第10章 振动与波动(习题与答案)

合集下载

振动与波动习题课修

振动与波动习题课修
4 4
A = 5 / cos α = 5 2 cm
2
πt 3π t= 0 t= 2 s (1) x = 5 2 × 10 cos( )( SI ) 4 4 3 π 2 (2) v = ω A sin = 5 2 × 10 sin( π ) 4 4 = 3 . 93 × 10 2 m / s
v A1
O X O
v A1
X O
A2
v A1
X
v A2
反相 同相
振动2比振动 超前 振动 比振动1超前 比振动
四、谐振动的合成 1。同方向、同频率的谐振动的合成: 。同方向、同频率的谐振动的合成:
A=
2 A12 + A2 + 2 A1 A2 cos( 2 1
A1 sin 1 + A2 sin 2 tg = A1 cos 1 + A2 cos 2
v0 tg = ω x0
两同频率的谐振动在任意时刻的相位差: 两同频率的谐振动在任意时刻的相位差:
= 2 1
振动2比振动1超前 > 0 LLLLL 落后 < 0 = = 2 kπ ( k = 0 ,1L ) 振动2和振动1同相 = ( 2 k + 1 )π ( k = 0 ,1L ) LLL反相
8. 一系统作简谐振动,周期为 ,以余弦函数 一系统作简谐振动,周期为T,
1 表达振动时,初相位为零。 表达振动时,初相位为零。在 0 ≤ t ≤ T范围 2 T/8或3T/8 时动能和势能相等 系统在t=_________时动能和势能相等。 时动能和势能相等。 内,系统在
解: x = Acosωt
x = 2cos(ωt + )
O t=0
5 Vm = ωA = 5 ω = 2 5 π x = 2cos( t )cm 2 2

《大学物理》 第二版 课后习题答案 第十章

《大学物理》 第二版 课后习题答案 第十章

习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。

设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。

解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。

解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。

10级大学物理复习题(第10章)

10级大学物理复习题(第10章)

第10章 机械振动和波一、填空题易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。

(4510J -⨯,0.628s )易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。

(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m )易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。

(200N/m ,10rad/s )易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。

(0.02m ,2.5m ,100Hz ,250m.s -1)易:5、两个谐振动合成为一个简谐振动的条件是 。

(两个谐振动同方向、同频率)易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。

(相同)易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。

(偶数)易:8、弹簧振子系统周期为T 。

现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。

(T )易:9、作谐振动的小球,速度的最大值为,振幅为,则振动的周期为;加速度的最大值为。

(34π,2105.4-⨯)易:10、广播电台的发射频率为 。

则这种电磁波的波长为 。

(468.75m )易:11、已知平面简谐波的波动方程式为 则时,在X=0处相位为 ,在处相位为 。

(4.2s,4.199s)易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅;圆频率;初相。

(10m,1.2-s rad π,0)中:13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。

第10章 波动(例题)

第10章 波动(例题)

y(x,t) = 3×10−2 cos[4π(t − x / u) +π] −2 = 3×10 cos[4π(t − x / 20) +π]
-7-
第十章 波动
⑶C、D点的运动方程 点的运动方程
8m C
u
5m B A o 9m D
C点的运动方程 点的运动方程
x
y(xC ,t) = 3×10 cos4π (t − xC / u) = 3×10−2 cos4π(t − (−13)/20) −2 = 3×10 cos(4πt +13π / 5)
v v0
-17-
第十章 波动
v v0
解: 汽车接收声波 u + v车 ν汽收 = ν源 u 接收器接收反射波 u ν u ⋅ u + v车 ν = u + v车 ν ν器收 = 源 汽收 = u − v车 u − v车 u u − v车 源 解得 ν器收 −ν源 v车 = u = 110 −100 ×330 =15.7 m⋅ s-1 ν器收 +ν源 110 +100
-15-
第十章 波动
解: 观察者听到来自A的频率 ⑴观察者听到来自 的频率 u − v0 330 −30 ⋅ 500 = 454.5 Hz ν' = ν= u 330 观察者听到来自B的频率 的频率; ⑵观察者听到来自 的频率; u + v0 ν ′′ = ν = 330 + 30 ×500 = 461.5 Hz 330 + 60 u + vs 观察者听到的拍频. ⑶观察者听到的拍频 ∆ν =|ν ′ −ν ′′ |= 7 Hz
-19-
第十章 波动
解: 在观察时间飞机飞行的距离 AB = vst = h(cot + cotβ) α 飞机速度在AC、 方向的分量 飞机速度在 、BC方向的分量 vAC = vscosα vBC = vscosβ 飞机在A、 处观察者听到声音频率 飞机在 、C处观察者听到声音频率 u ν = u ν1 = ν0 0 u − vAC u − vscosα u ν2 = u ν0 = ν0 u + vBC u + vscosβ 解得 ν0 −ν2 ν1 −ν0 cosα = u = 0.275 cosβ = u = 0.413

第十章波动自测题

第十章波动自测题

第十章波动自测题一、选择题1、关于“波长”的定义,下列说法正确的是< )<A)同一波线上振动位相相同的两质点间的距离<B)振动在一个周期内所传播的距离<C)同一波线上位相差为的两振动质点之间的距离<D)同一波线上两个波峰之间的距离2、下面说法正确的是< )<A)机械波是介质中的振动质点向远处传播形成的<B)只要有机械振动就一定会产生机械波<C)机械波的频率与波源的振动频率是一样的<D)机械波的速度与波源的振动速度是一样的3、对平面简谐波,下面几种说法中,错误的说法是:< )(A>波源的振动周期与波动的周期在数值上相同(B>波源的振动频率与波动的频率在数值上相同(C>波源振动的速度与波速相同(D>波源完成一次全振动,波向前传播一个波长4、下列说法正确的是< )<A)横波是沿水平方向振动的波,纵波是沿竖直方向振动的波;<B)机械波只能在弹性介质<媒质)中传播,而电磁波可以在真空中传播;<C)由于波速可表示为,则波源频率越高,波速越大;<D)波源振动的频率就是波的频率,波源振动的速度就是波的传播速度。

