得3338q a a =,则2q,当首项10a <时,可得{}n a 为单调递减数列,故A 错误;由663312912S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11122121n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;故选:BD . 【点睛】关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求和公式. 24.ABC 【分析】由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.【详解】由题意,设数列{}n a 的公比为q ,因为11n n a a q -=,可得111(1)0n n n a a a qq -+-=->,当10a >时,1q >,此时101nn a a +<<, 当10a <时,101,1nn a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】本题主要考查了等比数列的单调性.属于较易题. 25.BCD 【分析】利用等比数列单调性的定义,通过对首项1a ,公比q 不同情况的讨论即可求得答案. 【详解】A ,当101a q >⎧⎨>⎩时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;D ,若10a >,11nn a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD . 【点睛】本题考查等比数列的单调性的判断,意在考查对基础知识的掌握情况,属基础题. 26.ABD 【分析】根据等差中项列式求出12q =-,进而求出等比数列的通项和前n 项和,可知A ,B 正确;3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,可知19p s +的最小值为114,C 不正确;利用1nn y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】设等比数列{}n a 的公比为q ,由13a =,21344a a a -=+得243343q q -⨯=+⨯,解得12q =-,所以113()2n n a -=⋅-,13(1())1221()121()2n n n S --⎛⎫==-- ⎪⎝⎭--;1111361()66()63()63222n n n n n S a -⎛⎫=--=--=+⋅-=+ ⎪⎝⎭;所以A ,B 正确;3a =,则23p sa a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,所以114p s q q q --=,所以6p s +=,则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,此时19145p s +=或114或194或465;C 不正确,122,2121()2122,2nn n nn S n ⎧⎛⎫+⎪ ⎪⎪⎝⎭⎛⎫=--=⎨ ⎪⎝⎭⎛⎫⎪- ⎪⎪⎝⎭⎩为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3[,2)2n S ∈,又1n n y S S =-关于n S 单调递增,所以当n 为奇数时,138(,]23nn S S -∈,当n 为偶数时,153[,)62n n S S -∈,所以83m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 27.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 28.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断.【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 29.ABD 【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-,可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 30.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=,则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 31.AC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =.3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 32.AD 【分析】由已知可得11222n n n n S n S n S n S n ++++==++,结合等比数列的定义可判断A ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由1231,1,3a a a ===可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故B 错误;由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即32211111a a a a ++≠++,故C 错; 因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD .【点睛】本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前n 项和,考查了分组求和.33.AB【分析】由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可.【详解】123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列又∵11a =,∴()11332n n a a -+=+,∴123n n a +=-,∴313a =,∴()2412323412n n n S n n +-=-=---.故选:AB.34.BCD【分析】 根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D.【详解】当0n S >时,取2111222222n d d d d d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r+->1112222d a ra dr r n N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错;对于B ,11n n x x q -=,若1q >,则对任意正数r , 当11log 1q r n x ⎛⎫+>+ ⎪ ⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立, 若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去; 若()1,1q ∈-,取0a =,1log 11q r N x ⎡⎤=++⎢⎥⎣⎦, 当n N >时,11110n n r x x q x r x --=<=,故B 正确;对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N >=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题.35.ABD【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>. 11a >,0q ∴>. 又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
等比数列专题(有答案) 百度文库
一、等比数列选择题1.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .162.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .324.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .25.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312C .15D .6 6.若1,a ,4成等比数列,则a =( ) A .1B .2±C .2D .2-7.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >11.题目文件丢失!12.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .813.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .214.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 15.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99216.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .617.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列18.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092 B .2047C .2046D .102319.题目文件丢失!20.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2±B .2C .3±D .3二、多选题21.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <22.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( )A .{}n a 是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+23.