第一章函数、极限与连续.ppt

合集下载

《函数的极限与连续》课件

《函数的极限与连续》课件

示例
考虑函数$f(x) = x^2$,在区间 $[0, 1]$上连续且单调增加。如果 $f(0) < c < f(1)$,则可以证明$c < frac{f(0) + f(1)}{2}$。
利用连续性求函数的零点
要点一
总结词
利用函数的连续性可以找到函数的零 点。
要点二
详细描述
如果函数在某区间上连续,且在该区 间上从正变负或从负变正,则可以利 用函数的连续性找到函数的零点。这 是因为函数在这一点上从增加变为减 少或从减少变为增加,的定义
函数在某点连续的定义
如果函数在某点的左右极限相等且等于该点的函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
连续性的性质
连续函数的和、差、积、商(分母不为零)仍为连续函数。
复合函数在复合点连续的定义:如果一个复合函数在某点的极限等于该点的函数值,则复合函数在该点 连续。
与其他数学知识的联系
探讨函数极限与连续性与中学数学、微积分等其他 数学知识的联系,理解其在数学体系中的地位。
理论严谨性
深入思考函数极限与连续性理论的严谨性和 完备性,理解数学严密性的重要性。
对后续学习的展望
导数与微分
预告后续将学习函数的导数与微分概念,了解它们与 极限和连续性的关系。
级数与积分
简要介绍级数和积分的基本概念,理解其在数学中的 重要性和应用。
01
和差运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)pm g(x)]=Apm B$。
02
03
乘积运算性质
幂运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)cdot g(x)]=Acdot B$。

高等数学第一章的总结-PPT

高等数学第一章的总结-PPT

n
1
lim
n
n2 n2
lim n1
1
n2
1
lim n
n
1
n2
n2
1
2
n2
1
n
1
例:
lim
1
1
(e n
2
en
n
en
)
n n
1
e
x
d
x
e 1
0
1
n
1
解:原式
lim
n
1 n
e
n
(1
e
1
n
)
(1
e) lim
n
n
1
1en
1en
1
(1 e) lim ln(1 u) (1 e) lim ln(1 u) u e 1.
)x
e
两个重要极限
(1) lim sin 1
0
(2) lim ( 1 1 ) e
1
或 lim(1 ) e
0
注: 代表相同的表达式
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ;
x x
3. lim xsin 1 _0___ ;
x0
x
2. lim xsin 1 __1__ ;
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
x x0 0
思考题
x
sin
1 x
,
试问函数 f ( x) 10,
5
x2,
x0 x 0在x 0处
x0
的左、右极限是否存在?当 x 0 时, f ( x) 的

专升本 高数 PPT课件

专升本 高数 PPT课件

二、极限 4.极限存在准则
单调有界数列必有极限 两面夹定理
5.两个重要极限
6.无穷小与无穷大:定义、关系、性质、无穷小的比较
极限与无穷小关系、等价无穷小替换定理(整式替换、 常见等价无穷小代换)
Hale Waihona Puke 第一章 函数、极限与连续 知识梳理
三、连续 1.定义:两个定义、左右连续、连续充要条件 2.运算性质:四则运算
定义域 自变量 因变量(函数) 函数值 值域
第一章 函数、极限与连续 知识梳理
一、函数 1.概念 (2)函数三要素
定义域 对应法则 值域 (3)函数的表示方法
图像法 表格法
分段函数 公式法用参数方程确定的函数
隐函数(显函数)
第一章 函数、极限与连续
知识梳理
定义域D关于原点对称
一、函数
高等数学辅导讲义(专升本)
• 第一章 函数、极限与连续 15%
• 第二章 一元函数的微分学 20%
• 第三章 一元函数的积分学 20%
• 第四章 多元函数微积分 15%
• 第五章 常微分方程
15%
• 第六章 无穷级数
10%
• 第七章 向量代数与空间解析几何5%
第一章 函数、极限与连续
(重点)
第一章 函数、极限与连续
复合函数的连续性 3.间断点及其分类:第一类:可去、跳跃
第二类 4.闭区间上连续函数的性质:最值性
介值性 零点定理
5. 初等函数 六种基本初等函数:
第一章 函数、极限与连续 知识梳理
六种基本初等函数 • 常数函数:定义域、值域、奇偶性、周期性、单调性 • 幂函数: • 指数函数: • 对数函数: • 三角函数:六个(正割函数、余割函数) • 反三角函数:四个