5、把一根长绳子拉成水平,用手握住其一端,维持拉力恒定,使绳端在垂直于绳子的方向上做简谐振动,则:< )b5E2RGbCAP<A)振动频率越高,波长越长<B)振动频率越低,波长越长<C)振动频率越高,波速越大<D)振动频率越低,波速越大6、当一列波由一种介质进入另一种介质中,它的波长、波速、频率三者的变化情况是< )<A)波长和频率会改变,波速不会变<B)波速和频率会改变,波长不会变<C)波速和波长会改变,频率不会变<D)波长、波速、频率都可能要改变7、横波以波速u沿x轴负方向传播,t时刻波形曲线如图,则该时刻< )<A)A点振动速度向上<B)B点静止不动<C)C点向下运动<D)D点振动速度向下8、以下说法错误的是< )(A> 波速与质点振动的速度是一回事,至少它们之间相互有联系(B> 波速只与介质有关,介质一定,波速一定,不随频率、波长而变,介质确定后,波速为常数(C> 质元的振动速度随时间作周期变化(D> 虽有关系式v = ν,但不能说频率增大,波速增大9、一横波沿绳子传播时的波动方程为y = 0.05 cos (10π t+4πx>(SI制>,则< )p1EanqFDPw<A)波长为0.5 m<B)波长为0.05 m<C)波速为25 m/s <D)波速为5 m/s10、一平面简谐波波动表达式为y=3cos(2πt-πx/2+π>,在x=4m位置处的质点在t=1s时刻振动速度为< )DXDiTa9E3d<A)6m/s <B)6πm/s<C)0m/s <D)-6m/s11、一简谐波的表达式为,式中的单位为m,的单位为s,则< )<A)波长 5m <B)波速为<C)周期为 <D)波沿χ轴正方向传播12、某波源作简谐振动,振动方程为m,已知波速为15m·s-1,则波的频率和波长分别为< )<A)25Hz,3.0×10-3m <B)25πHz,30m<C)25Hz,0.6m<D)25πHz,0.6m13、一平面简谐波表达式为y=-0.05sinπ(t-2x> (SI>,则该波的频率ν(Hz>,波速u(m/s>及波线上各点振动的振幅A(m>依次为< )RTCrpUDGiT(A> 1/2,1/2, -0.05(B> 1/2, 1 , -0.05(C> 2, 2, 0.05(D> 1/2, 1/2, 0.0514、一平面谐波沿x 轴正向传播,t=0时刻的波形如右上图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是:< )5PCzVD7HxA 15、一平面简谐波的波动方程为y = 0.1cos(3πt -πx+π> (SI>,t = 0时的波形曲线如图所示,则< )(A>O 点的振幅为-0.1m . (B> 波长为3m. (C> a 、b 两点间相位差为π/2. (D> 波速为9m/s.16、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距< )xHAQX74J0X (A>2m(B> 2.19m(C> 0.5 m(D> 28.6 m17、如图所示为一平面简谐波在t=0时刻的波形图,该波的波速u=200m/s ,则P 处质点的振动曲线为下图中哪一图所画出的曲线?< )LDAYtRyKfE (A> (D> (C> (B>Zzz6ZB2Ltk 18、以下说法正确的是< )(A>在波传播的过程中,某质元的动能和势能相互转化,总能量保持不变(B>在波传播的过程中, 某质元任一时刻的动能与势能相等,且随时间作周期性的变化(C>在波传播的过程中, 某质元任一时刻的动能与势能相等,且不随时间发生变化(D>在波传播的过程中, 某质元任一时刻的动能与势能有可能相等,有可能不等,视时刻而定19、以下说法不正确的是< )(A> 从运动学角度看,振动是单个质点(在平衡位置的往复>运动,波是振动状态的传播,质点并不随波前进(B> 从动力学角度看振动是单个质点受到弹性回复力的作用而产生的,波是各质元受到邻近质元的作用而产生的dvzfvkwMI1(C> 从能量角度看,振动是单个质点的总能量不变,只是动能与势能的相互转化;波是能量的传递,各质元的总能量随时间作周期变化,而且动能与势能的变化同步rqyn14ZNXI (D> 从总体上看,振动即波动20.一平面简谐波在t =0时刻波形曲线如图所示,若波沿x 轴负方向传播,则下列对应质点振动曲线正确的是< )EmxvxOtOco(D>(C>(A>(B>二、填空题1、按照质点振动方向和波的传播方向的关系,机械波分为横波与两种基本形式。

第10章 波动习题解答

第10章 波动习题解答


2
2
15 15 . 5
5 5 . 5
(2)距波源为16.0m和17.0m的两质点间相位差
16 ,17 (100 t 16 or : 2

2
) (100 t 17

2
)


x,
x 17 16 1 m ,
则( C )
(A)波长为100m; (C)周期为 解:y
1 3 s
(B)波速为10m/s; (D)波沿x轴正方向传播
x u )]

A cos[ ( t
6
T 2
y 0 . 05 cos[ 6 ( t
x 100
)]


1 3
s
u 100 m / s
uT 33 . 3 m
第十章
波动
习题解答
1
第十章 习题
10-1 图(a)表示t=0 时的简谐波的波形图,波沿x轴正
方向传播,图(b)为一质点的振动曲线. 则图(a)中所
表示的x=0处质点振动的初相位与图(b)所表示的振动
的初相位分别为(D )
y A cos(t ) v A sin( t )

(A)均为零
(D) 2 与
y 0
y
2
(B) 均为 2
u
x
y 0
(C) 均为
(E) 2 与

y
2

2
v 0 2
O
(a)
v 0 2
O
(b)
t
2
10-2 机械波的表达式为

基础物理学下册【韩可芳】第10章习题答案

基础物理学下册【韩可芳】第10章习题答案

第十章第十章第十章第十章 波动光学波动光学波动光学波动光学思考题思考题思考题思考题10-1 普通光源中原子发光有何特征?答答答:答:::因为普通光源是大量不同原子在不同时刻发的光,是自然光,因此不满足干涉条件,所以一 般普通光源观察不到干涉现象。

10-2 如何用实验检验一束光是线偏振光、部分偏振光还是自然光?答答答:答:::拿一块偏振片迎着这束光,转动偏振片,观察透射光。

(1)视场中光强有变化且有消光现象 的为线偏振光;(2)光强有变化但无消光现象的为部分偏振光;(3)光强无变化的为自然光。

10-3 自然光可以用两个独立的、相互垂直的、振幅相等的光振动表示。

那么线偏振光是否也可以用两个相互垂直的光振动表示?如果可以,则这两个相互垂直的光振动之间关系如 何?10-4 如何用实验测定不透明媒质的折射率?答答答:答:::光线入射到不透明的媒介上,改变入射角i ,并同时用偏振片测定反射光线的偏振化程度。