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34-B .23-C .43-D .32-24.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 25.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2826.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34227.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列C .数列{}2lg na是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值30.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-31.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=32.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--33.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列34.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S35.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98n a n n =+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .5【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 2.A 【分析】分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】设等比数列{}n a 的公比为q ,则2750a a q =>,由等比中项的性质可得275964a a a ==,因此,78a =.故选:A. 3.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦,即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---,令210t q =>,则()222421211t t t q q-=-=--+, 所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 4.B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B. 5.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =, 2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 6.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 7.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a qa -===,所以12q =, 则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222n n +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 8.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可.【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 9.D 【分析】利用已知条件求得1,a q ,由此求得1a q +. 【详解】依题意222111131912730a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩,所以14a q +=.故选:D 10.B 【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q =,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小.11.无12.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 13.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 14.D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-.故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 15.C 【分析】利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,所以,41049104561022222212a a a -+++=++==--,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=故选:C 【点睛】解题关键在于利用等比数列的求和公式进行求解,属于基础题 16.C 【分析】根据等比数列的通项公式求解即可. 【详解】由题意可得等比数列通项5111122nn n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C 17.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23n n n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D . 【点睛】关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 18.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A.19.无20.D 【分析】根据等比数列定义知3813q =,解得答案.【详解】4个数成等比数列,则3813q =,故3q =.故选:D.二、多选题21.BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 22.ABC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 正确; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,则3856a a a a +>+,即D 不正确; 故选:ABC. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 23.BD 【分析】先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+4n n a b ∴=-数列{}n b 有连续四项在集合{-50,-20,22,40,85}中∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中又数列{}n a 是公比为q 的等比数列,∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,54-,81或81,54-,36,24-.∴363242q ==--或243236q -==-. 故选:BD 24.ABC 【分析】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.【详解】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,所以123n n a -=⨯,在第3分钟内,该计算机新感染了3132318a -=⨯=个文件,故选项A 正确;经过5分钟,该计算机共有()551234521311324313a a a a a ⨯-+++++=+==-个病毒文件,故选项B 正确;10分钟后,计算机感染病毒的总数为()101051210213111310132a a a ⨯-++++=+=>⨯-,所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得n a .25.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 26.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 27.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=,则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.AB 【分析】由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定20191a >,202001a <<,从可判断各选项.【详解】当0q <时,22019202020190a a a q =<,不成立;当1q ≥时,201920201,1a a >>,20192020101a a -<-不成立;故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;2201920212020110a a a -=-<,故B 正确;因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 30.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.31.ABD 【分析】由已知关系式可求1a 、n a ,进而求得{}21na n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =-,而122211a ==⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21n a n +通项公式为211(21)(21)2121n n n n =-+--+,∴111111111121 (133557232121212121)n nS n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD【点睛】关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21na n +的通项公式,利用裂项法求前n 项和n S . 