高等数学 第一部分 函数、极限与连续 课件ppt

高等数学  第一部分  函数、极限与连续 课件ppt

a 1 时,y log a x 单调递增, y
y logax (a 1)
0 a 1时y, log a x 单调递减。 o
x
y logax (0 x 1)
1-1 函数
4. 三角函数
正弦函数:y sin x
定义域:(,).
值 域:[1,1] .
单调性:

2
2k , 2
2k
单调增加;2
1-1 函数
函数的表示法
1)以数学式子表示函数的方法叫公式法如: y x2, y cos x 公式法的优点是便于理论推导和计算.
2)以表格形式表示函数的方法叫表格法,它是 将自变量的值与对应的函数值列为表格,如三角函 数表、对数表等,表格法的优点是所求的函数值容 易查得.
3)以图形表示函数的方法叫图形法或图象法, 这种方法在工程技术上应用很普遍,其优点是直观 形象,可看到函数的变化趋势.
4
2
3
(2) y sin x cosx 的周期T 2
(3) y cos 2x tan x 的周期T 3 .
3 3 6
1-1 函数
4.有界性
定义 1.6 设函数 y f (x) 的定义域为 D,如果存在 一个正常数 M,使得对于任意的 x D ,都有| f (x) | M , 则称函数 y f (x) 在 D 上有界.如果不存在这样的正常 数 M,即对任意的正常数 M,都存在某个点 x0 D ,使 得| f (x0 ) | M , 则称函数 y f (x) 在 D 上无界.
2k ,
3
2
2k
单调减少.
奇偶性:奇函数.
周期性:周期函数.
有界性:有界函数.
余弦函数:y cosx
1-1 函数

《连续与极限》课件

《连续与极限》课件

极限的单调有界定理
单调有界定理是极限运算中的另一个重要定理,它指出如果一个数列是 单调递增(或递减)且有上界(或下界),那么这个数列必定收敛。
单调有界定理的应用也需要证明数列的单调性和有界性,并证明其收敛 性。在应用单调有界定理时,需要注意数列的单调性和有界性的判断。
单调有界定理在研究函数的极限和连续性等方面也有着重要的应用,可 以用来求解一些较为复杂的极限问题。
总结词
收敛数列的性质。
详细描述
数列的极限定义基于一个实数$lim_{n to infty} a_n = L$ ,表示当$n$趋向无穷大时,数列$a_n$趋向于一个常数 $L$。
详细描述
收敛数列具有唯一性、有界性和稳定性等性质,这些性质 在解决实际问题中具有重要应用。
函数的极限
总结词
函数的极限描述了函数在某一点或无穷远点的变化趋势。
泛函分析
泛函分析是数学分析的延伸和发展,涉及到函数空间、算子、泛函等概念。在泛函分析中,连续与极限 的概念被用于研究函数空间的结构、算子的性质以及解决一些与函数空间相关的数学问题。
在实际生活中的应用
金融
在金融领域中,连续与极限的概念被用于描述金融数据的波动和变化,以及预测 金融市场的走势和风险。例如,在期权定价、风险评估和投资组合优化等方面, 连续与极限的概念有着广泛的应用。
03
极限的运算
极限的四则运算
极限的四则运算法则是极限运算的基础,包括加法、减法、乘法和除法等运算。
在进行极限的四则运算时,需要注意运算的优先级和运算顺序,同时要确保各项的 极限都存在。
极限的四则运算法则可以用来求解一些简单的极限问题,也可以为后续的夹逼定理 和单调有界定理等提供基础。
极限的夹逼定理