当反射光线为完全偏振光时,此时入射角i0 即为布儒斯特角,满足tan 可求得不透明介质的折射率n 。

10-5 如图(a)所示,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度;问将有几条光线从方解石透射 出来?如果把方解石切割成等厚的A 、B 两块,并平行地移 开很短一段距离,如图(b)所示,此时光线通过这两块方解石后有多少条光线射出来?如果把B 块沿沿沿沿光线转过一个角度, 此时将有几条光线从B 块射出来?为什么?i 0n ,测得 i0 即考思考思考思考题题题题10-5图图图图10-6 从普通光源获得两束相干光的一般方法是什么?在光的干涉中决定相遇点产生明纹或暗纹的因素是什么?答答答:答:::分波阵面法和分振幅法。

波源的相位差和波源到相遇点的光程差决定相遇点产生明纹或暗纹。

10-7 如图所示,设光线a 、b 从周相相同的A 、B 点传至P 点,试讨论:(1)在图中的三种情况下,光线a 、b 在相遇处P 是 否存在光程差?为什么?(2)若a 、b 为相干光,那么在相遇处的干涉情况怎 样?考题思考题思考题思考题 10-7 图图图图10-8 在杨氏双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。

大学物理第10章 习题

大学物理第10章  习题

r1
第十章 波动
16
物理学
第五版
第十章 习题
17 如图所示, 0 处有一运动方程为 x y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
3 kg m ,求(1)该波的能流密度;(2)
1min内垂直通过4.0×10-4m2的总能量.
第十章 波动
13
物理学
第五版
第十章 习题
14 如图所示,两相干波源分别在P,Q 两点,它们发出频率为ν ,波长为 λ ,初 相相同的两列相干波,设PQ=3λ / 2 , R 为PQ连线上的一点.求:(1)自P、Q发 出的两列波在R处的相位差;(2)两波 在R处干涉时的合振幅.
3 一横波在沿绳子传播时的波动方程 为 y 0.20 cos 2.50t x) 式中y和x的单位 , ( 为 m , t的单位为s.(1) 求波的振幅、波速、 频率及波长;(2)求绳上的质点振动时的最 大速度;(3)分别画出t 1s 和 t 2s 时的波 形,并指出波峰和波谷.画出 x 1.0m 处质点的 振动曲线并讨论其与波形图的不同.
第十章 习题
5 已知一波动方程为 y 0.05 sin( 10t 2 x) 式中y的单位为 m ,t的单位为s. (1)求波长、频 率、波速和周期; (2)说明 x 0 时方程的意义, 并 作图表示.
第十章 波动
5
物理学
第五版
第十章 习题
6 有一平面简谐波在空间传播. 已知在波 线上某点B的运动规律为y A cos(t ) ,就 图(a)(b)(c)给出的三种坐标取法,分 别列出波动方程.并用这三个方程来描述与B相 距为b 的P点的运动规律.

大学物理参考答案(白少民)第10章 波动学基础

大学物理参考答案(白少民)第10章 波动学基础
450。已知波速为 15cm/s,试求波的频率和波长。 解:波长可看成是沿波射线相位差 2π 的两点间的距离,则由题知其波长为
3.5 u 15 = 28 cm , 进而可求得波的频率为 ν = = = 0.54 Hz π /4 λ 28 10.14 证 明 y = A cos( kx −ω t ) 可 写 成 下 列 形 式 : y = A cos k ( x − u t ) , x x 1 x y = A cos 2π ( − ν t ) , y = A cos 2π ( − ) ,以及 y = A cos ω( − t ) 。 λ T u λ ω 2πν t ) = k ( x − ut ) 证明 : kx − ω t = k ( x − t ) = k ( x − k 2π / λ 所以波函数可写为: y = A cos k ( x − ut ) 2π x x x − 2πν t = 2π ( −νt ) ,则波函数还可写为 y = A cos 2π ( −ν t ) 又 kx − ω t = λ λ λ 1 x t 由ν = 则还可得: y = A cos 2π ( − ) T λ T k x x kx − ω t = ω( x − t ) = ω( − t ) ,则波函数还可写为 y = A cos ω( − t ) ω u u 10.15 波源 做 简谐振动,位移与时间的关系为 y = ( 4.00 ×10 −3 ) cos 240π t m ,它所 激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。 解:由波源的振动方程 y = ( 4.00 ×10 −3 ) cos 240πt m 知振动角频率 ω = 240π . 而波的频率就等于波源的振动频率,所以波的频率和周期分别为 ω 1 1 ν= = 120 Hz , T = = = 8.33 ×10 −3 s ν 120 2π u 30.0 = 0.25 m 进一步计算波长为 λ = = ν 120 x x −3 )m 最后可写出波函数为 y = A cos ω(t − ) = ( 4.00 ×10 ) cos 240π (t − u 30 10.16 沿 绳子 行进的 横 波波函数为 y =10 cos(0.01π x − 2π t ) ,式中长度的 单 位是 cm,时间的单位是 s。试求:(1)波的振幅、 频率、传播速率和波长;(2)绳上某质点的最 大横向振动速率。 解:(1)由 y = 10 cos(0.01π x − 2π t ) = 10 cos 2π (t − 5.0 ×10 −3 x ) 知: ω 2π ν= = = 1 Hz ; 波 长 振 幅 A = 10cm = 0.1m ; 频 率 2π 2π

第十章 波动 习题解答 (1)

第十章 波动 习题解答 (1)

(1)波动方程;
(2)求 x=0.5m 处质点的振动方程;画出该质点的振动图 ;
(3)求 t=1.0s 时各质点的位移分布,画出该时刻的波形图。
解:(1) 波函数 y = Acos[ω(t − x ) + ϕ] ,其中 T = 2s,ω = 2π / T = π , u = λ / T = 1m / s u
P
10.0m
x/m
x/m
y/m
u
O
t/s
O
x/m
A、振动 x-t 曲线
B、波动 y-x 曲线
(2)波源振动速度等于波速吗?振幅和周期呢?波动方程中波源的位置一定位于原点 O?
波源的初相?
波源振动速度不等于波速;波源的振幅和周期等于波动的振幅和周期
波函数为: y = 0.1cos[500π(t + x )+ π ](m) 5000 3
(C) A = A12 + A22 + 2 A1A2 cos ∆ϕ
(D) A1 − A2 ≤ A ≤ A1 + A2
∆ϕ
= ϕ2
− ϕ1
− 2π
r2 − r1 λ
拓展:B 选项改为“某时刻,在两列波相遇的区域中某质点若为静止,则这两列波必相干” 答案:错误
10.11 如图所示,S1、S2 为两平面简谐波相干波源,S2 的
=
4m , ∆ϕ
= ϕB0
− ϕ A0

2π λ
(rB
− rA )