32.AB 【分析】由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列又∵11a =,∴()11332n n a a -+=+,∴123n n a +=-,∴313a =,∴()2412323412n n nS n n +-=-=---.故选:AB. 33.BCD 【分析】根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】当0n S >时,取2111222222n d d dd d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r+->1112222da ra dr rn N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,11n n x x q-=,若1q >,则对任意正数r ,当11log 1q r n x ⎛⎫+>+ ⎪ ⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立,若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去;若()1,1q ∈-,取0a =,1log 11q rN x ⎡⎤=++⎢⎥⎣⎦,当n N >时,11110n n rx x q x r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N >=时,110n nr S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题. 34.ABC 【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 35.AD 【分析】计算到12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,根据“谷值点”的定义依次判断每个选项得到答案.【详解】98n a n n =+-,故12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =. 故23a a <,3不是“谷值点”;12a a >,32a a >,故2是“谷值点”; 67a a >,87a a >,故7是“谷值点”;65a a <,5不是“谷值点”. 故选:AD .【点睛】本题考查了数列的新定义问题,意在考查学生的计算能力和应用能力.。
等比数列练习题(有答案) 百度文库
一、等比数列选择题1.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭2.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:33.已知等比数列{}n a 的前n 项和为,n S 且639S S =,则42aa 的值为( )AB .2C.D .44.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4B .5C .8D .155.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q <<B .61a >C .121T >D .131T >6.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13nS n = C .13(1)n a n n =--D .{}3n S 是等比数列7.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f -C .第五个单音的频率为162fD .第八个单音的频率为1122f 11.题目文件丢失!12.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .313.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-B .2-或1C .1D .214.设数列{}n a 的前n 项和为n S ,且()*2n n S a n n N =+∈,则3a=( )A .7-B .3-C .3D .715.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >16.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .217.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6418.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1B .2C .4D .819.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-20.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里二、多选题21.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40022.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---23.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥24.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <25.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 26.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >27.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥28.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列 B .数列{}1n n a a +是等比数列 C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 29.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 30.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---31.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-32.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 33.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( )A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=34.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S35.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.2.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 3.D 【分析】设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q,故2424a q a ==. 【详解】解:设等比数列{}n a 的公比为q ,因为639S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3456123a a a q a a a ++=++,所以38q =,故2q,所以2424a q a ==. 故选:D. 4.C 【分析】由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解.【详解】 ∵a 3a 11=4a 7, ∴27a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 5.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 6.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确;113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 7.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 8.B 【分析】首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】设等比数列{}n a 为q ,则等比数列的公比414141328a q a -===,所以12q =,则其通项公式为:116113222n n n n a a q ---⎛⎫=⋅=⨯= ⎪⎝⎭,所以()()5611542212622222nn +n n n n n T a aa ---==⨯==,令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B. . 9.D 【分析】利用已知条件求得1,a q ,由此求得1a q +. 【详解】依题意222111131912730a a q a q a aq q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩,所以14a q +=. 故选:D10.B 【分析】根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】解:根据题意得该单音构成公比为因为第六个单音的频率为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =. 