实验一(1)流体流动形态观察与测定
流体流型的观察与测定
流体流型的观察与测定首先,观察流体流型可以利用实验室中的设备进行。
比如,通过在流体中加入颜料或者荧光粉等物质,可以观察流体流动时的颜色和亮度变化,从而了解流体运动的特性。
此外,还可以利用流线管和涡流计等仪器来观察流体流动的线条和涡旋状况。
这些设备可以帮助我们直观地了解流体的流型。
其次,测定流体流型需要借助一些测量仪器和技术。
最常用的技术之一是测速仪器。
测速仪器可以用来测定流体流动的速度和方向,根据流体速度的分布可以得到流体流动的轨迹和流型。
其中,常见的测速仪器有激光多普勒测速仪、超声波测速仪和热线测速仪等。
这些仪器可以通过测量流体中流动粒子或者声波的频率和位移来计算出流体的速度和方向。
此外,还可以利用压力传感器和压力测量仪器来测定流体流型。
流体流动时的压力分布与流体的速度和方向有密切的关系,通过测量不同位置处的压力,并结合流场方程和质量守恒定律等基本理论,可以计算出流体的速度和流型。
一种常见的压力测量方法是利用测压法来确定流体流动的静压和动压。
此外,还可以利用摄影和高速摄像技术来观察和记录流体流型。
通过高速摄像机可以捕捉流体流动时的细微变化,比如湍流的形成和消失,从而对流体流型进行定量分析。
这种技术非常适用于研究高速流动和复杂流动现象。
最后,还可以借助数值模拟和计算流体力学方法来观察和测定流体流型。
数值模拟是利用计算机模拟流体流动的过程和行为,通过求解流体力学方程和边界条件,可以得到流体流动的速度、压力和流型等信息。
这种方法尤其适用于复杂的三维流动和非定常流动。
总之,流体流型的观察与测定是流体力学中重要的研究内容。
通过实验观察、测速仪器、压力测量、摄影和数值模拟等方法,我们可以了解和测定流体流动的速度、压力和流型等信息,从而深入研究流体力学的各个方面。
这些技术和方法在航空、水利、化工等领域有着广泛的应用和研究价值。
实验一(1)流体流动形态观察与测定
实验一流体流动形态观察与测定一、实验目的1、建立“层流和湍流两种形态和层流时管路中流速分布”的感性知识;2、确立“层流、湍流与Re之间有一定联系”的概念。
二、实验任务1、先做演示实验,观察以下三种现象:层流、湍流、层流时流速分布曲线的形成。
2、维持高位槽液面稳定的情况下,测定不同流动形态的雷诺数。
三、实验原理无四、实验装置及实验步骤实验管道有效长度: L=600 mm外径: Do=30 mm内径: Di=24.2mm实验装置流程如图一所示。
1. 实验前的准备工作(1) 必要时调整红水细管4的位置,使它处于实验管道6的中心线上。
(2) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。
(3) 关闭流量调节阀10、7、9,打开进水阀3,使自来水充满水槽,•并使其有一定的溢流量。
(4) 轻轻打开阀门10,让水缓慢流过实验管道。
使红水全部充满细管道中。
2. 雷诺实验的过程(1) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。
(2) 轻轻打开阀门10,让水缓慢流过实验管道。
使红水全部充满细管道中。
(3) 调节进水阀,维持尽可能小的溢流量。
(4) 缓慢地适当打开红水流量调节夹 ,即可看到当前水流量下实验管内水的流动状况(层流流动如下图二示)。
读取流量计的流量并计算出雷诺准数。
图二、层流流动示意图(5) 因进水和溢流造成的震动,有时会使实验管道中的红水流束偏离管的中心线,或发生不同程度的左右摆动. 为此, 可突然暂时关闭进水阀3, 过一会儿之后即可看到实验管道中出现的与管中心线重合的红色直线。
(6) 增大进水阀3 的开度,在维持尽可能小的溢流量的情况下提高水的流量。
并同时根据实际情况适当调整红水流量,即可观测其他各种流量下实验管内的流动状况。
为部分消除进水和溢流造成的震动的影响,在滞流和过渡流状况的每一种流量下均可采用四. 2.(5)中讲的方法,突然暂时关闭进口阀 3 ,然后观察管内水的流动状况(过渡流、湍流流动如图三示)。
流体力学实验指导书
流体力学实验指导书(新版)(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《水力学》实验教学指导书及报告姓名:班级:学号:唐山学院土木工程系序言水力学是应用性较强的专业技术基础课。
从学科的发展来看,水力学属于技术基础学科,实验方法和实验技术是促进其发展的重要研究手段。
由于流体运动的复杂性,水力学的研究及应用就更加离不开科学实验,其发展很大程度上取决于实验技术的进步。
因此,水力学实验是巩固和加深理论知识的学习、探求流体运动规律、解决工程实际问题的重要环节,通过实验教学,掌握各种实验方法,规范操作,提高实验技能。
一、实验教学目的:(1)观察流动现象,增强感性认识,提高实验分析能力。
(2)根据实测资料验证水力学基本理论,以加强和巩筑理论知识的学习。
(3)学会使用基本的测量仪器,掌握测量技术。
(4)培养分析实验数据,整理实验成果和编写实验报告的能力。
(5)培养严谨踏实的科学态度和合作精神,为未来进行研究和实际工作打下基础。
二、实验教学要求:(1)每次实验前,预习教材中有关内容及实验指导书,了解本次实验的目的、原理、步骤和所要验证的理论。
(2)认真听取指导教师讲解,弄清实验方法和步骤后,方能动手实验。
