国际数学奥林匹克(IMO)竞赛试题(第36届)

合集下载

国际奥林匹克数学竞赛试卷

国际奥林匹克数学竞赛试卷

国际奥林匹克数学竞赛试卷一、选择题(每题5分,共30分)1. 已知实数a,b满足a + b = 5,ab = 3,则a^2+b^2的值为()A. 19B. 25C. 8D. 162. 在ABC中,∠ A = 60^∘,AB = 3,AC = 4,则BC的长为()A. √(13)B. √(19)C. √(37)D. 53. 若关于x的方程(2)/(x - 3)= (m)/(x - 3)+ 1无解,则m的值为()A. 2B. 3C. -2D. -34. 一个多边形的内角和是外角和的3倍,则这个多边形是()A. 六边形B. 七边形C. 八边形D. 九边形。

5. 已知二次函数y = ax^2+bx + c(a≠0)的图象经过点( - 1,0),且对称轴为x = 1,则下列结论正确的是()A. a + c = 0B. b^2-4ac>0C. 2a + b = 0D. 4a + c = 06. 若a,b为正整数,且3^a×3^b= 81,则a + b的值为()A. 4B. 5C. 6D. 7二、填空题(每题5分,共30分)1. 分解因式:x^3-2x^2+x=_ 。

2. 若√(x - 1)+√(1 - x)=y + 4,则x - y=_ 。

3. 已知圆锥的底面半径为3,母线长为5,则圆锥的侧面积为_ 。

4. 一次函数y = kx + b(k≠0)的图象经过点( - 2,3),且y随x的增大而减小,则不等式kx + b>3的解集是_ 。

5. 若关于x的一元二次方程x^2+mx + n = 0的两个根分别为x_1=2,x_2= - 3,则m=_ ,n=_ 。

6. 在平面直角坐标系中,点A( - 2,3)关于y轴对称的点A'的坐标为_ 。

三、解答题(每题20分,共40分)1. 已知函数y = (1)/(2)x^2+bx + c的图象经过点A( - 3,6),并且与x轴交于点B( - 1,0)和点C,顶点为P。

2023国际数学奥林匹克竞赛试题解答与评注

2023国际数学奥林匹克竞赛试题解答与评注

2023国际数学奥林匹克竞赛试题解答与评注1.引言2023年国际数学奥林匹克竞赛(简称IMO)是全球顶级的数学竞赛之一,每年都吸引着世界各地最顶尖的数学高手参与。

这项比赛不仅考察了参赛者的数学功底,更是对他们逻辑思维、创新能力和解决问题的能力的挑战和考验。

在本文中,我们将对2023年IMO的试题进行深入分析,探讨试题解答,并对试题进行全面的评注。

2.分析和解答我们需要深入分析和解答2023年IMO的试题。

这些题目通常包括几道难度不同、涉及不同数学领域的题目,例如代数、几何、组合数学和数论等。

在解答这些题目时,参赛者需要灵活运用数学知识,发挥自己的思维和创造力,找出解题的突破口。

在这里,我们就以其中一道代表性试题为例,逐步展开分析和解答。

3.问题一:XXXXX这是一道关于XXXXX的问题,题目描述了XXXXX的情境,要求参赛者证明或计算某个特定的结论。

我们通过探究XXXXX的定义和相关性质来理解题目的背景和条件。

我们可以尝试运用一些常见的数学方法和定理,如XXXXX定理、XXXXX公式等,根据题目条件和要求进行推导和计算,最终得出结论。

我们可以通过详细的数学推导和演算,对解题过程进行逐步分析,说明每一步的推理和逻辑,以及如何得出最终的答案。

4.问题二:XXXXX接下来,我们继续分析另一道题目——XXXXX。

这道题目涉及到XXXXX的概念和性质,要求参赛者给出某种特定的解释或证明。

在解答这道题目时,我们可以运用一些特定的数学方法和技巧,例如XXXXX的变换、XXXXX的化简等,从而化繁为简,找到问题的本质。

我们还可以借助一些经典的数学定理或结论,如XXXXX定理、XXXXX公式等,加深我们对题目的理解,并寻找解题的线索和突破口。

我们需要清晰地展现解题过程,说明每一个步骤的合理性和有效性,以及为什么得出这样的结论。

5.总结和回顾在全面分析和解答了2023年IMO的试题之后,我们可以对这些试题进行总结和回顾。

历届IMO试题(1-46届完整中文版)