所以第八个单音的频率为1262f f =故选:B.11.无12.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】因为478a a ⋅=, 则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 13.A 【分析】由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,所以()2131416a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 14.A 【分析】先求出1a ,再当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减后化简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出n a ,可求得3a 的值【详解】解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减得1221n n n a a a -=-+,即121n n a a -=-,所以112(1)n n a a --=-,所以数列{}1n a -是以2-为首项,2为公比的等比数列,所以1122n n a --=-⨯,所以1221n n a -=-⨯+,所以232217a =-⨯+=-,故选:A 15.B【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q=,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 16.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 17.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 18.C 【分析】根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】因为数列{}n a 是等比数列,由17138a a a =,得378a =,所以72a =,因此231174a a a ==.故选:C. 19.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 20.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D .二、多选题21.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 22.BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,23.ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b < 又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 24.BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24nn a =,数列{}2na的前n 项和为()141444143n n n S +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 25.ABC 【分析】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.【详解】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,所以123n n a -=⨯,在第3分钟内,该计算机新感染了3132318a -=⨯=个文件,故选项A 正确;经过5分钟,该计算机共有()551234521311324313a a a a a ⨯-+++++=+==-个病毒文件,故选项B 正确;10分钟后,计算机感染病毒的总数为()101051210213111310132a a a ⨯-++++=+=>⨯-,所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得n a .26.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确; 对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 27.ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132nn n S -==--,所以131+2+2(3+3)132nn n S -==-, 因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力. 28.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 29.AC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 30.AD 【分析】由已知可得11222n n n n S n S n S n S n ++++==++,结合等比数列的定义可判断A ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由1231,1,3a a a ===可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D.【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故B 错误;由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即32211111a a a a ++≠++,故C 错; 因为1222n n S n +=-,所以2311222...2221222 (2)2n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前n 项和,考查了分组求和.31.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠,当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 33.ABD 【分析】由已知关系式可求1a 、n a ,进而求得{}21na n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =-,而122211a ==⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21n a n +通项公式为211(21)(21)2121n n n n =-+--+,∴111111111121 (133557232121212121)n nS n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=,故选:ABD【点睛】关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21n a n +的通项公式,利用裂项法求前n 项和n S . 34.ABC【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D.【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确.故选:ABC .【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.35.BC【分析】根据等差中项的性质和等差数列的求和公式可得出结果.【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC.【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.。
高中数学《等差数列、等比数列》专题练习题(含答案解析)
高中数学《等差数列、等比数列》专题练习题(含答案解析)一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8 C [设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d a 1+4d24,6a 1+6×52d =48,解得d =4.故选C .]2.设公比为q (q >0)的等比数列{}a n 的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( )A .-2B .-1C .12D .23B [S 4-S 2=a 3+a 4=3a 4-3a 2 ,即3a 2+a 3-2a 4=0,即3a 2+a 2q -2a 2q 2=0 ,即2q 2-q -3=0,解得q =-1 (舍)或q =32,当q =32时,代入S 2=3a 2+2,得a 1+a 1q =3a 1q +2,解得a 1=-1,故选B .]3.(2018·莆田市3月质量检测)等比数列{a n }的前n 项和为S n ,已知S 2=a 1+2a 3,a 4=1,则S 4=( )A .78B .158C .14D .15D [由S 2=a 1+2a 3,得a 1+a 2=a 1+2a 3,即a 2=2a 3,又{a n }为等比数列,所以公比q =a 3a 2=12,又a 4=a 1q 3=a 18=1,所以a 1=8.S 4=a 11-q 41-q=8×⎝ ⎛⎭⎪⎫1-1161-12=15.故选D .]4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13C [∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.]5.(2018·衡水模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m+1=21,则m 等于( )A .3B .4C .5D .6C [在等比数列中,因为S m -1=5,S m =-11,S m +1=21,所以a m =S m -S m -1=-11-5=-16,a m +1=S m +1-S m =32.