2π λ
(rB
− rA ) ,
干涉而静止的条件: ∆ϕ = ±(2k +1) π k = 0,1,2,
P 点为 AB 连线上任一点,rA 为 P 点到 A 点距离,rB 为 P 点到 B 点距离,

第10章 波 动习题

第10章 波 动习题

第10章波动习题10.1 购置了一套机械设备,要想了解该设备的钢质材料的杨氏弹性模量,用超声波检测仪在钢壁厚d=5.00cm处测得纵波首波返回时间是t=1.96×10-5s,求该钢质材料的杨氏弹性模量(钢的密度ρ=7.8g/cm3)。

10.2 用超声波也可以测试气体的比热容比。

例如,在标准状态下,超声波在天然气中的波速为 3.172×102m/s,问天然气的比热容比γ是多少?(该天然气的摩尔质量μ=32g/mol)10.3 铁路沿线的A处在进行某项工程的施工爆破,其所产生的声波沿钢轨传到另一处B的仪器中,由仪器记录知,第二个波(横波)比第一个波(纵波)迟到5s。

已知钢轨材料的Y=1.96×105N/mm2,N=7.35×104N/mm2,ρ=7.8×10-3kg/cm3,试求:(1)横波与纵波在钢轨中的传播速度;(2)AB两地间的钢轨长度。

10.4 一质点在介质中作简谐振动,振幅为0.2m,周期为4πs,取该质点过y0=0.1m 处开始往y轴正向运动的瞬时为t=0。

已知由此质点的振动所激起的横波在x轴正向传播,其波长为λ=2m。

试求此波动的波函数。

10.5 一列波沿x轴正向传播,原点的振动曲线如图所示。

(1)画出t=T时的波形曲线及距离λ/4处质点的振动曲线。

(2)写出波函数。

以u表示波速。

10.6 某质点作简谐振动,周期为2s,振幅0.06m,开始计时(t=0),质点恰好处在负向最大位移处。

求:(1)该质点的振动方程;(2)此振动以速度u=2m/s沿x轴正方向传播时,形成的一维简谐波的波函数。

10.7 一平面简谐波沿x轴正向传播,其振幅为A,频率为v,波速为u。

设t=t′时刻的波形曲线如图所示,求:(1)x=0处质点振动方程;(2)该波的波动方程。

10.8 一平面简谐波,设波速u=5m/s,沿x轴正向传播。

在原点O处质点的振动曲线如图所示。

(1)画出x=25m处质元的振动曲线;(2)画出t=3s时的波形曲线。

第10章 振动与波动(习题与答案)

第10章  振动与波动(习题与答案)

第10章 振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。

2. 掌握振幅、周期、频率、相位等概念的物理意义。

3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。

4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。

5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。

6. 理解机械波产生的条件。

7. 掌握描述简谐波的各物理量的物理意义及其相互关系。

8. 了解波的能量传播特征及能流、能流密度等概念。

9. 理解惠更斯原理和波的叠加原理。

掌握波的相干条件。

能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。

10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。

二. 内容提要1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为x tx 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即)cos(ϕ+ω=t A x由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v 物体的振动加速度 )cos(ϕ+ωω-=t A a 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即2v ω+=2020x A4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。

周期与频率互为倒数,即ν=1T 或 T1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。

t=0时的相位称为初相,它由谐振动的初始条件决定,即0x v ω-=ϕtan应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

大学物理题库-第10章 波动习题

大学物理题库-第10章 波动习题

第十章 波动一 选择题(15)1、如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点o 的振动方程为)cos(0ϕω+=t A y ,则B 点的振动方程为[ ](A ))cos(0ϕω+-=u lt A y (B ))(cos ult A y +=ω(C )])(cos[0ϕω+-=u l t Ay (D )])(cos[0ϕω++=ult A y2、一沿x 轴负方向传播的平面简谐波在2=t s 时的波形曲线如图所示,则原点o 的振动方程为[ ] (A ))2cos(50.0ππ+=t y (B ))22cos(50.0ππ-=t y(C ))22cos(50.0ππ+=t y (D ))24cos(50.0+=t y3、如图所示为一简谐波在0=t 时刻的波形图,波速200=u s m ,则图中o 点的振动加速度的表达式为[ ](A ))2cos(4.02πππ-=t a (SI)(B ))23cos(4.02πππ-=t a (SI)(C ))2cos(4.02πππ--=t a (SI) (D ))22cos(4.02πππ+-=t a (SI) 4、沿x 轴正向传播的平面简谐波,周期为T ,波源的振幅是10.m ,当0=t 时坐标原点处质点的位移为10.m ,则在T t 45=时该波的波形为图中的[ ])5、在弦线上有一简谐波,其表达式为]3)2002.0(2cos[100.221ππ+-⨯=-x t y (SI),为了在此弦线上形成驻波,并且在0=x 处为一波节,此弦线上还应有一简谐波,其表达式为[ ](A )]3)2002.0(2cos[100.222ππ++⨯=-x t y (B )]32)2002.0(2cos[100.222ππ++⨯=-x t y(C )]34)2002.0(2cos[100.222ππ++⨯=-x t y(D )]3)2002.0(2cos[100.222ππ-+⨯=-x t y6、如图所示,一平面简谐波沿x 轴正方向传播,已知P 点的振动方程为)cos(0ϕω+=t A y ,则波动方程为[ ] (A )])(cos[0ϕω+--=ul x t A y(B )])(cos[0ϕω+-=u xt A y(C ))(cos u x t A y -=ω (D )])(cos[0ϕω+-+=ulx t A y7、一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中[ ](A )它的动能转换成势能; (B )它的势能转换成动能; (C )它从相邻的一段质元获得能量,其能量逐渐增大; (D )它的动能、势能同时减小。