历届IMO试题(1-46届完整中文版)

1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。

2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。

3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。

当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。

4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。

5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。

6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。

试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。

1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。

2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。

5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。

国际数学奥林匹克竞赛

国际数学奥林匹克竞赛
• 每个国家可以获得最多一枚金牌、一枚银牌和两枚铜牌
02
国际数学奥林匹克竞赛的参与国家与地区
世界各国参与国际数学奥林匹克竞赛的情况
参赛国家的数量
参赛国家的表现
• 至今已有100多个国家参加过IMO
• 中国、俄罗斯、美国和韩国是IMO金牌榜上的常客
• 亚洲地区参赛国家最多,其次是欧洲和北美
• 一些发展中国家,如越南、伊朗、土耳其等,也在比赛
挑战
机遇
• IMO的高难度试题对数学教育提出了更高的要求
• IMO为世界各地的数学天才提供了一个展示才华的平台
• IMO的优秀选手选拔和培训机制需要进一步完善和优化
• IMO推动了数学教育的发展,提高了数学教育的水平
• IMO为数学研究和应用培养优秀的人才
谢谢观看
T H A N K Y O U F O R W AT C H I N G
• 2019年:美国选手Michael Zhong成为首位获得两枚IMO金牌的选

国际数学奥林匹克竞赛的目的与意义
IMO的目的
IMO的意义
• 激发和培养青少年的数学兴趣
• 为世界各地的数学天才提供一个展示才华的平台
• 提高青少年的数学素养和解决问题的能力
• 推动数学教育的发展,提高数学教育的水平
• 促进国际间的数学交流与合作
中心通常会针对IMO进行专门的培训
• 各国通常会通过国内数学竞赛、选拔
• 培训内容包括解题技巧、心理素质、
赛等方式选拔优秀选手
团队协作等
• 选拔过程通常分为多个阶段,包括地
• 一些国家还会邀请IMO金牌选手和
区赛、全国赛等
教练进行经验分享和指导
国际数学奥林匹克竞赛金牌选手的成功经验与故事

imo数学竞赛试题及答案

imo数学竞赛试题及答案

imo数学竞赛试题及答案IMO数学竞赛试题及答案一、选择题1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的立方等于它本身,那么这个数可以是:A. -1B. 0C. 1D. 2答案:ABC3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,那么它的表面积是多少平方厘米?A. 236B. 284C. 312D. 376答案:B二、填空题4. 一个数的平方根是3,那么这个数是_________。

答案:95. 一个等差数列的前三项分别是2,4,6,那么它的第10项是_________。

答案:22三、解答题6. 证明:对于任意的正整数 \( n \),\( n^5 - n \) 总是能被30整除。

解答:首先,我们可以将 \( n^5 - n \) 分解为 \( n(n^4 - 1) \)。

接下来,我们注意到 \( n^4 - 1 \) 可以表示为 \( (n^2 +1)(n^2 - 1) \)。

而 \( n^2 - 1 \) 可以进一步分解为 \( (n +1)(n - 1) \)。

因此,我们有:\( n^5 - n = n(n^2 + 1)(n + 1)(n - 1) \)。

由于 \( n \) 是正整数,\( n - 1 \) 和 \( n + 1 \) 也是整数。

这意味着 \( n^5 - n \) 中至少包含因子2和3(因为 \( n^2 + 1 \) 至少是奇数,从而至少包含一个2的因子)。

因此,\( n^5 - n \)可以被30整除。

7. 一个圆的半径是15厘米,求圆的面积。

解答:圆的面积可以通过公式 \( A = \pi r^2 \) 计算,其中\( A \) 是面积,\( r \) 是半径,\( \pi \) 是圆周率,约等于3.14159。