§13 极限四则运算法则 函数的连续性.ppt

§13 极限四则运算法则 函数的连续性.ppt

lim
x x0
f (x).
练习6 设函数 f (x)
x 1, x 1,
2 x 0, 0 x 3.
讨论f (x)
在x
0
处的连续性.
解 这是分段函数, x 0是其分段点.因 f (0) 1 ,又
lim f (x) lim(x 1) 1,
x0
x0
lim f (x) lim (x 1) 1,
x0
x0
所以函数在 x 0处右连续, 但不左连续, 从而它在 x 0
不连续.
函数在区 间上连续:
若函数 f (x) 在区间I 上每一点都连续,
则称函数f (x) 在 I 上连续, 或称 f (x) 为 I
上的连续函数.
函数在闭区 间上连续:
结论
函数 f (x) 在闭区间[a, b]上连续是指, 函
于是
§1.4中计算复利及 贴现时要用到求该 类极限.
幂的极限 =极限的幂
lim (1
n
1n)3n
lim[(1
n
1n)n]3
e3.
lim (1
n
1n)n
e
练习4

lim (1
n
21n)n3.
解 由幂的运算性质
(1 21n)n3 (1 21n)n (1 21n)3
积的极限 于是 =极限的积
数 f (x)在开区间(a, b)上连续; 且在端点 a处
右连续, 在端点 b处左连续, 即有:
lim f (x) f (a), lim f (x) f (b).有定义的区间内都是连续的.
结论 初等函数在其有定义的区间内都是连续的.
x 根据这一结论, 求初等函数在其定义区间内某点 0

高等数学ppt课件

高等数学ppt课件

定积分的性质
定积分具有可加性、可积性、可微性等性质 。
定积分的应用
01
02
03
几何应用
定积分可以用于计算平面 图形和三维物体的面积和 体积,如矩形、圆形、球 体等。
物理应用
定积分可以用于计算变力 沿直线做功、液体压力等 物理问题。
经济应用
定积分可以用于计算经济 指标,如成本、收益、利 润等。
05
多重积分与向量分析
多重积分的概念与性质
多重积分的定义
多重积分是单变量积分概念的推广,它涉及多个变量 的积分。多重积分可以看作是对于每个变量进行积分 ,然后将结果相乘。
多重积分的性质
多重积分的性质包括积分的可加性、积分的可交换性、 积分的可结合性等。这些性质与单变量积分的性质类似 ,但需要考虑到多个变量的复杂性。
函数定义
函数是一种数学工具,它建立了数与数之间的对应关系,可以将一个数集中的每一个数唯一地映射到另一个数集中。 函数的性质包括定义域、值域、对应关系等。
函数的表示方法
函数的表示方法有表格法、图示法和解析法等,其中解析法是最常用的方法之一。解析法是通过数学表达式来表示函 数的关系。
函数的单调性
函数的单调性是指函数在某区间内的单调递增或单调递减的性质。单调函数具有连续性和可导性等性质 。
03
导数与微分
导数的定义与性质
总结词
导数是描述函数值随自变量改变速率的 方式,是函数局部性质的重要体现。
VS
详细描述
导数定义为函数在某一点的变化率,即函 数在这一点处切线的斜率。导数的基本性 质包括:(1)常数函数的导数为零;( 2)导函数在某点的极限就是原函数在该 点的导数值;(3)两个函数相加或相减 后的导数等于各自导数之和或之差;(4 )常数倍函数的导数等于该常数乘以原函 数的导数。

《应用数学基础》(陈冲)157-8课件 第一章 函数、极限与连续

《应用数学基础》(陈冲)157-8课件 第一章  函数、极限与连续

1.1 函数的概念 2.函数的性质
3)单调性
设函数 f (x) 在区间 I 上的任意两点 x1 ,x2 ,当 x1 x2 时,有 f (x1) f (x2 ) ,则称 y f (x) 在 区间 I 上为单调增加函数;反之,当 x1 x2 时, f (x1) f (x2 ) ,则称 y f (x) 在区间 I 上为单调
应用数学基础
第一章 函数、极限与连续
目录
ONTENTS
1 函数 2 函数的极限 3 无穷小量与无穷大量 4 极限的四则运算法则 5 两个重要极限 6 函数的连续性
01 函 数
1.1 函数的概念 1.函数的两个要素
➢ 函数的概念
定义 1 设 x 和 y 是两个变量, D 是一个给定的数集,如果对于给定的每个数 xD ,按照 某个法则 f 总有一个确定的 y 值和它对应,则称 y 是 x 的函数,记作 y f (x) ,数集 D 称为这个 函数的定义域, x 称为自变量, y 称为因变量, y 的取值范围称为函数的值域,用 M 表示.
1.2 基本初等函数
(1)常数函数: y C . (2)幂函数: y x ( 为常数). (3)指数函数: y ax ( a 0 , a 1, a 为常数). (4)对数函数: y loga x ( a 0 , a 1, a 为常数). (5)三角函数: y sin x , y cos x , y tan x , y cot x , y sec x , y csc x . (6)反三角函数: y arcsin x , y arccos x , y arctan x , y arccot x . 这六种函数统称为基本初等函数.这些函数的定义、图像和性质在中学已经学过,今后会 经常用到.