大学物理第十章

大学物理第十章

练习十八 阻尼 受迫 共振 波动方程一.选择题1.有一悬挂的弹簧振子,振子是一个条形磁铁,当振子上下振动时,条形磁铁穿过一个闭合圆线圈A(如图18.1所示), 则此振子作(A) 等幅振动. (B) 阻尼振动. (C) 强迫振动.(D) 增幅振动.2.频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距(A) 2m . (A) 2.19m . (B) 0.5 m .(D) 28.6 m .3.一圆频率为ω 的简谐波沿x 轴的正方向传播, t =0时刻的波形如图18.2所示. 则t =0时刻, x 轴上各质点的振动速度v 与坐标x 的关系图应为图18.3中哪一图?4. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若波速为u ,则此波的波动方程为(A) y=A cos{ω [t -(x 0-x )/u ]+ ϕ0} . (B) y=A cos{ω [t -(x -x 0)/u ]+ ϕ0} . (C) y=A cos{ω t -[(x 0-x )/u ]+ ϕ0} .(D) y=A cos{ω t +[(x 0-x )/u ]+ ϕ0} .5. 如图18.4所示为一平面简谐波在t = 0时刻的波形图,该波的波速u =200m/s ,则P 处质点的振动曲线为图18.5中哪一图所画出的曲线?< < k 图18.1v (m/s)O1 x (m)ωA(A)·(D)(C)图18.3二.填空题1.一列余弦横波以速度u 沿x 轴正方向传播, t 时刻波形曲线如图18.6所示,试分别指出图中A 、B 、C 各质点在该时刻的运动方向:A ;B ; C .2.已知一平面简谐波沿x 轴正向传播,振动周期T =0.5s, 波长λ=10m,振幅A =0.1 m . 当t =0时波源振动的位移恰好为正的最大值. 若波源处为原点, 则沿波传播方向距离波源为λ/2处的振动方程为y = ; 当t=T /2时, x=λ/4处质点的振动速度为 .3.一简谐波的频率为5×104Hz, 波速为1.5×103m/s,在传播路径上相距5×10-3m 的两点之间的振动相位差为 .三.计算题1.图18.7所示一平面简谐波在t =0时刻的波形图,求 (1) 该波的波动方程 ;(2) P 处质点的振动方程 .2.某质点作简谐振动,周期为2s, 振幅为0.06m, 开始计时(t =0)时, 质点恰好处在负向最大位移处, 求(1) 该质点的振动方程;(2) 此振动以速度u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动方程 ; (3) 该波的波长.练习十九 波的能量 波的干涉一.选择题1.一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如图19.1. 则x =0处的振动方程为(A) y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) .(D)(C)(A)(B)图18.5图18.6-图18.7ux (m)y (10-2m)· · · · · ·· 0 51015 20 25 -2图19.1图19.3(C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10- 2cos(πt -3π/2) ( S I ) .2.一列机械横波在t 时刻的波形曲线如图19.2所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ′, b , d, f . (B) a , c , e , g . (C) o ′, d . (D) b , f .3.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零, 势能最大. (B) 动能为零, 势能为零. (C) 动能最大, 势能最大. (D) 动能最大, 势能为零.4.如图19.3所示为一平面简谐机械波在t 时刻的波形曲线. 若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小. (D) 各点的波的能量密度都不随时间变化.5. 如图19.4所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是:(A) 0 . (B) π . (C) π /2 . (D) 3π/2 . 二.填空题1.一列平面简谐波沿x 轴正方向无衰减地传播, 波的振幅为2×10-3m, 周期为0.01s, 波速为400 m/s, 当t =0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为 .2.一个点波源位于O 点, 以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2. 在两个球面上分别取相等的面积∆S 1和∆S 2 ,则通过它们的平均能流之比21 P P = .3.如图19.5所示,在平面波传播方向上有一障碍物AB,根据yx 波速u时刻t 的波形 · · ·· · · ··oo ′ a bc def g 图19.2P1 2图19.4A B图19.5惠更斯原理,定性地绘出波绕过障碍物传播的情况. 三.计算题1.如图19.6所示,三个同频率,振动方向相同(垂直纸面)的简谐波,在传播过程中在O 点相遇,若三个简谐波各自单独在S 1、S 2和S 3的振动方程分别为y 1=A cos(ω t +π/2)y 2=A cos ω ty 3=2A cos(ωt -π/2)且S 2O=4λ ,S 1O=S 3O=5λ(λ为波长),求O 点的合成振动方程(设传播过程中各波振幅不变).2.如图19.7,两列相干波在P 点相遇,一列波在B 点引起的振动是 y 10=3×10 –3cos2πt ( SI )另一列波在C 点引起在振动是y 20=3×10 –3cos(2πt +π/2) ( SI )BP =0.45m , CP =0.30m, 两波的传播速度 u=0.20m/s, 不考虑传播中振幅的减小,求P 点合振动的振动方程.练习二十 驻波 声波 多普勒效应一.选择题1.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A) λ/4 .(B) λ/2 . (C) 3λ/4 .(D) λ .2.某时刻驻波波形曲线如图20.1所示,则a 、b 两点的相位差是(A) π. (B) π/2. (C) 5π /4. (D) 0.3.沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ) y 2=A cos2π (νt + x /λ)叠加后形成的驻波中,波节的位置坐标为(A) x =±k λ . (B) x =±k λ/2 . (C) x =±(2k +1)λ/2 . (D) x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….S3 图19.6图19.7图21.14.如果在长为L 、两端固定的弦线上形成驻波,则此驻波的基频波的波长为 (A) L /2 . (A) L . (B) 3L /2 . (D) 2L .5.一机车汽笛频率为750 Hz , 机车以时速90公里远离静止的观察者,观察者听到声音的频率是(设空气中声速为340m/s) :(A) 810 Hz . (A) 699 Hz . (B) 805 Hz . (D) 695 Hz . 二.填空题1.设平面简谐波沿x 轴传播时在x = 0 处发生反射,反射波的表达式为y 2=A cos[2π (νt -x /λ) +π /2] .已知反射点为一自由端,则由入射波和反射波形成驻波波节的位置坐标为 .2.设沿弦线传播的一入射波的表达式是y 1=A cos[2π (νt -x /λ) +ϕ]在x =L 处(B 点)发生反射,反射点为固定端(如图20.2), 设波在传播和反射过程中振幅不变,则弦线上形成的驻波表达式为 y = .3.相对于空气为静止的声源振动频率为νs ,接收器R 以速率v R 远离声源,设声波在空气中传播速度为u , 那么接收器收到的声波频率νR = . 三.计算题1.在绳上传播的入射波方程为 y 1=A cos (ω t +2π x /λ).入射波在x =0处的绳端反射, 反射端为自由端,设反射波不衰减,求驻波方程.2.设入射波的方程式为 y 1=A cos2π (x /λ+t /T ) .在x =0处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的方程式; (2)合成的驻波方程式; (3)波腹和波节的位置 .练习二十一 振动和波习题课一.选择题1.图21.1中三条曲线分别表示简谐振动中的位移x ,速度v,加速度a ,下面哪个说法是正确的?(A) 曲线3, 1, 2分别表示x , v , a 曲线. (B) 曲线2, 1, 3分别表示x , v , a 曲线.图20.2(C) 曲线1, 3, 2分别表示x , v , a 曲线. (D) 曲线2, 3, 1分别表示x , v , a 曲线. (E) 曲线1, 2, 3分别表示x , v , a 曲线.2.用余弦函数描述一简谐振子的振动,若其速度-时间(v -t )关系曲线如图21.2所示,则振动的初相位为(A) π / 6 . (B) π / 3. (C) π / 2. (D) 2π / 3. (A) 5π / 6 .3.一质点作简谐振动,周期为T , 质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T / 4 . (B) T /12 . (C) T / 6 . (D) T / 8 .4.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能.(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加. (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.5.在弦上有一简谐波,其表达式是y 1=2.0×10-2cos[2π ( t / 0.02-x / 20) +π / 3] ( SI )为了在此弦线上形成驻波, 并且在x =0处为一波节,此弦线上还应有一简谐波, 其表达式为:(A) y 2=2.0×10-2cos[2π ( t / 0.02 + x / 20) +π / 3] ( SI ) (B) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +2π / 3] ( SI ) (C) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20) +4π / 3] ( SI ) (D) y 2=2.0×10-2cos[2π ( t / 0.02+x / 20)-π / 3] ( SI )二.填空题1.在静止的升降机中,长度为l 在单摆的振动周期为T 0 ,当升降机以加速度a =g /2竖直下降时,摆的振动周期T = .2. .如图21.3所示,一平面简谐波沿O x 轴负方向传播,波长为λ, 若P 处质点的振动方程是图21.3y P =A cos(2πνt +π /2) .则该波的波动方程是 .P 处质点 时刻的振动状态与O 处质点t 1 时刻的振动状态相同.3一平面简谐波沿O x 轴传播,波动方程为y =A cos[2π (νt -x /λ) +ϕ]则: x 1=L 处介质质点振动初相位是 ;与x 1处质点振动状态相同的其它质点的位置是 ;与x 1处质点速度大小相同,但方向相反的其它各介质质点的位置是 . 三.证明题1. 如图21.4所示,在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处,然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动,试证:(1) 此物体作简谐振动.