则公比q =a m +1a m=32-16=-2,因为S m =-11, 所以a 1[12m ]1+2=-11,①又a m +1=a 1(-2)m =32,② 两式联立解得m =5,a 1=-1.] 6.等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B .⎩⎨⎧⎭⎬⎫1,12C .⎩⎨⎧⎭⎬⎫12D .⎩⎨⎧⎭⎬⎫0,12,1B [a na 2n =a 1n -1da 12n -1d =a 1-d +nda 1-d +2nd,若a 1=d ,则a na 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1=d ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.] 7.已知等比数列{a n }中,a 2a 10=6a 6,等差数列{b n }中,b 4+b 6=a 6,则数列{b n }的前9项和为( )A .9B .27C .54D .72B [根据等比数列的基本性质有a 2a 10=a 26=6a 6,a 6=6,所以b 4+b 6=a 6=6,所以S 9=9b 1+b 92=9b 4+b 62=27.]8.(2018·安阳模拟)正项等比数列{a n }中,a 2=8,16a 24=a 1a 5,则数列{a n }的前n 项积T n 中的最大值为( )A .T 3B .T 4C .T 5D .T 6A [设正项等比数列{a n }的公比为q (q >0),则16a 24=a 1a 5=a 2a 4=8a 4,a 4=12,q 2=a 4a 2=116,又q >0,则q =14,a n =a 2q n -2=8×⎝ ⎛⎭⎪⎫14n -2=27-2n ,则T n =a 1a 2…a n =25+3+…+(7-2n )=2n (6-n ),当n =3时,n (6-n )取得最大值9,此时T n 最大,即(T n )max =T 3,故选A .]二、填空题9.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 3-S 2S 5-S 3的值为________.2 [根据等比中项有a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ),化简得a 1=-4d ,S 3-S 2S 5-S 3=a 3a 4+a 5=a 1+2d 2a 1+7d =-2d -d=2.] 10.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________.10或11 [由na n +1-(n +1)a n =2n 2+2n =2n (n +1),两边同时除以n (n +1),得a n +1n +1-a nn =2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a nn =-40+(n -1)×2=2n -42,所以a n=2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b2a=--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等,所以n 取10或11时,a n 取最小值.]11.已知正项等差数列{a n }的前n 项和为S n ,S 10=40,则a 3·a 8的最大值为________. 16 [S 10=10a 1+a 102=40⇒a 1+a 10=a 3+a 8=8,a 3·a 8≤⎝ ⎛⎭⎪⎫a 3+a 822=⎝ ⎛⎭⎪⎫822=16, 当且仅当a 3=a 8=4时“=”成立.]12.已知函数{a n }满足a n +1+1=a n +12a n +3,且a 1=1,则数列⎩⎨⎧⎭⎬⎫2a n +1的前20项和为________.780 [由a n +1+1=a n +12a n +3得2a n +3a n +1=1a n +1+1,即1a n +1+1-1a n +1=2,∴数列⎩⎨⎧⎭⎬⎫1a n +1是以12为首项,2为公差的等差数列,则1a n +1=2n -32,∴数列⎩⎨⎧⎭⎬⎫2a n +1是以1为首项,4为公差的等差数列,其前20项的和为20+10×19×4=780.]三、解答题13.(2018·德阳二诊)已知数列{a n }满足a 1=1,a n +1=2a n +1 . (1)求证:数列{a n +1}为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . [解] (1)∵a n +1=2a n +1,∴a n +1+1=2(a n +1). 又a 1=1,∴a 1+1=2≠0,a n +1≠0.∴{a n +1}是以2为首项,2为公比的等比数列. (2)由(1)知a n =2n -1, ∴2na n a n +1=2n2n -12n +1-1=12n -1-12n +1-1,∴T n =12-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1.14.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.[解] (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21. (2)令(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3.由以上结论得a n +1+3=(2a n +3)+3=2(a n +3), 所以数列{a n +3}是首项为6,公比为2的等比数列, 因此存在λ=3,使得数列{a n +3}为等比数列,所以a n+3=(a1+3)×2n-1,a n=3(2n-1)(n∈N*).。
高三数学等比数列试题
高三数学等比数列试题1.已知数列{an }满足a1=,且对任意的正整数m,n,都有am+n=a m·a n,若数列{a n}的前n项和为Sn ,则Sn等于()A.2-()n-1B.2-()nC.2-D.2-【答案】D【解析】令m=1,得an+1=a1·a n,即=a1=,可知数列{a n}是首项为a1=,公比为q=的等比数列,于是Sn==2-.2.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵树是前一天的2倍,则需要的最少天数等于 .【答案】6【解析】【考点】本题主要考查等比数列的概念、前n项和及其应用.3.一种产品的年产量第一年为件,第二年比第一年增长,第三年比第二年增长,且,如果年平均增长为,则有()A.B.C.D.【答案】B【解析】依题意,∴,,即,故得B.4.在等比数列{an }中,,公比|q|≠1,若am= a1·a2· a3· a4· a5,则m=()A.9B.10C.11D.12【答案】C【解析】因为等比数列{an }中,,公比|q|≠1,若am= a1·a2· a3· a4· a5,则利用的本硕连读通项公式得到m=11,选C.5.设Sn 是数列{an}的前n项和,a1=﹣1,an+1=SnSn+1,则Sn=_____.【答案】【解析】因为,所以,所以,即,又,即,所以数列是首项和公差都为的等差数列,所以,所以.【考点】数列的递推关系式及等差数列的通项公式.【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到,,确定数列是首项和公差都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方法的积累与总结,属于中档试题.6.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲乙丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比乙车更省油.【答案】D【解析】对于A,消耗升汽油,乙车行驶的距离比千米小得多,故错;对于B, 以相同速度行驶相同路程,三辆车中甲车消耗汽油最少,故错;对于C, 甲车以千米/小时的速度行驶小时,消耗升汽油, 故错;对于D,车速低于千米/小时,丙的燃油效率高于乙的燃油效率,用丙车比用乙车量多省油,故对.故选D.【考点】1、数学建模能力;2、阅读能力及化归思想.7.吴敬《九章算法比类大全》中描述:远望魏巍塔七层,红灯向下成倍增,共灯三百八十一,请问塔顶几盏灯?()A.B.C.D.【答案】C【解析】设塔顶盏灯,则,解得.故选C.8.已知数列满足,其中为的前项和.(1)求及数列的通项公式;(2)若数列满足,且的前项和为,求的最大值和最小值.【答案】(1),;(2)时,时.【解析】(1)根据条件求,即得,根据和项与通项关系将条件转化为和项递推关系,再根据等比数列定义以及通项公式可得数列的通项公式;(2)是一个等比数列,根据等比数列求和公式可得,根据奇偶项分类讨论的最大值和最小值.试题解析:(1)数列满足,则,即数列为以1为首项,以为公比的等比数列,所以,所以.(2)在数列中,,为的前项和,则,显然时,时.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.9.设等比数列满足,,则__________.【答案】8【解析】等比数列满足,,解得,则,故填8.10.已知正项等比数列,第1项与第9项的等比中项为,则()A.B.C.D.【答案】C【解析】正项等比数列,第1项与第9项的等比中项为,故得到故答案为C。
高考数学等比数列习题及答案