(3)实验中,应注意观察实验现象,细心读取实验数据,并做相应的记录,原始数据不得任意修改。
(4)实验小组内每位学生亲自动手、相互配合、共同完成实验。
(5)实验态度严肃、方法严密,一丝不苟进行操作。
(6)实验完毕应清理设备及实验室,实验设备摆放整齐。
三、实验报告要求:(1)实验报告是实验资料的总结、是实验的成果。
通过完成实验报告,可以提高分析问题的能力,要求必须独立完成并按规定时间交给指导教师。
(2)实验报告一般包括以下几项内容:①班级、姓名、同组人及实验日期。
②实验名称及实验目的。
③实验原理。
④实验装置简图及仪器。
⑤流动现象的描述及实验原始记录。
⑥计算实验结果。
《化工原理》实验思考题题目及答案(2021年整理精品文档)
《化工原理》实验思考题题目及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《化工原理》实验思考题题目及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《化工原理》实验思考题题目及答案的全部内容。
实验一、流体流动阻力的测定1、进行测试系统的排气工作时,是否应关闭系统的出口阀门?为什么?答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。
2、如何检验系统内的空气已经被排除干净?答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。
3、在U形压差计上装设“平衡阀"有何作用?在什么情况下它是开着的,又在什么情况下它应该关闭的?答:用来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,平衡阀能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到平衡的作用.平衡阀在投运时是打开的,正常运行时是关闭的.4、 U行压差计的零位应如何校正?答:先打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验.5、为什么本实验数据须在对数坐标纸上进行标绘?答:为对数可以把乘、除因变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。
6、你在本实验中掌握了哪些测试流量、压强的方法,它们各有什么特点?答:测流量用转子流量计、测压强用U形管压差计,差压变送器。
流动流体综合实验报告(3篇)
第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。
2. 学习使用流体力学实验设备,如流量计、压差计等。
3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。
4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。
二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。
直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。
局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。
直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。
局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。
三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。
2. 流量计:涡轮流量计。
3. 压差计:U型管压差计。
4. 温度计:水银温度计。
5. 计时器:秒表。
6. 量筒:500mL。
7. 仪器架:实验台。
四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。
2. 连接流量计和压差计,确保仪器正常运行。
3. 在实验台上设置实验管道,调整管道长度和管件布置。
4. 开启实验台水源,调整流量计,使流体稳定流动。
5. 使用压差计测量直管和管件处的压力差,记录数据。
6. 使用温度计测量流体温度,记录数据。
7. 计算直管摩擦阻力损失和局部阻力损失。
8. 重复步骤4-7,改变流量和管件布置,进行多组实验。
五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。
2. 记录不同流量下的压力差、流体温度等数据。
3. 计算直管摩擦阻力损失和局部阻力损失。
4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。
六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。
观察水流形态和运动轨迹幼儿园大班科学教案
观察水流形态和运动轨迹幼儿园大班科学教案幼儿园大班科学教案一、活动目的通过观察水流的形态和运动轨迹,让幼儿了解液体的运动特性,探索水流的奥妙,提高幼儿的观察和分析能力。
二、活动准备1.准备两个平板或薄木板2.一桶水和水龙头3.各种形状的器具(如圆形、方形、三角形、十字形等不同形状的水杯、水皮球、造波器等)4.活动涂鸦纸和彩色笔三、活动过程1.导入活动老师出示一些不同形状的器具,让幼儿猜测这些器具能不能装水,怎样才能让水顺利流出来。