(2) 此简谐振动的周期 T =2πg R . 四.计算题1.在实验室中做驻波实验时,使一根长3m 张紧的弦线的一端沿垂直长度方向以60H Z 的频率作简谐振动,弦线的质量为60×10-3kg , 如果在这根弦线上产生有四个波腹很强的驻波,必须对这根弦线施加多大的张力?练习十八 阻尼 受迫 共振 波动方程一.选择题B C D C A二.填空题1. 向下,向上; 向上.2. 0.1cos(4πt -π) (SI); -1.26m/s.3. π/3.三.计算题1.(1)原点处质点在t =0时刻y 0=A cos ϕ0=0 v 0=-A ωsin ϕ0>0所以 ϕ0=-π/2. 而 T=λ/v=0.40/0.08=5(s) 故该波的波动方程为y=0.04cos[2π( t/5-x/0.4)-π/2] (SI)(2) P 处质点的振动方程y P =0.04cos[2π( t/5-0.2/0.4)-π/2]图21.4= 0.04cos(0.4π t -3π/2) (SI)2.(1)取该质点为坐标原点O. t =0时刻y 0=A cos ϕ0=-A v 0=-A ωsin ϕ0=0得ϕ0=π. 所以振动方程为y O =0.06cos(2π t/2+π)=0.06cos(π t +π) (SI)(2) 波动方程为y =0.06cos[π(t -x/u )+π]=0.06cos[π(t -x/2)+π] (SI)(3) λ=uT =4(m)练习十九 波的能量 波的干涉一.选择题A B C B B二.填空题1. y =2×10-3cos(200πt -πx/2-π/2).2. R 22/R 12.3.三.计算题1. y 1=A cos[ω(t -l 1/u )+π/2]= A cos[2π(t/T -l 1/λ)+π/2]= A cos[2π(t/T -5λ/λ)+π/2] = A cos(ω t +π/2)同理 y 2=A cos ω ty 3=2A cos(ωt -π/2) 利用旋转矢量图和矢量加法的多边形法(如图),则可知合振动振幅及初位相为A ,-π/4.故合振动方程为y =2A cos(ωt -π/4)2. 两列相干波在P 点引起的振动分别是 y 1=3×10-3cos[2π(t -l 1/u )]=3×10-3cos(2πt -9π/2) =3×10-3cos(2πt -π/2)y 2=3×10-3cos[2π(t -l 2/u ) +π/2]=3×10-3cos(2πt -3π+π/2)= 3×10-3cos(2πt -π/2)所以合振动方程为y = y 1+ y 2= 6×10-3cos(2πt -π/2) (SI)练习二十 驻波 多普勒效应A 1A 2A 3 Ay O -π/4 ⎭一.选择题B C D D B二.填空题1. x=(k+1/2)(λ/2), k=0,1,2,3,….2.2A cos(2πx/λ±π/2-2πL/λ)·cos(2πνt±π/2+ϕ-2πL/λ) .3. νs(u-v R)/u.三.计算题1. 入射波在x =0处引起的振动为y10=A cos (ω t+2π 0/λ)= A cosω t因反射端为自由端,所以反射波波源的振动y20= A cosω t反射波方程为y2=A cos (ω t-2πx/λ)驻波方程为y= y1+ y2= A cos (ω t+2πx/λ)+ A cos (ω t-2πx/λ)=2A cos 2πx/λcosω t2.(1) 入射波在x =0处引起的振动为y10=A cos2π(0/λ+ t/T)= A cos2πt/T因反射端为固定端,所以反射波波源的振动为y20= A cos(2πt/T-π) 反射波方程为y2=A cos[2π(t/T- x/λ)-π]= A cos[2π(x/λ- t/T)+π](2)合成的驻波方程式y=y1+y2=A cos[2π(x/λ+t/T)]+A cos[2π(x/λ-t/T)+π]=2A cos(2πx/λ+π/2)cos(2πt/T-π/2)(3)对于波腹,有2πx/λ+π/2=nπ故波腹位置为x= (n-1/2)λ/2 (n=1,2,3,…)对于波节,有2πx/λ+π/2=nπ+π/2故波节位置为x= n λ/2 (n=1,2,3,…)练习二十一振动和波习题课一.选择题 E A B C C二.填空题1. 2T0.2. -2πL/λ+ϕ·; L±kλ(k=1,2,3,…);L±(k+1/2)λ(k=1,2,3,…).3. y=A cos{2π[νt+( x+L) /λ]+π/2}t1+L/(λν)+ k/ν(k=0,±1,±2,±3,…){或t1+L/(λν)}三.计算题1.设绳张力为T ,线密度为μ,则波速为u=()m Tl l m T T ==μ=λνT=λ2ν2m/l因弦线上产生有四个波腹很强的驻波,所以l=4·λ/2=2λ λ=l/2 T=λ2ν2m/l=l ν2m/4=162N四.证明题1.(1) 设小球向右摆动为角坐标θ正向.摆动过程中小球受重力和弧形轨道的支持力. 重力的切向分力使小球获得切向加速度.当小球向右摆动θ角时, 重力的切向分力与θ相反,有-mg sin θ=ma t =mR d 2θ/d t 2当作小幅度运动时,sin θ ≈θ, 有d 2θ/d t 2+(g/R ) θ=0故小球作间谐振动 θ=θA cos(R g t +ϕ) (2)周期为 T=2π/ω=2π /R g =2πg RⅣ 课堂例题一.选择题1. 一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为2m 的物体,则系统振动周期T 2等于(A) 2 T 1 (B) T 1(C) T 12/ (D) T 1 /2 (E) T 1 /42. 一简谐振动曲线如图所示.则振动周期是 (A) 2.62 s . (B) 2.40 s .(C) 2.20 s . (D) 2.00 s .3. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234c o s (2π+π=t x .(D))3234c o s (2π-π=t x .--(E) )4134cos(2π-π=t x4.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m . (B) 波长为3 m . (C) a 、b 两点间相位差为2π . (D) 波速为9 m/s .5. 两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前2π,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) 2π. (C) π. (D) 23π.6. 在波长为λ 的驻波中,两个相邻波腹之间的距离为 (A) λ /4. (B) λ /2. (C) 3λ /4. (D) λ . 二.填空题1.质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________.2.两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 - φ2为____________.3.一物体同时参与同一直线上的两个简谐振动:)314c o s (05.01π+π=t x (SI) , )324c o s (03.02π-π=t x (SI)合成振动的振幅为__________________m .4.一平面简谐波沿x 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________; 频率ν = ____________.5.设沿弦线传播的一入射波的表达式为S 1S 2Pλ/4)-y (m )]2c o s [1λωxt A y π-=,在处(B 点)发生反射,反射点为自由端(如图).设波在传播和反射过程中振幅不变,则弦上形成的驻波的表达式是y = ______________________________.6.一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为____________和__________(设空气中声速为340 m/s ).三.计算题1.图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程; (2) 该波的波动表达式.2.图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.3.一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.(m ) -4.如图,一角频率为ω,振幅为A的平面简谐波沿x轴正方向传播,设在t = 0时该波在原点O处引起的振动使媒质元由平衡位置向y轴的负方向运动.M是垂直于x轴的波密媒质反射面.已知OO'= 7 λ /4,PO'= λ /4(λ为该波波长);设反射波不衰减,求:(1) 入射波与反射波的表达式;;(2)P点的振动方程.附Ⅴ振动和波习题课课堂例题解答一.选择题 DBCCCB 二.填空题1、 222/2T mA π2、 10 、π-213、 0.024、 0.8 m 0.2 m 125 Hz5、 )2cos()22cos(2λωλλLt LxA π-π-π6、 637.5 Hz 、 566.7 Hz三.计算题1、解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时 刻,O 处质点φcos 0A =, φωs i n 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为 )24c o s (2/ππ-=νA A所以244πππ-=-ν, ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI) (2) 波速u = 20 /2 m/s = 10 m/s波长λ = u /ν = 160 m 波动表达式]21)16016(2c o s [π-+π=xt A y (SI)2、解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 2π-=φ 又==u T /λ 5 s 故波动表达式为]2)4.05(2cos[04.0π--π=x t y (SI)(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI)3、解:(1) x = λ /4处)22cos(1ππ-=t A y ν , ))22cos(22ππ+=t A y ν ∵y 1,y 2反相∴合振动振幅 A A A A s =-=2,且合振动的初相φ 和y 2的初相一样为2π. 合振动方程 )22cos(ππ+=t A y ν(2)x = λ /4处质点的速度)2cos(2)2 2sin(2/d d v ππππππ+=+-==t A t A t y νννν4、解:设O 处振动方程为)cos(0φω+=t A y当t = 0时, y 0 = 0,v 0 < 0,∴ 2π=φ ∴ )2cos(0π+=t A y ω 故入射波表达式为)22c o s (λωx t A y ππ-+=在O ′处入射波引起的振动方程为 )c o s ()4722c o s (1πππ-=⋅-+=t A t A y ωλλω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ )cos(1π+π-='t A y ωt A ωcos = 反射波表达式)](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω ]22cos[π+π+=x t A λω合成波为 y y y '+=]22cos[]22cos[π+π++π+π-=x t A x t A λωλω)2cos(2cos2π+π=t x A ωλ将P 点坐标 λλλ234147=-=x 代入得P 点的振动方程)2cos(2π+-=t A y ω。