将给定的半径 \( r = 15 \) 厘米代入公式,我们得到:\( A = \pi \times 15^2 = \pi \times 225 \approx 706.86 \)平方厘米。

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO(1985年,芬兰赫尔辛基)吴思皓(男)上海向明中学确规定铜牌上海交通大学王锋(男)北京大学(根据yongcheng先生提供的信息修订)目前作企业软件第27届IMO(1986年,波兰华沙)李平立(男)天津南开中学金牌北京大学方为民(男)河南实验中学金牌北京大学张浩(男)上海大同中学金牌复旦大学荆秦(女)陕西西安八十五中银牌北京大学,现在美国哈佛大学任教林强(男)湖北黄冈中学铜牌中国科技大学第28届IMO(1987年,古巴哈瓦那)刘雄(男)湖南湘阴中学金牌南开大学滕峻(女)北京大学附中金牌北京大学林强(男)湖北黄冈中学银牌中国科技大学潘于刚(男)上海向明中学银牌北京大学何建勋(男)广东华南师范大学附中铜牌中国科技大学高峡(男)北京大学附中铜牌北京大学,现在北大任教第29届IMO(1988年,澳大利亚堪培拉)团体总分第二陈晞(男)上海复旦大学附中金牌复旦大学,美国密苏里大学,美国哈佛大学,现在加拿大Alberta大学数学系任教授韦国恒(男)湖北武汉武钢三中银牌北京大学查宇涵(男)南京十中银牌北京大学,在中科院数学所任副研究员邹钢(男)江苏镇江中学银牌北京大学王健梅(女)天津南开中学银牌北京大学何宏宇(男)以满分成绩获第29届国际数学奥林匹金牌,1993年破格列入美国数学家协会会员,1994年获博士学位,现任亚特兰大乔治大学教授、博士生导师,从事现代数学研究前沿的《李群》《微分几何》等方向的研究,在《李群》的研究上已有重大突破。

第30届IMO(1989年,原德意志联邦共和国布伦瑞克)团体总分第一罗华章(男)重庆水川中学金牌北京大学俞扬(男)吉林东北师范大学附中金牌吉林大学霍晓明(男)江西景德镇景光中学金牌中国科技大学唐若曦(男)四川成都九中银牌中国科技大学颜华菲(女)北京中国人民大学附中银牌北京大学本科,1997年获美国麻省理工博士,现任Texax A&M Uneversity 数学系教授,美国数学会常务理事会成员,Mathematical Reviews评论员。

第36届中国数学奥林匹克

第36届中国数学奥林匹克

22中等数学第36届中国数学奥林匹克中图分类号:〇424.79文献标识码:A文章编号:1005 - 6416(2021)03 - 0022 - 071. 设数列1 ( /I多1 )的奇数项均为实数,偶数项均为纯虚数,且对于任意的正整数 左,均有丨2士 + 11 = 24.对正整数;I,记/… = l z t +z 2 + …+z …l _求:(1 )/2 02。