通过引导幼儿探讨,让他们逐渐理解液体的物理运动性质。
2.观察水流的形态老师拿出两个平板或薄木板,放在水桶内部,逐渐将板子向上移动,让水流形成不同的形态,比如弧形、直线形等。
鼓励幼儿观察水流的变化,比较不同形态的水流,尝试发现水流形态的规律。
3.观察水流的运动轨迹老师在水桶中放置不同形状的器具,将水龙头打开,让水流经过器具,同时在水桶的另一侧用活动涂鸦纸记录下水流的运动轨迹。
让幼儿观察每个器具水流的运动轨迹,并与老师共同讨论,探究器具形状和运动轨迹的关系。
4.探究水流运动的原理老师引导幼儿思考,为什么不同形状的器具会让水流的运动轨迹不同,为什么水流能通过器具。
通过讨论,让幼儿逐渐理解与液体运动有关的物理概念,比如惯性、重力、离心力等。
5.自由探究鼓励幼儿利用各种形状的水杯、水皮球、造波器等自由探究不同形状器具所产生的水流形态和运动轨迹,并在活动涂鸦纸上记录下自己的发现。
四、活动总结让幼儿分享自己的发现,让他们总结近日的活动内容,回顾学到的知识和技能,并提出自己感兴趣的问题,以便下一步深入研究。
五、教育目标1、通过观察和自探,提高幼儿的观察和分析能力。
2、通过亲身体验,让幼儿探究液体的物理运动特性,理解液体的重力、惯性等基本概念。
3、引导幼儿善于发现,培养幼儿对物理运动现象的好奇心和创造性思维,激发幼儿的创新和探究精神。
流动状态(中国石油大学流体力学实验报告)
中国石油大学(华东) 工程流体力学 实验报告实验日期: 成绩:班级: 学号: 姓名: 教师: 同组者:实验六、流动状态实验一、实验目的1.测定液体运动时的沿程水头损失(f h )及断面的 平均流速(υ) ;2.绘制流态(f lg h —v lg )曲线图,找出下临界点并计算 临界雷诺数(Re c ) 的值。
二、实验装置本室验的装置如图所示。
本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。
在图1-6-1横线上正确填写实验装置各部分的名称图1-6-1 流态实验装置1. 稳压水性 ;2. 进水管 ;3. 溢流管 ;4. 试验管路 ;5. 压差计 ;6. 流量调节阀 ;7. 回流管线 ;8. 试验台 ;9. 蓄水线 ; 10. 抽水泵 ;11. 出水管三、实验原理 填空1.液体在同一管道中流动,当 速度 不同时有层流、紊流两种流动状态。
层流 特点是质点互不掺混,成线状流动。
在 紊流 中流体的各质点相互掺混,有脉动现象。
不同的流态,其 沿程水头损失 与断面平均速度的关系也不相同。
层流的沿程水头损失与断面平均流速的 一次方 成正比;紊流的沿程水头损失与断面平均速度的m 次方成正比 (m= 1.75~2.0 ) 。
层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。
2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为 稳定流 ,此种情况下v 1=v 2。
那么从A 点到B 点的沿程水头损失为h f ,可由能流量方程导出:221122f 12121212()()22()()p v p v h z z g gp pz z h h hγγγγ=++-++=+-+=-=∆h 1、h 2分别是A 点、B 点的测压管水头,由 压差计 中的两个测压管读出。
3.雷诺数(Reynolds Number )判断流体流动状态。
雷诺数的计算公式为:Dv Re ν=D —圆管内径;v —断面平均速度;ν—运动粘度系数当c Re Re <(下临界雷诺数)为层流,c Re =2000~2320;当cRe Re '>(上临界雷诺数)为紊流,c Re '=4000~12000之间。
【参考文档】流体流型实验报告-推荐word版 (8页)
实验装置如下图所示:
1、水箱 2、离心泵 3、压差传感器 4、温度计 5、涡轮流量计 6、流量计 7、转子流量计 8、转子流量计 9、压差传感器 10、压差传感器 11、压差传感器 12、粗糙管实验段 13、光滑管实验段 14、层流管实验段 15、压差传感器 16、压差传感器 17、局部阻力 18、局部阻力
H1、H2——分别为泵进、出口的真空度和表压对应的压头,m;u1、u2——分别为泵进、出口的流速,m/s;
z1、z2——分别为真空表、压力表的安装高度,m。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的Байду номын сангаас程。 ⑵轴功率N的测量与计算
N?N电?k(W) ⑶
其中,N电为电功率表显示值,k代表电动机转动效率,可取k=0.95。
⑷实验结束,关闭出口阀,停止水泵电机,清理装置。
3
五、数据记录及处理
当水温T=27.1℃时,密度ρ=996.4kg/cm3,粘度μ=0.860*0.001Pa·s。 根据式⑵、⑶、⑷、⑹,以及公式 阀门压差?p'f??p'f(测量)?可计算得到如下结果:
⑴光滑管
l1
?pf(直管) l
序号
2 3 4 5 6 7 8
流体在水平等径直管中稳定流动时,阻力损失为:
订
线
hf?
?pf
?
?
p1?p2
?
2d?pf
lu2?? ⑴
d2
⑵
采用涡轮流量计测流量V
'f
即 ??
?lu2
Re?
du?⑶
?
u?