高等数学(微积分学)教学课件

高等数学(微积分学)教学课件

三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D

高等数学-函数、极限与连续

高等数学-函数、极限与连续
(1) y=;(2) y=lg。
(4) g。
能力训练1.1
B组题
1.求下列函数的定义域:
(1) y=1/+5;
(2) y=2/x-;
(3) y=log31/1-x+;(4) y=arcsinx-1/2。
2.设f(x)=,求f(0), f, f(1), f。
3.设f(x+1)=x2-3x+2, 求f(x)。
(1) 解析法
(2) 列表法
(3) 图形法
4.分段函数
例2 绝对值函数
例3 符号函数
图 1-3
1.1.2 函数的几种特性
图 1-
4
1.1
函数
1. 函数的有界性
2. 函数的单调性
图 1-5
3. 函数的奇偶性
图 1-6
*例4
讨论函数f(x)=ln(x+)的奇偶性。
1.1
函数
解: 函数f(x)的定义域(-∞, +∞)是对称区间, 因为
题。
1.3.1 数列的极限
1.数列
(1) 1, 1/2, 1/3, 1/4, …, 1/n, …
(2) 1/2, 2/3, 3/4, …, n/n+1, …
(3) 1, -1, 1, -1, 1, …, (-1)n+1, …
(4) 3, 31/2, 32/3, 33/4, …, 4-1/n, …
1.3
4. 函数的周期性
1.1.3 反函数
例5 求y=3x-1的反函数。
解: 由y=3x-1得到x=y+1/3, 然后交换x和y, 得到y=x+1/3, 即
y=x+1/3是y=3x-1的反函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为f (x) cos2 x 1 (1 cos x) g(x),即f (x)与g(x)具有相同的对 22
应法则,所以f (x)与g(x)是相同的函数;
(2)因为f (x) | x | 定义域是x 0的一切实数,而g(x) 1的定义域 x
是一切实数,所以f (x)与g(x)不是相同的函数。
,当n = m 当n > m
, 当n < m
(其中a0、a1、 、am和b0、b1、 、bn都是常数,且a0 0,b0 0);
( 6) lim sin x = 1 ;( 7) lim tan x = 1
x0 x
x0 x
;( 8) lim x
1+
1 x
x
=
e

1
( 9) lim1+t t = e ;(1 0) lim qx 0 ( | q | 1 ) .
的定义域。
解 由已知得 2 4x 3 5,即 5 x 2,
4
故所求函数的定义域为 5 x 2. 4
二、判断两个函数是否相同
一个函数的确定取决于其定义域和对应关系的确定,因
此判断两个函数是否相同必须判断其定义域是否相同,且要
判断函数表达式是否统一即可。
例3 判断下列各对函数是否相同?
(1)
0,解得
x 1或x
17 3
x
2 19 ,
3
故所求函数定义域为17 x 19 ;
3
3
(2)若使函数有意义,必须
5x
x
2
20 7x 10
0,解得
x x
2 5 2,
x
5,
10 x 0
x 10
故所求函数的定义域为 2 x 10且x 2, x 5. 5
例 2 已知函数 y f (x)的定义域为[2,5],求函数 y f (4x 3)
二、几个常用的基本极限
(1 ) lim c=c, xx0
(c为常数);( 2) lim x
x
=
x0