大学物理学(第五版)下册第十章 波动 补充例题

大学物理学(第五版)下册第十章 波动 补充例题

y/m 0.10
I
II
u
O -0.10
0.20
0.40
0.60 x / m
6 平面简谐波的波动方程为
y 0.08 cos( 4t 2x),式中y的单位为m, t的单位为s.求:(1)t 2.1s 时波源及距波 源0.10m两处的相位; (2)离波源0.80m及 0.30m说明两处的相位.
r1
11 如图所示, x 0 处有一运动方程为 y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3 λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
13 一警车以25m· s-1的速度在静止的空 气中行驶,假设车上警笛的频率为800Hz. 求: (1)静止站在路边的人听到警车驶近和离 去时的警笛声波频率; (2)如果警车追赶一辆速度为15m· s-1的客 车,则客车上人听到的警笛声波频率是多 少? (设空气中声速为u=330m· s-1 )
14 一次军事演习中,有两艘潜艇在水 中相向而行,甲的速度为50.0km· h-1,乙的 速度为70.0km· h-1,如图所示.甲潜艇发出一 个1.0×103Hz的声音信号,设声波在水中的 传播速度为5.47×103km· h-1,试求:(1) 乙潜艇接收到的信号频率;(2)甲潜艇接 收到的从乙潜艇反射回来的信号频率.
) 甲 50.0km· h-1 )
)
)
)
)
)
乙 70.0km· h-1
y/m
u 0.08m s 1
O -0.04