V
⑷
900?d2
雷诺流动形态实验报告
一、实验目的1. 观察流体流动过程中不同的流动形态及其变化过程;2. 测定流动形态变化时的临界雷诺数;3. 理解雷诺数与层流、湍流的关系;4. 掌握实验数据处理方法。
二、实验原理雷诺实验揭示了流体流动的两种基本形态:层流和湍流。
层流是指流体在管道内流动时,流体质点沿直线运动,彼此之间无宏观混合。
湍流则是指流体流动时,流体质点之间发生宏观混合,流速不均匀,产生涡流。
雷诺数(Re)是判断流体流动形态的无量纲数,其计算公式为:Re = ρvd/μ,其中ρ为流体密度,v为流体流速,d为管道直径,μ为流体粘度。
当Re较小时,流体流动为层流;当Re较大时,流体流动为湍流。
临界雷诺数是层流与湍流转变的界限。
三、实验仪器与材料1. 实验装置:自循环雷诺实验装置(包括供水器、实验台、可控硅无级调速器、恒压水箱、有色水水管、稳水隔板、溢流板、实验管道、实验流量调节阀等);2. 实验材料:有色水、清水、压差计、计时器等。
四、实验步骤1. 调整实验装置,确保供水稳定,管道内无气泡;2. 开启供水器,调整流量,使管道内流速逐渐增大;3. 观察有色水在管道内的流动形态,记录下层流、湍流及临界雷诺数;4. 使用压差计测量管道两端的水头差,计算沿程水头损失;5. 记录实验数据,进行数据处理。
五、实验结果与分析1. 观察到当流速较小时,管道内流体质点沿直线运动,颜色均匀,无涡流,为层流;2. 随着流速增大,流体质点开始发生宏观混合,颜色逐渐变淡,出现涡流,为湍流;3. 通过实验,测得临界雷诺数为2000;4. 根据实验数据,绘制沿程水头损失与断面平均流速的关系曲线,分析层流、湍流及临界雷诺数的关系。
六、实验结论1. 雷诺实验验证了流体流动的两种基本形态:层流和湍流;2. 临界雷诺数是层流与湍流转变的界限,本实验测得临界雷诺数为2000;3. 雷诺数与流体流动形态密切相关,当雷诺数较小时,流体流动为层流;当雷诺数较大时,流体流动为湍流。
流体流动型态及临界雷诺数的测定实验报告
六、实验原始数据记录
实验管道d=1.8X10-2m管道截面积A=2.5X10-4m2
水的密度 =998kg/m3水的粘度μ=105X10-3Pa.s
(2)用放风阀放去流量计内的空气,再稍微开启转子流量计调节阀,将流量调至最小值,以便观察稳定的层流形型,再精细地调节示踪剂管路阀,使示踪剂的注水流速与实验导管内主体流体的流速相近,一般略低于主体流体的流速为宜。精心调节至能观察到一-条平直的细流为止。
(3)缓慢地逐渐增大调节阀的开度,使水通过试验导管的流速平稳地增大,直至试验导管内直线流动的细流开始发生波动。记下水的流量和温度数据,以计算下临界雷诺数。
化学工程与工艺专业
化工原理实验报告
姓名
学院
专业班级
学号
指导教师
实验日期
评定成绩:
评阅人:
流体流动型态及临界雷诺数的测定实验报告
一、实验目的
(1)学习和观察流体的流动形态,并对层流和湍流的现象进行比较。
(2)了解转子流量计的原理、结构和使用。
(3)了解雷诺实验装置。
二、实验基本原理
经许多研究者实验证明流体流动存在两种截然不同的形态,主要决定因素为流体的密度和黏度、流体流动的速度,以及设备的几何尺寸(圆形管道中为管道直径),将这些因素整理归纳为一个无因数群,称该无因数群为雷诺准数(或雷诺数),即:
(2)在实验过程中,应随时注意稳压水槽的溢流水量.随着操作流量的变化,相应调节自来水给水量防止稳压槽内液面下降或泛滥事故的发生。
化工原理实验
化工原理实验实验一流体流动形态的观察和测定实验内容:测定流体流动的形态和层流时流体在管路中的速度分布形态。
实验原理:流体流动有两种不同的形态,层流和湍流。
流体作层流流动时,流体质点沿轴向做直线运动;流体作湍流流动时,流体质点沿轴向和径向脉动。
对于一定温度的流体,在特定的圆管内流动,Re仅与流速有关。
本实验通过改变流体在圆管内的流速,观察不同Re下流体的流型及其变化。
实验过程:1、水槽中充满水,保持液面稳定;2、调节流量计,使水从圆管内平稳地流动,并保持一定的流量;3、打开控制红墨水流出的阀门,观察流体流动形态;4、加大流量,观察红墨水的流动形态;思考题:1、研究流体流动形态对生产有何实际意义?流体的流动形态分为层流和湍流,在生产过程中需要确定管道的管径、流体的流速等多个参数。
当流量恒定时,流速大,则管径小,雷诺数大,为湍流;反之亦然。
两种流型的运动方式会影响流体的速度分布,进而影响到流体阻力的计算和流体中的热量传递。
所以在实际化工生产过程中,为了优化操作条件,要选择适宜的流体流速。
2、影响流体流动的因素有哪些?由Re=duρ/μ得,影响因素有管径、流速、流体密度和粘度。
3、在什么前提条件下,只用流速的数值判别流体流动形态?当流体的粘滞性和可压缩性很小时,可近似看作是理想流体。
实验二管道阻力测定实验实验内容:测定λ-Re的关系,ξ-Re的关系实验原理:利用伯努利方程,计算出管道阻力大小,再求得管道阻力系数和局部阻力系数。
干燥实验1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。
答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。
二者与干燥介质的温度,湿度及物料的种类有关。