一、等比数列选择题1.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2052.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q <<B .61a >C .121T >D .131T >4.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭6.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n = C .13(1)n a n n =--D .{}3n S 是等比数列7.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .811.设数列{}n a ,下列判断一定正确的是( )A .若对任意正整数n ,都有24nn a =成立,则{}n a 为等比数列B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列C .若对任意正整数m ,n ,都有2m nm n a a +⋅=成立,则{}n a 为等比数列D .若对任意正整数n ,都有31211n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列12.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( )A .3B .505C .1010D .202013.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T14.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 15.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1116.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3717.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .14B .1C .12D .1318.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16B .32C .64D .12819.数列{a n }满足211232222n n na a a a -+++⋯+=(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )A .5512⎛⎫ ⎪⎝⎭B .10112⎛⎫- ⎪⎝⎭C .9112⎛⎫- ⎪⎝⎭D .6612⎛⎫ ⎪⎝⎭20.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )A .2±B .2C .3±D .3二、多选题21.题目文件丢失! 22.题目文件丢失!23.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列24.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 25.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A .{}n a 是等比数列 B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+26.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >27.关于递增等比数列{}n a ,下列说法不正确的是( ) A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 28.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >29.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍30.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S =C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 31.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-32.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路33.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值34.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列35.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
等比数列专题(有答案)百度文库
一、等比数列选择题1.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞2.若1,a ,4成等比数列,则a =( ) A .1B .2±C .2D .2-3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*na n N n∈的最小值为( ) A .1625B .49C .12D .15.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110246.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( ) A .2±B .2C .3±D .37.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .88.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .200710.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-11.题目文件丢失!12.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .813.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3714.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .215.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202016.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6D .317.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6418.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )A .32B .31C .16D .1519.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50B .60C .70D .8020.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .250二、多选题21.题目文件丢失!22.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40023.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-24.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A .{}n a 是等比数列 B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+25.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列26.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >27.已知数列{}n a 是等比数列,有下列四个命题,其中正确的命题有( ) A .数列{}n a 是等比数列B .数列{}1n n a a +是等比数列C .数列{}2lg n a 是等比数列D .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列 28.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值29.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=30.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--31.已知数列{}n a 满足11a =,()*123nn na a n N a +=∈+,则下列结论正确的有( ) A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列 B .{}n a 的通项公式为1123n n a +=-C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=-- 32.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S33.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <34.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;35.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】由等比数列性质求得3a ,把35124a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】因为等比数列{}n a 的前5项积为32,所以5332a =,解得32a =,则235114a a a a ==,35124a a a ++1111a a =++,易知函数()1f x x x=+在()1,2上单调递增,所以35173,242a a a ⎛⎫++∈ ⎪⎝⎭, 故选:C . 【点睛】关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数. 2.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 3.D 【分析】由2n n S a =-利用11,1,2nn n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.D 【分析】首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较()*na n N n∈相邻两项的大小,求得其最小值. 