的最小可能值;⑵/謂/應的最小可能值.(何忆捷供题)2.给定整数m >l .求最小正整数t 使得对于任意的整数〇i,a2,…,和卜,&,•••,存在整数&,&,•••,&,满足下列两个条 件:(1 ) ;»:丨,x2,…,a c n 中至少有一个与m 互 素;nn(2) D ai xi = D 61r c 1=0( mod m).i = 1i = 1(艾颖华供题)3.已知正整数《恰能被36个不同的素数整除.对于々=1,2,…,5,设ct 为区间(A:~1)rt,y ]中与n 互素的整数个数.又已知c"C2,…,c5不全相等•证明:2 (c £-c ;)2^236.(付云皓供题)4•如图1,锐角A 仙C 内接于圆厂,仙>4c ,m 为圆r 的劣弧冗的中点,尺为圆尸上 点4的对径点.过圆厂的圆心0作的平 行线,与线段交于点/>、与G 4的延长线 交于点设直线与C K 交于点P ,直线 C M 与份:交于点(?.证明:Z OEB + z OPB = z ODC + z OQC .E图1(何忆捷供题)5. 考虑一个具有下述性质的凸多面体(1 )P 的每个顶点均恰属于三个面;(2)对于任意整数&多3,P 的(边形面的个数均为偶数.一只蚂蚁从某条棱的中点出发,在/1的 表面沿着一条由棱组成的封闭道路^爬行A 上的每一点均恰经过一次,最终回到出发点.已知L 将P 的表面分成两个区域,且对 于任意的t 两个区域中A 边形面的个数均 相等.证明:在上述爬行过程中,蚂蚁在P 的 顶点处向左转的次数和向右转的次数相同•(姚一隽供题)6.记Z +为全体正整数的集合.求所有函数/:Z +— Z +,满足对于任意的G Z +,均有/(/(幻 + y )整除 ^+/(y ).(肖粱供题)2021年第3期23参考答案⑴设Z2m-1 =a m,〜i,其中,a m、6m G R(m= 1,2,...).对于任意的正整数A:,均有l Zt+2 I_ ^Zk+l Zk+2I _ 2k+x _ 2丨〜1\zkh +\12k■则 1、+1l= 2l a j,\bm +l\= 2\bm\,其中,m= l,2,….iE a =a t,6 =6,I a I 161 = 2,且l a j= 2m-1l a|,\bm\= 2m-l\b\,其中,m= l,2,….T5S = (I j + 〇2 + ■"" + 〇i〇i〇,T=办1 +厶2 +…+厶1010.则 I S I > 丨01。

国际数学奥林匹克(IMO)竞赛试题(第30届)

国际数学奥林匹克(IMO)竞赛试题(第30届)
求证:△A0B0C0的面积是六边形AC1BA1CB1的两倍也是△ABC面积的至少4倍.
3.设n,k是正整数,S是由平面上n个点构成的集合并且无三线共点,对任何S中的点P至少存在S中的k个点与P等距离.
求证k<1/2+ .
4.凸四边形ABCD的边AB,AD,BC满足AB=AD+BC,四边形内部有一与直线CD距离为h的点P,并且AP=h+AD,BP=h+BC,
求证:1/ <=1/ +1/ .
5.试证明对每个正整数n,存在n个连续的正整数使得其中无素数或素数的幂.
6.设{x1,x2,...,xm}是{1,2,...,2n}的一个排列,其中n是一个正整数.如果|xi-xi+1|=n对至少{1,2,...,2n-1}中的一个i成立就说这个排列{x1,x2,...,xm}具有性质P.试证明对于任意的n,具有性质P的排列都比不具有的多.
国际数学奥林匹克(
1.试证明集合{1,2,...,1989}可以分拆成117个子集合A1,A2,...,A117(即这些子集合互不相交且并集为整个集合),满足每个Ai包含17个元素,并且每个Ai中元素之和都相等.
2.锐角△ABC,内角∠A的角平分线交△ABC的外界圆于A_1,类似定义B1,C1点.设AA1与∠ B,∠C的外交平分线交于A0点,类似定义B0,C0点.

【精品】数学奥林匹克竞赛高中训练题集【共36份】

【精品】数学奥林匹克竞赛高中训练题集【共36份】
两个数学奥林匹克高中训练题05按从小到大顺序排列数列各项的和记为s对于给定的自然数n若能从数列中选取一些不同位置的项使得这些项之和恰等于n便称为一种选项方案和数为n的所有选项方案的种数记为数学奥林匹克高中训练题05第一试一选择题本题满分42分每小题7分1
奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答第一题:在一个正方形的边上选择10个点,然后连接相邻点之间得到一个多边形。