精馏实验2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,x F=0.5,泡点进料,在某一回流比下得到D=0.2kmol/h,x D=0.9,x W=0.4,现下达生产指标,要求在料液不变及x D不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D=0.56kmol/h,你认为:(1)此种说法有无根据?可采取的操作措施是什么?(2)提高馏出液量在实际上受到的限制因素有哪些?答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低x W,从而提高了馏出液的产量;由于x D不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。
流体流动型态及临界雷诺数的测定实验报告
(3)在整个实验过程中,切勿碰撞设备。操作时也要轻巧缓慢,以免干扰流体流动过程的稳定性,实验过程有-定滞后现象。因此,调节流量过程切勿操之过急。待状态确实稳定之后,再继续调节或记录数据。
三、实验装置与流程
雷诺实验装置主要由稳压溢流水槽、实验导管,转子流量计等部分组成,自来水不断注入并充满水槽,稳压溢流水槽的水流经实验导管流人流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。
四、实验内容
(1)观察流体流动时的层流和湍流的现象,区分两种不同流态的特征。
(2)测定颜色水在管中的不同状态的雷诺数,进一步掌握层流,湍流两种流态的动力学特性。
化工原理实验报告
姓名
学院
专业班级
学号
指导教师
实验日期
评定成绩:
评阅人:
流体流动的流动形态,并对层流和湍流的现象进行比较。
(2)了解转子流量计的原理、结构和使用。
(3)了解雷诺实验装置。
二、实验基本原理
经许多研究者实验证明流体流动存在两种截然不同的形态,主要决定因素为流体的密度和黏度、流体流动的速度,以及设备的几何尺寸(圆形管道中为管道直径),将这些因素整理归纳为一个无因数群,称该无因数群为雷诺准数(或雷诺数),即:
(1)
大量实验测得:当雷诺准数小于某下临界值时,流体的流动形态为层流;当雷诺数大于某上临界值时,流体的流动形态为湍流;在下临值和上临界值之间,则为不稳定的过渡区域。对于圆形管道,下临界雷诺准数为200,上临界雷诺准数为100000,一般情况下,上临界雷诺准数为4000时即形成湍流。
应当指出,层流与湍流之间并非是突然的转变而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流形的转变,在一定程度上受一些不稳定的其他因素的影响。
流体流型及临界雷诺数的测定
流体流型及临界雷诺数的测定一、实验目的与要求1.观察流体在管内流动的两种不同流型;2.测定临界雷诺数;3.掌握转子流量计的校正。
二、实验原理实际流体在流过固体壁面时,由于流体对壁面有附着力,将在壁面上粘附一层静止的流体,这层流体的分子仅因扩散作用而运动。
同时,实际流体分子间有吸引力;壁面上静止的流体层对其临近的流体层起约束作用,阻碍该层流体的流动,但离开壁面越远,则约束作用越小。
因此,流体在流动时在靠近壁面范围内是流体层与层之间的相对运动。
要使流体产生上述的相对运动,需要克服流体流动时的内摩擦力,也即需要克服一定的阻力。
此外,当流体流动激烈而呈紊乱状态时,流体间产生大量涡旋和扰动,也消耗流动的能量,消耗的能量转化为热能而提高了流体的热力学能(内能)。
流体流动的阻力与流体的性质(如粘度等)、流体流动形态、导管的长度、管径、壁面情况以及流动时的变动状态(如缩小、扩张等)有关。
粘度—是流体内部摩擦力的表现,是流体的重要物性参数之一。
流体的粘度越大,流体的流动性越小。
相邻的两层流体之间,层间的接触面积为A,层间距离为δ,为使层间产生相对运动ω时必须加上相应的剪切力F。
实验证明,所应加予的力F与层间接触面积A和相对速度ω成正比,而与层间距离成反比,这一关系称为牛顿粘性定律,这类流体称为牛顿型流体。
F=µAω/δτ=F/A=µω/δµ—比例系数,即流体的粘度。
各种流体有其本身的粘度,其值随外界条件而改变,单位为Pa.s;τ—剪应力,单位Pa。
流体的粘度主要通过实验测定,大多数纯物质的粘度可以从手册和有关资料中查得。
在这些资料中,粘度的单位常用泊(p)或厘泊(cp)表示。
国际单位制中,粘度的单位是Pa.s(基本单位是Kg.m-1.s-1),是指相距为1m,接触面积为1m2的流体产生相对运动为1m.s-1所需的力(N)。
它与泊的换算关系为1p=0.1Pa.s液体的粘度受压强的影响很小,但随温度的升高而显著降低。
流体流动类型及临界雷诺数的测定实验报告(华南师范大学)
实验二流体流动类型及临界雷诺数的测定一、实验目的1.观察流体流动过程中不同的流动型态及其变化过程;2.测定流动型态变化时的临界雷诺数二、实验原理流体充满导管作稳态流动时基本上有两种明显不同的流动型态:滞流(也叫层流)和湍流。
当流体在管中作滞流流动时,管内的流体各个质点沿管轴作相互平行而有规则的运动,彼此没有明显的干扰。
当流体作湍流流动时,各个质点紊乱地向各个不同的方向作无规则的运动。
流体的流动型态不仅与流体的平均流速有关,还与流体的粘度μ、密度ρ和管径d等因素有关。
