七年级数学有理数复习练习题(最新整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:第一章《有理数》(两课时)复习学案
(人教版七年级上)
【复习目标】:复习整理有理数有关概念和有理数的运算法则,运算律以及近似计算等有关知识;
【复习重点】:有理数概念和有理数的运算;
【复习难点】:对有理数的运算法则的理解;
【导学指导】:
一、知识回顾
(一)正负数有理数的分类:
_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
(二)数轴规定了、、的直线,叫数轴
(三)、相反数的概念
像2和-2、-5和5、2.5和-2.5这样,只有不同的两个数叫做互为相反数;
0的相反数是。一般地:若a为任一有理数,则a的相反数为-a
相反数的相关性质:
1、相反数的几何意义:
表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
2、互为相反数的两个数,和为0。
(四)、绝对值
一般地,数轴上表示数a的点与原点的叫做数a的绝对值,记作∣a∣;
一个正数的绝对值是;
一个负数的绝对值是它的;
0的绝对值是 .
任一个有理数a的绝对值用式子表示就是:
(1)当a是正数(即a>0)时,∣a∣= ;
(2)当a是负数(即a<0)时,∣a∣= ;
(3)当a=0时,∣a∣= ;
【课堂练习】
1.把下列各数填在相应额大括号内:
7
1,-0.1,-789,25,0,-20,-3.14,-590,
正整数集{ …};正有理数集{ …};
负有理数集{ …};
负整数集{ …};自然数集{ …};
正分数集{ …};
负分数集{ …};
2.如图所示的图形为四位同学画的数轴,其中正确的是()
3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。 4,-|-2|, -4.5, 1, 0
4.下列语句中正确的是( )
A.数轴上的点只能表示整数
B.数轴上的点只能表示分数
C.数轴上的点只能表示有理数
D.所有有理数都可以用数轴上的点表示出来
5. -5的相反数是;-(-8)的相反数是;- =
0的相反数是; a的相反数是;
6. 若a和b是互为相反数,则a+b= 。
7.如果-x=-6,那么x=______;-x=9,那么x=_____
8. |-8|= ; -|-5|= ;绝对值等于4的数是_______。
9.如果3>a ,则______3=-a ,______3=-a
10.有理数中,最大的负整数是 ,最小的正整数是 ,最大的非正数是 。
【要点归纳】:
【拓展训练】:
1.绝对值等于其相反数的数一定是( )
A .负数
B .正数
C .负数或零
D .正数或零
2. 已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是(
)
A .负数; B.正数; C.负数或零; D.
非负数3.7=x ,则______=x ; 7=-x ,则______
=x 4.如果a a 22-=-,则a 的取值范围是( )
A .a >O
B .a ≥O
C .a ≤O
D .a <O .
5.绝对值不大于11的整数有( )
A .11个
B .12个
C .22个
D .23个
【总结反思】:
一.知识回顾
(五)、有理数的运算
(1)有理数加法法则:
(2)有理数减法法则:
(3)有理数乘法法则:
(4)有理数除法法则:
(5)有理数的乘方:求 的积的运算,叫做有理数的乘方。
即:a n =aa…a(有n 个a)
从运算上看式子a n ,可以读作 ;从结果上看式子a n 可以读作 .
有理数混合运算顺序:
(1)
(2)
(3)
(六)、科学记数法、近似数及有效数字
(1)把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科
学记数法.
(2)对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为
这个近似数的有效数字。
【课堂练习】:
1. 33= ;(2
1-)2= ;-52= ;22的平方是 ;2.下列各式正确的是( )
A.225(5)-=-
B.1996(1)
1996-=- C.2003(1)(1)0---= D.99(1)10--=
3.计算:
(1)12-(-18)+(-7)-15 (2)3
342293⎛⎫-÷⨯- ⎪⎝⎭(3)(-1)10×2+(-2)3÷4 (4)(-10)4+[(-4)2-(3+32)×2]
4.用科学记数数表示:1305000000= ;-
1020= 。
5. 120万用科学记数法应写成 ;2.4万的原数
是 。
6. 近似数3.5万精确到 位,有 个有效数字.
7.近似数0.4062精确到 位,有 个有效数字.
8. 5.47×105精确到 位,有 个有效数字
【要点归纳】:
【拓展训练】:
1. 3.4030×105保留两个有效数字是 ,精确到千位
是 。
2.用四舍五入法求30951的近似值(要求保留三个有效数字),结果
是 。
3.已知a =3,2b =4,且a b >,求a b +的值。
4.下列说法正确的是( )
A.如果a b >,那么22a b >
B.如果22a b >,那么a b >
C.如果a b >,那么22a b >
D.如果a b >,那么a b >
5.计算:
(1)25171(24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