问这个多边形内部最多能够放置多少个相互不相交的小正方形?解答:这个问题可以通过找规律进行解答。

我们可以先考虑较小的正方形个数,再逐渐递增。

当只有1个小正方形时,我们可以把它放在正方形中心。

当有2个小正方形时,我们可以把它们放在相邻的两个顶点上。

当有3个小正方形时,我们可以放置两个在相邻的两个顶点上,另一个放在中心位置。

当有4个小正方形时,我们可以把它们分别放在四个顶点上。

当有5个小正方形时,我们可以把其中4个放在四个顶点上,然后将剩下的一个放在中心位置。

当有6个小正方形时,我们可以把其中4个放在四个顶点上,另外两个放在中点和中心位置。

...通过逐个增加小正方形的个数,我们可以得出规律:在一个正方形上最多可以放置 n(n+1)/2 个相互不相交的小正方形,其中 n 为偶数。

第二题:求方程组|y - x^2| = 3|y - x - 4| = 5的解。

解答:首先,对于第一个方程 |y - x^2| = 3,我们可以将其分为两部分进行讨论:1. y - x^2 = 3,解得 y = x^2 + 3;2. -(y - x^2) = 3,解得 y = -x^2 - 3。

然后,将得到的两个解代入第二个方程 |y - x - 4| = 5,得到:1. |(x^2 + 3) - x - 4| = 5,即 |x^2 - x - 1| = 5;2. |(-x^2 - 3) - x - 4| = 5,即 |-x^2 - x - 7| = 5。

我们分别解这两个方程:1. x^2 - x - 1 = 5,解得 x = -2 或 x = 3。

2. -x^2 - x - 7 = 5,解得 x = -3 或 x = 2。

将上述解代入方程 y = x^2 + 3 或 y = -x^2 - 3,则可求出相应的 y 值。

因此,该方程组的解为 (-2, 7),(3, 12),(-3, -6),(2, -1)。

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。

自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。

这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。

在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。

1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。

解析:我们可以通过代入不同的整数n来验证这个结论。

当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。

我们可以继续代入更多的整数,发现每次结果都是素数。

虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。

2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。

解析:我们可以通过数学归纳法证明这个不等式。

首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。

假设当n=k时不等式成立,即(1+1/k)^k < 3。

我们需要证明当n=k+1时,不等式也成立。

通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。

而e约等于2.71828,小于3。

因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。

根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。

3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。

高中数学竞赛 历届imo竞赛试题(-46届完整中文版)

高中数学竞赛 历届imo竞赛试题(-46届完整中文版)

第1届I M O1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。

2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。

3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。

当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。

4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。

5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。

6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。

试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。

第2届IMO1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。

2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A 点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。

5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.试确定所有整数n>3,使得在平面上存在n个点A1,A2,...,An(无三点共线)及n个实数r1,r2,...,rn满足△AiAjAk的面积是ri+rj+rk,其中是对每个三元组1≤i<j<k≤n.
4.正实数序列x0,x1,...,x1995满足条件x0=x1995且对于i=1,2,...,1995有xi-1+2/xi-1=2xi+1/xi.
试求出所有满足上述条件的数列中x0的最大值.
5.设ABCDEF是凸六边形,满足AB=BC=CD,DE=EF=FA,∠BCD=∠EFA=60o.设G,H是这六边形内部两点使得∠AGB=∠DHE=120o,
求证AG+GB+GH+DH+HE≥CF.
6. p是一个奇质数,试求出集合{2,...,2p}的所有p元子集A的个数满足A中元素之和能被p整除.
国际数学奥林匹克(
1.A,B,C,D是一条直线上顺序排列的四个不同点,分别以AC,BD为直径的两个圆相交于X,Y,直线XY交BC于Z,设P为直线XY上异于Z的一点,直线CP与以AC为直径的圆相交于C,M;直线BP与以BD为直径的圆相交于B,N.求证:AM,DN,XY三线共点.
2.a,b,c为正实数且abc=1,试证:
相关文档
最新文档