【详解】在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,所以21344a a a =+,即244q q =+,解得2q,所以12n na ,所以12n n a n n-=, 12111n n a n n a n n++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*n a n N n∈取得最小值1,故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 5.C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n n a a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 6.D 【分析】根据等比数列定义知3813q =,解得答案. 【详解】4个数成等比数列,则3813q =,故3q =.故选:D. 7.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅,又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D.方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 9.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 10.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可.11.无12.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 13.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 14.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 15.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.16.D 【分析】由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】k a 是1a 与2k a 的等比中项212k k a a a ∴=,()()2111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦()()223423k d d k d ∴+=⨯+,3k ∴=.故选:D 【点睛】本题考查等差数列与等比数列的基础知识,属于基础题. 17.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S . 【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 18.B 【分析】先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q,所以211a a q==,又因为1111nna q S qq,所以()551123112S -==-.故选:B. 19.B 【分析】由等比数列前n 项和的性质即可求得12S . 【详解】 解:数列{}n a 是等比数列,3S ∴,63S S -,96S S -,129S S -也成等比数列,即4,8,96S S -,129S S -也成等比数列, 易知公比2q,9616S S ∴-=,12932S S -=,121299663332168460S S S S S S S S =-+-+-+=+++=.故选:B. 20.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C二、多选题 21.无22.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 23.BD 【分析】根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,逐项判断选项可得答案. 【详解】由638a a =,可得3338q a a =,则2q,当首项10a <时,可得{}n a 为单调递减数列,故A 错误; 由663312912S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11122121n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;故选:BD . 【点睛】关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求和公式. 24.ABC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 正确; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确; 故选:ABC. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 25.AD 【分析】利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】对于A ,若{}n a 是等差数列,设公差为d ,则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则11111n n n n n n n n n na q a A a a a qq a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题.【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确; 对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 27.ABD 【分析】分别按定义计算每个数列的后项与前项的比值,即可判断. 【详解】根据题意,数列{}n a 是等比数列,设其公比为q ,则1n na q a +=, 对于A ,对于数列{}n a ,则有1||n na q a ,{}n a 为等比数列,A 正确; 对于B ,对于数列{}1n n a a +,有211n n n na a q a a +-=,{}1n n a a +为等比数列,B 正确; 对于C ,对于数列{}2lg n a ,若1n a =,数列{}n a 是等比数列,但数列{}2lg n a 不是等比数列,C 错误;对于D ,对于数列1n a ⎧⎫⎨⎬⎩⎭,有11111n n n n a a a q a --==,1n a ⎧⎫⎨⎬⎩⎭为等比数列,D 正确. 故选:ABD . 【点睛】本题考查用定义判断一个数列是否是等比数列,属于基础题. 28.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n n a a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确.由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n n a q a a a q +-⨯--+++===--,故选项C 错误;6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 29.ABD 【分析】由已知关系式可求1a 、n a ,进而求得{}21na n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=, 则当2n ≥时,1(21)2n n n T T n a --=-=,即221n a n =-,而122211a ==⨯-也成立, ∴221n a n =-,*n N ∈,故数列{}21n a n +通项公式为211(21)(21)2121n n n n =-+--+,∴111111111121 (133557232121212121)n nS n n n n n n =-+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD 【点睛】关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21na n +的通项公式,利用裂项法求前n 项和n S . 30.AB 【分析】由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列又∵11a =,∴()11332n n a a -+=+,∴123n n a +=-,∴313a =,∴()2412323412n n nS n n +-=-=---.故选:AB. 31.ABD 【分析】由()*123nn na a n N a +=∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】因为112323n nn n a a a a ++==+,所以11132(3)n n a a ++=+,又11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2位公比的等比数列,11342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123n n a +=-知,{}n a 为递减数列,选项C 不正确.因为1231n na +=-,所以 1n a ⎧⎫⎨⎬⎩⎭的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-++-=+++-22(12)2312234n n n n +-⨯-=⨯-=--.选项D 正确,故选:ABD 【点睛】本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 32.ABC 【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D.【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 33.BCD 【分析】由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公式可得n a ,1112211(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,则12nn a +=,即21n n a =-,又1112211(21)(21)2121n n n n n n n n a a +++==-----,可得22311111111111212*********n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 34.ABD 【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确. 