(x )
( 3) lim 1 = 0 ; x x
( 4) lim x
1 x
= 0,(为正的常数)

( 5) lim x
a0 xm +a1xm-1 + b0 xn +b1xn-1+
+am +bn
=
a0 0b,0
x x0 0
1
lim(1 z) z e
z0
x1 z
lim
x
1
1 x
x
e
lim sin x 1 x0 x
五、表 1-2 列出了函数 y f (x)的点连续与区间连续
的概念
表 1-2


结论
(1) 如果
lim y 0 或
x 0
lim
x x0
f (x)
f (x0 )
(2) 如果 y f (x) 在 (a,b) 内每一点连续
(3) 如果 y f (x) 在 (a,b) 内连续,
且 lim f (x) f (b),lim f (x) f (b)
xb0
xa0
那么 y f (x) 在点 x0 连续 那么 y f (x) 在 (a,b) 内连续 那么 y f (x) 在 [a,b] 上连续
六、本章关键词
函数 极限 连续
f (x) cos2 x 与g(x) 1 (1 cos x)
2
2
;(2)
f (x) | x | 与g(x) 1 x
.
解 利用定义域和对应法则来判断。
(1)因为f (x) cos2 x 的定义域是一切实数,而g(x) 1 (1 cos x)
2
2
的定义域也是一切实数,所以f (x)与g(x)具有相同的定义域;又

无穷小
(x) A a 当 x x0 时a 0
(x )
函数的极限 lim f (x) A(常数)
x x0 (x)
右连续
lim
x x0 0
f (x)
f (x0 )
左连续
lim
x x0 0
f (x)
f (x0 )
lim f (x) A
x
lim f (x) A
三、判断函数奇偶性
第一章 函 数 、 极 限 与 连 接 (一) 本 章 内 容 小 结 (二) 常见问题分类及解法 (三) 思 考 题 (四) 课 堂 练 习
(一) 本章内容小结
一、本章的主要内容
函数的定义;函数的几种特性;复合函数、反函数 与初等函数的概念;数列与函数极限的定义;极限的运 算法则;无穷小与无穷大的概念;两个重要极限;无穷 小的比较;函数在点与区间的连续性及间断性;闭区间 上连续函数的性质。
x
x
x
( 4) lim x x0
f (x)
f
(x0 )
lim
xx0 0
f
(x)
lim
xx0 0
f
(x)
f (x0 )
.
四、表 1-1 给出了当 x → ∞和 x → x0时函数的极限
与由此引申出来的有关概念之间的关系
表 1-1
无穷大
lim f (x)
x x0 (x)


f (x) 0


义域,方法是解不等式组a (x) b .
例1 求下列函数的定义域:
(1)y
1
arccos(3x 18) ;
x2 3x 2
(2)y
ln(5x 2) x2 7x 10
10 x
.
解 所求定义域应使函数式中各部分都有意义,即求解不
等式组。
(1)若使函数有意义,必须
x2 3x 2 | 3x 18 | 1
x x0
点连续
lim
x x0
f (x)
f (x0 )
续表
lim f (x) A
x
lim f (x) A
x x0
点连续
lim
x x0
f (x)
f (x0 )
数列的极限
lim
n
xn
A
lim f (x) A
x
lim f (x) A
x
右极限 lim f (x) A
x x0 0
左极限 lim f (x) A
t 0
x
三、几个充要条件
(1 ) lim f xx0 (x)
(x)
A
f (x)
A
当 x
(
x0 x )
时 0

( 2) lim f (x) A lim f (x) lim f (x) A ;
x x0
xx0 0
xx0 0
( 3) lim f (x) A lim f (x) lim f (x) A ;
(二) 常见问题分类及解法
一、求函数的定义域
函数的定义域就是指使函数有意义的自变量 x 的取值 范围. 判断函数有意义的方法有以下几种:
①分式的分母不等于零; ②偶次方根式中,被开方式大于等于零; ③含有对数的式子,真数式大于零; ④反正弦、反余弦符号内的式子绝对值小于等于1; ⑤分段函数的定义域是各段函数定义域的并集; ⑥若已知 y f (x)的定义域是[a,b],求 y f [(x)]的定
相关文档
最新文档