也就是说流体的流动型态取决于雷诺准数的大小。
R=d(2-1)式中:d——管子内径(m)u——流体流速(m/s)ρ——流体密度(kg/m3)μ——流体粘度(Pa•s或kg/m•s)根据雷诺实验,流体在平直圆管中流动时,当雷诺数小于某一临界值时为滞流(或层流);当雷诺数大于某一临界值时为湍流;当雷诺数介于二者之间时则为不稳定的过渡状态,可能为滞流,也可能为湍流。
对于一定温度下的某种介质在特定的圆管内流动时,流体的粘度μ、密度ρ和管径d等均为定值,故雷诺数Re仅为流体平均流速u的函数。
流体的流速确定后,雷诺数即可确定。
流体流动型态发生变化时的流速称为临界速度,其对应的雷诺数称为临界雷诺数。
本实验以水为介质、有色溶液为示踪物,使其以不同的流速通过平直玻璃管,便可观察到不同的流动型态,同时根据流动型态的变化,可确定临界速度与临界雷诺准数。
三、实验装置本实验装置如图2-1所示,主要由稳压溢流水槽5、试验导管(内径24.2mm)6、缓冲水槽5和转子流量计6组成。
水由循环水泵供给或直接由自来水龙头输入稳压溢流水槽,经稳压后流经试验导管、缓冲水槽及转子流量计,最后流回低位水槽或排入下水道,稳压溢流槽溢流出来的水也返回低位槽或排入下水道。
示踪物由液瓶1经调节夹10、试验导管3……至下水道。
图2-1雷诺试验装置六、实验步骤1.雷诺实验的过程(1)关闭流量调节阀10、7、9,打开进水阀3,使自来水充满水槽, 并使其有一定的溢流量。
化工原理实验思考题参考答案
实验一:流体流动形态的观察与测定1、影响流体流动型态的因素有哪些?主要有流体的物理性质如密度、粘度、流速和流体的温度,管子的直径、形状和粗糙度等。
2、如果管子不是透明的,不能直接观察来判断管中的流体流动型态,你认为可以用什么办法来判断?可通过测试流体的流量求出其平均流速,然后求出Re,根据Re 的大小范围来判断。
3、有人说可以只用流速来判断管中流体流动型态,流速低于某一具体数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以由流速的数值来判断流动型态?这种看法不确切,因为只有管子的尺寸和流体的基本形状确定不变的情况下,此时Re 的大小只与流速有关,可以直接采用流速来判断。
实验二 柏努利方程实验1、 关闭阀A ,各测压管旋转时,液位高度有无变化?这一现象说明什么? 这一高度的物理意义又是什么? 关闭阀A,各测压管旋转时,液位高度无变化;液位高度代表各测压点的总能量,即位压头、静压头之和,这一现象说明,流速为0,各点总能量不变,守恒.2、 点4的静压头为什么比点3大?点3的位置较点4高一些,即H 3位>H 4位,两点的总压头相等, H3静<H 4静3、在测压孔正对水流方向时,各测压管的液位高度的物理意义是什么?流体流动时的总压头=静压头+动压头+位压头4、为什么对同一点H >H '?为什么距离水槽越远,(H-H ')的差值越大?这一差值的物理意义是什么?H 代表阀门关闭时(u=0)时的液位高度,即为该测压点的总压头,为高位槽的高度H 0(基准面的总压头),H’为阀门打开时(u>0)时测压孔正对水流方向的液位高度,H‘=静压头+动压头+位压头,由于流体的流动产生一定的阻力损失H f,造成总压头的降低,因此H>H’。
H-H ’=H f,即为损失压头,阻力损失与管子的长度成正比,因此距离水槽越远,(H-H ')的差值越大。
5、测压孔正对水流方向,开大阀A 流速增大,动压头增大,为什么测压管的液位反而下降?测压孔正对水流方向,H”=静压头+动压头+位压头=H0-H f ,开大阀A流速增大,动压头增加,由于Hf 与流速的平方成正比,流速增加,H f 增加,即部分静压头转化为阻力损失,H 0(基准面的总压头)不变时,测压点总压头减少,测压管的液位反而下降.6、将测压孔由正对水流方向转至与水流方向垂直,为什么各测压管液位下降? 下降的液位代表什么压头?1、3两点及2、3两点下降的液位是否相等?这一现象说明什么?测压孔正对水流方向,H”=静压头+动压头+位压头;将测压孔与水流方向垂直,H”’=静压头+位压头, 测压管液位下降。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告一、实验目的1、掌握流体流动阻力的测定方法,了解摩擦系数与雷诺数之间的关系。
2、学会压差计和流量计的使用方法,能够准确测量流体流经管道时的压力差和流量。
3、观察流体流动的状态,分析直管阻力和局部阻力的产生原因及影响因素。
二、实验原理流体在管道中流动时,由于内摩擦力和涡流等因素的存在,会产生阻力损失。
阻力损失包括直管阻力损失和局部阻力损失。
1、直管阻力损失直管阻力损失通常采用范宁公式计算:$h_f =\lambda \frac{l}{d} \frac{u^2}{2}$其中,$h_f$为直管阻力损失(J/kg),$\lambda$为摩擦系数,$l$为直管长度(m),$d$为管道内径(m),$u$为流体流速(m/s)。
摩擦系数$\lambda$与雷诺数$Re$及相对粗糙度$\frac{\varepsilon}{d}$有关。
雷诺数$Re =\frac{du\rho}{\mu}$,其中$\rho$为流体密度(kg/m³),$\mu$为流体粘度(Pa·s)。