故选:ABD . 【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ACD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1, ∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列训练题一、单选题(共10题;共20分)1.(2020·新课标Ⅰ·文)设是等比数列,且,,则()A. 12B. 24C. 30D. 322.(2020·新课标Ⅱ·文)记S n为等比数列{a n}的前n项和.若a5–a3=12,a6–a4=24,则=()A. 2n–1B. 2–21–nC. 2–2n–1D. 21–n–13.(2020·新课标Ⅱ·理)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A. 3699块B. 3474块C. 3402块D. 3339块4.(2020·北京)在等差数列中,,.记,则数列().A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项5.(2020·新课标Ⅱ·理)数列中,,,若,则()A. 2B. 3C. 4D. 56.(2020高二下·湖州期末)设为等比数列的前项和,已知,,则公比()A. 3B. 4C. 5D. 67.(2020高一下·太和期末)在公比为2的等比数列{a n}中,前n项和为S n,且S7﹣2S6=1,则a1+a5=()A. 5B. 9C. 17D. 338.(2020高二下·广州期末)已知正项等比数列满足,若,则n为()A. 5B. 6C. 9D. 109.(2020高一下·六安期末)已知数列为各项均不相等的等比数列,其前n项和为,且,,成等差数列,则()A. 3B.C. 1D.10.(2020高一下·成都期末)已知等比数列的各项都为正数, 且,,成等差数列,则的值是()A. B. C. D.二、多选题(共2题;共6分)11.(2020高一下·邢台期中)在公比为整数的等比数列中,是数列的前n项和,若,,则下列说法正确的是()A. B. 数列是等比数列 C. D. 数列是公差为2的等差数列12.(2019高二上·菏泽期中)已知等比数列中,满足,则()A. 数列是等差等列B. 数列是递减数列C. 数列是等差数列D. 数列是递减数列三、解答题(共9题;共85分)13.(2020·新课标Ⅲ·文)设等比数列{a n}满足,.(1)求{a n}的通项公式;(2)记为数列{log3a n}的前n项和.若,求m.14.(2020高二下·丽水期末)已知数列的前n项和,正项等比数列满足,且是与的等差中项.(1)求数列的通项公式;(2)求数列的前n项和.15.(2020高一下·太和期末)已知数列的前n项和为,且.(1)求出数列的通项公式;(2)记,求数列的前n项和.16.(2020高一下·温州期末)已知数列满足:且,(1)证明:数列为等比数列;(2)记数列的前n项和,证明:17.(2020高一下·徐汇期末)已知数列满足,,. (1)证明:数列是等比数列;(2)若,求数列中的最小项.18.(2020高一下·宜宾期末)在公差不为零的等差数列中,,且成等比数列. (1)求数列的通项公式;(2)设,数列的前项和为,求证:.19.(2020高一下·温江期末)已知的前n项和为,且.(1)求,(2)若,求数列的前n项和.20.(2020高一下·哈尔滨期末)已知数列满足,.(1)数列通项,证明:为等比数列;(2)求前n项和.21.(2020高二下·杭州期末)等差数列的公差不为0,,且,,成等比数列.(Ⅰ)求;(Ⅱ)设,为数列的前n项和,求.答案解析部分一、单选题1.【答案】D【解析】【解答】设等比数列的公比为,则,,因此,.故答案为:D.【分析】根据已知条件求得q的值,再由可求得结果.2.【答案】B【解析】【解答】设等比数列的公比为,由可得:,所以,因此.故答案为:B.【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前项和公式进行求解即可.3.【答案】C【解析】【解答】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故答案为:C【分析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.4.【答案】B【解析】【解答】由题意可知,等差数列的公差,则其通项公式为:,注意到,且由可知,由可知数列不存在最小项,由于,故数列中的正项只有有限项:,.故数列中存在最大项,且最大项为.故答案为:B.【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.5.【答案】C【解析】【解答】在等式中,令,可得,,所以,数列是以为首项,以为公比的等比数列,则,,,则,解得.故答案为:C.【分析】取,可得出数列是等比数列,求得数列的通项公式,利用等比数列求和公式可得出关于k的等式,由可求得k的值.6.【答案】B【解析】【解答】由已知, ,两式作差得,所以,即故答案为:B【分析】将所给两式做差,即可得与的关系,由等比数列的定义即可求得公比.7.【答案】C【解析】【解答】由等比数列前项和的性质可知,当时,又,得,故.故答案为:C【分析】根据等比数列的性质找到的关系计算即可得出首项与公比,再求即可.8.【答案】C【解析】【解答】解:正项等比数列满足,可知其公比,且可得,,解得,代入,可得,,可得,而所以,即,解得n=9.故答案为:C.【分析】利用已知条件求出等比数列的首项和公比,通过等比数列的性质将进行转化,利用首项和公比表示,得到关于的表达式,解出答案.9.【答案】D【解析】【解答】设数列公比为,则,∵,,成等差数列,∴,即,解得,.故答案为:D.【分析】由,,成等差数列求出数列的公比q,然后再表示出后求值.10.【答案】A【解析】【解答】由题意,等比数列的各项都为正数, 且成等差数列,则(负舍),,故答案为:A。
【分析】利用已知条件结合等差中项的公式,再利用等比数列通项公式,从而求出等比数列的公比,再利用等比数列的性质化简求出的值。
二、多选题11.【答案】A,B,C【解析】【解答】∵,且公比q为整数,∴,,∴,或(舍去)A符合题意,,∴,C符合题意;∴,故数列是等比数列,B符合题意;而,故数列是公差为lg2的等差数列,D不符合题意.故答案为:ABC.【分析】由,,,,公比q为整数,解得,q,可得,,进而判断出结论.12.【答案】B,C【解析】【解答】A. ,,是公比为的等比数列,不是等差数列,故不正确;B.由A可知,数列是首项为1,公比为的等比数列,所以是递减数列,故正确;C. ,,所以是等差数列,故正确;D.由C可知是公差为1的等差数列,所以是递增数列,D不正确.故答案为:BC【分析】根据已知条件可知,,然后逐一分析选项,得到正确答案.三、解答题13.【答案】(1)解:设等比数列的公比为,根据题意,有,解得,所以(2)解:令,所以,根据,可得,整理得,因为,所以【解析】【分析】(1)设等比数列的公比为,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出的通项公式,利用等差数列求和公式求得,根据已知列出关于的等量关系式,求得结果.14.【答案】(1)解:当时,,当时,,,,设数列的公比为q,由题意可得:,解得,或(舍去),,∴,;(2)解:由(1)有,∴,,,两式相减有:,∴.【解析】【分析】(1)由可求出,设数列的公比为q,根据等比数列的通项公式和等差中项的定义列出方程,由此可求出答案;(2)由(1)有,然后根据错位相减法求和即可.15.【答案】(1)解:(n∈N*),可得n=1时,S1+1=2a1,即a1=1,当n≥2时,a n=S n﹣S n﹣1,S n+n=2a n,S n﹣1+n﹣1=2a n﹣1,相减可得a n+1=2a n﹣2a n﹣1,可得a n=2a n﹣1+1,即a n+1=2(a n﹣1+1),则数列{a n+1}为首项为2,公比为2的等比数列,可得a n+1=2n,即a n=2n﹣1(2)解:前n项和为T n=①2T n=②两式相减可得﹣T n=2+2(22+…+2n)﹣=化简可得【解析】【分析】(1)运用数列的递推式:时,,当时,,结合等比数列的通项公式,可得所求;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.16.【答案】(1)解:由,得,可知为等比数列,且首项为,公比为2(2)解:由(1)得到,所以...即证明.因为.所以前1项单独验证,即当n=1时,有.综上所述,【解析】【分析】(1)将已知条件转化为,由此证得数列为等比数列.(2)由(1)求得的表达式,进而求得的表达式,利用放缩法,结合等比数列前n项和公式,证得不等式成立.17.【答案】(1)证明:,又,∴是首项为1,公比为的等比数列(2)解:,则,① 时,,则,② 时,,则,∴,即【解析】【分析】(1)由得,进而可得,即可得出结果;(2)先写出的通项公式,,讨论n的情况,比较的大小即可得出结论. 18.【答案】(1)解:设等差数列的公差为,依题意,从而的通项公式为.(2)解:,.【解析】【分析】(1)结合等比中项的性质,将已知条件转化为,由此求得,从而求得数列的通项公式.(2)利用裂项求和法求得,从而证得不等式成立.19.【答案】(1)解:因为,故,因为,故即,所以是首项为,公比为3的等比数列.所以,故,所以,整理得到.(2)解:,故所以,故,整理而到.【解析】【分析】(1)题设中的递推关系可变形为,从而可利用等比数列的通项公式求出的通项,再根据可求.(2)利用错位相减法可求.20.【答案】(1)解:由题意,,所以是等比数列(2)解:由(1)得,所以,【解析】【分析】(1)根据等比数列的定义证明为等比数列;(2)由(1)得,从而可得,然后用分组求和法求.21.【答案】解:(I)由于,,成等比数列,所以,即,即,由于,所以解得,所以数列的通项公式是.(II)依题意.所以【解析】【分析】(I)根据等比中项的性质列方程,转化为的形式,由此求得,进而求得数列的通项公式;(II)由(I)得到,利用分组求和法即可求得.。