2、局部阻力损失局部阻力损失通常采用阻力系数法计算:$h_f' =\xi \frac{u^2}{2}$其中,$h_f'$为局部阻力损失(J/kg),$\xi$为局部阻力系数。
三、实验装置1、实验设备本实验使用的主要设备包括:离心泵、水箱、不同管径的直管、各种局部阻力管件(如弯头、阀门等)、压差计、流量计等。
2、实验流程水箱中的水在离心泵的作用下,流经管道系统。
通过调节阀门改变流量,测量不同流量下直管和局部阻力管件前后的压差,以及对应的流量。
四、实验步骤1、熟悉实验装置,了解各仪器仪表的使用方法和测量范围。
2、检查设备是否正常,关闭所有阀门,向水箱中注水至一定高度。
3、启动离心泵,缓慢打开调节阀,使流体在管道中稳定流动。
4、调节流量,从小到大依次测量不同流量下直管段的压差和流量。
记录压差计的读数和流量计的示数。
流体流动阻力的测定实验报告
流体流动阻力的测定实验报告嘿,大家好!今天我们要给大家讲一个非常有趣的实验——测定流体流动阻力。
这个实验可是关系到我们生活中的很多方面哦,比如说汽车、飞机、水流等等。
那么,接下来就让我们一起来看看这个实验吧!我们需要准备一些实验器材。
这些器材都是非常简单的,大家在实验室里都可以找到。
我们需要的器材有:一个装满水的容器、一个漏斗、一个计时器、一个测量长度的尺子和一个压力计。
好了,准备工作做好了,我们可以开始实验了!我们要把容器里的水倒出来,然后用漏斗把水倒入一个标准量杯中。
这时候,我们要注意一点,就是漏斗的口要尽量紧贴着标准量杯的口,这样才能保证测量的准确性。
接下来,我们要把标准量杯放在测量长度的尺子上,然后用压力计把水压入标准量杯中。
这时候,我们要尽量保持压力的大小不变,因为这个大小就是我们后面要计算的阻力大小的基础。
好了,现在我们已经得到了水的压力值。
接下来,我们要做的就是计算阻力大小了。
这个计算方法其实很简单,就是用水的压力值除以通过标准量杯的水的截面积。
具体公式是:阻力 = 压力 / (截面积 * 流速)。
这里要注意的是,流速是指单位时间内通过某截面的水体积。
所以,我们在计算的时候一定要注意单位的换算。
我们要得到的是整个实验过程中的平均阻力值。
这个值可以帮助我们更好地了解流体流动的特点和规律。
如果我们想要更深入地研究流体流动阻力的问题,还可以进行更多的实验和分析。
比如说,我们可以改变水的温度、密度等条件,来观察阻力的变化情况。
这样一来,我们就可以更加全面地了解流体流动阻力的各种特性了。
这次实验让我们对流体流动阻力有了更深入的了解。
希望大家在今后的学习和工作中,能够运用这些知识,为科技的发展做出更大的贡献!谢谢大家!。
流体流动形态的观察与测定(雷诺实验)
实验一 流体流动形态的观察与测定(雷诺实验)一、实验目的:1、实际观察流体在管内作层流、湍流流动时的流动形态,并观察层流和湍流时的速度分布形式。
2、确立雷诺准数与层流和湍流的联系,并测出临界雷诺准数的大小。
3、初步掌握流动形态对化工过程的影响。
二、实验原理的说明:1、液体作滞流流动时,其质点作直线运动,且互相平行;湍流时质点紊乱地向各个方向作不规则运动,但流体的主体向一定的方向流动。
2、利用少量的带色指示液加入透明的玻璃管中,即通过指示液的流动形态来确定管道中流体的流动形态。
3、雷诺准数是确定流体流动类型的准数。
若流体在圆形管子内流动,则雷诺准数用下式表示。
μρμρ⋅⋅⋅=⋅⋅=s d V d u S Re 式中:d -管子内径[m]; s -管子的横截面积[m 2]; u -管内流速[m/s]; ρ-流体密度[kg/m 3]; μ-流体粘度[Pas];Vs -流体的流量[m 3/s]对于一定温度的流体,在特定的圆管内流动,雷诺准数(Re)仅与流速有关。
改变流量,即可改变流速,也可改变流动的形态。
当流体的流动形态由层流转变为过渡流或湍流时,其雷诺准数即为临界雷诺准数;而其流速即是临界流速。
当管内流速高于临界值时,即有可能转变为湍流。
三、设备及流程说明实验装置如图所示,图中大槽为水槽,试验时水即由此进入玻璃管(玻璃管系观察流体流动的形态和层流时导管中流速分布之用)。
槽内之水由自来水管供给,水量由阀A 调节,槽内设有进水稳流袭置及溢流箱。
用以维持平稳而又恒定的液面,多余之水由溢流管排入水沟。
试验时打开阀C ,水即由高位槽进入玻璃管,经转子流量计后,排向排水管,可用C 阀调节水量,流量由转子流量计测出。
高位墨水瓶供贮存墨水之用,墨水由此经阀B 流入玻璃管,阀B 即墨水量的调节阀。
四、实验步骤1、检查水箱5中是否有水,高位墨水瓶中是否有沉淀;转子流量计中转子是否在下部,针孔有无堵塞。
在测试时,必须保证有溢流现象.2、观摩层流、湍流流动形态和层流、湍流时的速度分布。
化学工程基础实验
实验一 流体流动能量的测定在化工生产和实验研究中,经常碰到流体的流动和输送。
而流体流动和输送所具有的总能量是由各种能量所组成,并且各种形式的能量之间又可以相互转换。
当流体在管道内作稳定流动时,在管道的各截面之间的各种形式机械能的变化规律,可由流体机械能量衡算基本方程来表示。
这些规律对于解决流体流动过程的管路计算、流体压强、流速与流量的测量及流体输送等问题,都有十分重要的作用。
一、实验目的① 熟悉流体流动中各种能量和压头的概念及其相互转化关系,加深对流 体能量衡算方程的理解。
② 观察各项能量或压头随流速的变化规律。
③ 验证流体静力学和动力学基本方程及流体机械能量衡算方程。
二、实验原理当不可压缩流体在管道内作稳定流动时,由于管路条件(如位置高低、管径大小)的变化,会引起流动过程中机械能的相应变化及相互转换。
若以单位质量流体为衡算基准,则对确定的系统流体从截面1-1流到截面2-2即可列出机械能量衡算方程式。
∑+++=++f 2222e 1211H gp 2g u Z H g p 2g u Z ρρ+ (1.1)式中 Z ——流体的压头,m 液柱; u ——流体的平均流速(m •s -1); p ——流体的压强(Pa ); ρ——流体的密度(kg •m -3);H e ——流动系统中泵对流体输入的能量(m ); ∑H f ——流动系统中因阻力而消耗的能量(m );对于实际流体,由于具有粘性,存在内摩擦力,流体在流动中总有一部分机械能随摩擦和碰撞转化为热能而损耗了。
故对实际流体,任意两截面上的机械能总和并不相等,两者之差即为阻力损失。
当不可压缩流体能量衡算方程应用于各种具体情况时,可适当简化。
① 当流体为理想液体时,于是式(1.1)可简化为gp 2g u Z g p 2g u Z 22221211ρρ++=++ (1.2)该式即为柏努利(Bernolli )方程。
对于理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一流体流动形态观察与测定
一、实验目的
1、建立“层流和湍流两种形态和层流时管路中流速分布”的感性知识;
2、确立“层流、湍流与Re之间有一定联系”的概念。
二、实验任务
1、先做演示实验,观察以下三种现象:层流、湍流、层流时流速分布曲线的形成。
2、维持高位槽液面稳定的情况下,测定不同流动形态的雷诺数。
三、实验原理
无
四、实验装置及实验步骤
实验管道有效长度: L=600 mm
外径: Do=30 mm
内径: Di=24.2mm
实验装置流程如图一所示。
1. 实验前的准备工作
(1) 必要时调整红水细管4的位置,使它处于实验管道6的中心线上。
(2) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。
(3) 关闭流量调节阀10、7、9,打开进水阀3,使自来水充满水槽,•并使其有一定的溢流
量。
(4) 轻轻打开阀门10,让水缓慢流过实验管道。
使红水全部充满细管道中。
2. 雷诺实验的过程
(1) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。
(2) 轻轻打开阀门10,让水缓慢流过实验管道。
使红水全部充满细管道中。
(3) 调节进水阀,维持尽可能小的溢流量。
(4) 缓慢地适当打开红水流量调节夹 ,即可看到当前水流量下实验管内水的流动状况
(层流流动如下图二示)。
读取流量计的流量并计算出雷诺准数。
图二、层流流动示意图
(5) 因进水和溢流造成的震动,有时会使实验管道中的红水流束偏离管的中心线,或发生不同程度的左右摆动. 为此, 可突然暂时关闭进水阀3, 过一会儿之后即可看到实验管道中出现的与管中心线重合的红色直线。
(6) 增大进水阀 3 的开度,在维持尽可能小的溢流量的情况下提高水的流量。
并同时根据实际情况适当调整红水流量,即可观测其他各种流量下实验管内的流动状况。
为部分消除进水和溢流造成的震动的影响,在滞流和过渡流状况的每一种流量下均可采用四. 2.(5)中讲的方法,突然暂时关闭进口阀 3 ,然后观察管内水的流动状况(过渡流、湍流流动如图三示)。
读取流量计的流量并计算出雷诺准数。
3.流体在圆管内作流体速度分布演示实验
(1)首先将进口阀 3打开,关闭出口阀门7。
(2)将红水流量调节夹打开,使红水滴落在不流动的实验管路。
图三、过渡流、湍流流动示意图
(3)突然打开放水阀门10,在实验管路中可以清晰地看到红水流动所形成的如图四所
示速度分布。
图四、流速分布示意图
4. 实验结束时的操作
(1)关闭红水流量调节夹,使红水停止流动。
(2)关闭进水阀 3,使自来水停止流入水槽。
(3)待实验管道的红色消失时,关闭阀门 10。
(4)若日后较长时间不用,请将装置内各处的存水放净。
五. 实验注意事项
做滞流时,为了使滞流状况能较快地形成,而且能够保持稳定,第一, 水槽的溢流应尽可能的小。
因为溢流大时,上水的流量也大,上水和溢流两者造成的震动都比较大,影响实验结果。
第二,应尽量不要人为地使实验架产生任何的震动.为减小震动,
若条件允许,可对实验架的底面进行固定。
六、记录表
设备编号:管子内径 mm
水温℃,水的密度 kg/m3
七、实验分析思考
1、影响流体流动型态的因素有哪些?
2、如果管子不是透明的,不能直接观察来判断管中的流体流动型态,你认为可以用什么办法来判断?
3、有人说可以只用流速来判断管中流体流动型态,流速低于某一具体数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以由流速的数值来判断流动型态?
实验要求:
(1)实验前要求预习,写预习报告,准备待测数据表;
(2)做完实验后,原始数据表上需老师签字后才能离开实验室;
(3)实验报告要附原始数据表;
(4)每组选一名小组长,负责指挥实验进程;
(5)写报告时,需将同组同学的名单附在报告上,按对实验贡献大小排名。