大学物理《普通物理学简明教程》振动、波动和光学习题精解

大学物理《普通物理学简明教程》振动、波动和光学习题精解

振动、波动和光学习题精解第10章 机械振动10.1 要求1 了解 简谐振动的能量;2 理解 旋转矢量法、同方向和同频率简谐振动的合成的规律;3 掌握 简谐振动的各物理量(ϕω,,A )及各量间的关系、简谐振动的基本特征、建立简谐振动的微分方程、根据初始条件写出一维简谐振动方程、同方向和同频率简谐振动的合成。

10.2 内容摘要1 简谐振动运动学方程)cos(ϕω+=t A x特征量:振幅A :决定振动的范围和能量;角频率ω:决定振动重复的快慢,频率ωπνπων21,2===T 周期; 初相ϕ:决定起始的时刻的位置和速度。

2 振动的位相 (ϕω+t )简谐振动在t 时刻的位相;3 简谐振动动力学方程0222=+x dt x d ω 弹性力:kx F -=,Km T m K πω2,==; 4、简谐振动的能量 2222121)(21kA kx dt dx m E E E k p =+=+= 5、受迫振动:是在驱动力作用下的振动。

稳态的受迫振动的频率等于驱动力的频率。

当驱动力的频率等于系统的频率时,发生共振现象,振幅最大。

6、同方向、同频率简谐振动的合成 )cos(111ϕω+=t A x , )cos(222ϕω+=t A x)cos(21ϕω+=+=t A x x x其中, A =)cos(212212221ϕϕ-++A A A A , 22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++= 相位差12ϕϕϕ-=∆起了相当重要的作用(1) 两个谐振的频率相同时,合运动的振幅决定于它们的相位差:同向时 ( 3,2,1,0,2=±=∆k k πϕ),合振动最大,为两者振幅之和; 反向时 合振动最小[ 3,2,1,0,)12(=+±=∆k k πφ],为两者振幅之差;(2) 两个谐振的频率不相同时,合运动会产生拍现象,拍的频率为两个谐振的频率之差。

大学物理 第十章 波动部分习题

大学物理 第十章 波动部分习题

第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。

振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。

2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。

ux ω表示x 处的质点比原点处的质点所落后的相位。

4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。

简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。

5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。

6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。

驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。

7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。

大学物理第10章题库答案2(最新修改)

大学物理第10章题库答案2(最新修改)

第十章一、填空题易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。

(4510J -⨯,0.628s )易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。

(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m )易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。

(200N/m ,10rad/s )易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X)( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。

(0.02m ,2.5m ,100Hz ,250m.s -1)易:5、两个谐振动合成为一个简谐振动的条件是 。

(两个谐振动同方向、同频率)易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。

(相同)易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。

(偶数)易:8、弹簧振子系统周期为T 。

现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。

(T )易:9、作谐振动的小球,速度的最大值为,振幅为,则振动的周期为;加速度的最大值为。

(34π,2105.4-⨯) 易:10、广播电台的发射频率为 。

则这种电磁波的波长为 。

(468.75m )易:11、已知平面简谐波的波动方程式为 则时,在X=0处相位为 ,在处相位为 。

(8.4π,8.40π)易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅;圆频率;初相。

(0.1m,2π,2π-)中:13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。

第10章习题分析与解答

第10章习题分析与解答

第10章习题分析与解答习 题 解 答10-1 把单摆摆球从平衡位置向位移正方向拉开,是摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为( ) (A) 2π(B )π/2(C)0 (D)θ解 由已知条件可知其初始时刻的位移正向最大。

利用旋转矢量图可知,初相相位是0.故选C10-2 如图所示,用余弦函数描述一简谐振动。

已知振幅为A ,周期为T ,初相3πϕ-=,则振动曲线为( )解 由已知条件可知初始时刻振动的位移是23cos AA y =⎪⎭⎫ ⎝⎛-=π,速度是()A t A v ωϕωω23sin =+-=,方向是向y 轴正方向,则振动曲线上0=t 时刻的斜习题 10-2 图率是正值。

故选A10-3 已知某简谐振动的振动曲线和旋转矢量图如附图(a )、(b )所示,位移的单位为厘米,时间单位为秒,则此简谐振动的振动方程为( )(A)cmt x ⎪⎭⎫ ⎝⎛+=ππ3232cos 2(B )cm t x ⎪⎭⎫⎝⎛-=ππ3232cos 2 (C)cm t x ⎪⎭⎫ ⎝⎛-=ππ3234cos 2 (D )cmt x ⎪⎭⎫ ⎝⎛+=ππ3234cos 2解 由振动图像可知,初始时刻质点的位移是2A-,且向y 轴负方向运动,附图(b )是其对应的旋转矢量图,由图可知,其初相位是π32,振动曲线上给出了质点从2A -到A 的时间是s 1,其对应的相位从π32变化到π2,所以它的角速度1-s rad 32T 2⋅==ππω 简谐振动的振动方程为⎪⎭⎫ ⎝⎛+=ππ3234cos 2t x习题10-3图故选D10-4 弹簧振子做简谐振动,已知此振子势能的最大值为100J,当振子处于最大位移的一半时其动能为( )(A )25J (B )50J (C)75J (D)100J解 物体做简谐运动时,振子势能的表达式是221kx E P =,其动能和势能都随时间做周期性变化,物体通过平衡位置时,势能为零,动能达到最大值;位移最大时,势能达到最大值221kA E P =,动能为零,但其总机械能却保持不变.当振子处于最大位移的一半时其势能为2281)2(21'kA A k E p ==,所以此时的动能是J J J kA kA kA E k 754310043218121222=⨯=⨯=-=故选C10-5 一质点作简谐振动,速度最大值Vm=0.05m/s ,振幅A=2cm.若令速度具有正最大值的那一时刻为t=0,则振动表达式为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 振动与波动
一. 基本要求
1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。

2. 掌握振幅、周期、频率、相位等概念的物理意义。

3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。

4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。

5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。

6. 理解机械波产生的条件。

7. 掌握描述简谐波的各物理量的物理意义及其相互关系。

8. 了解波的能量传播特征及能流、能流密度等概念。

9. 理解惠更斯原理和波的叠加原理。

掌握波的相干条件。

能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。

10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。

二. 内容提要
1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即
kx F -=
取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为
x t
x 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即
)cos(ϕ+ω=t A x
由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v
物体的振动加速度 )cos(ϕ+ωω-=t A a 2
3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即
2v ω+=2020x A
4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。

周期与频率互为倒数,即
ν=1T 或 T
1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ω
π=2T 或 πν=ω2
6. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。

t=0时的相位称为初相,它由谐振动的初始条件决定,即
00
x v ω-=ϕtan
应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。

7. 旋转矢量法 作逆时针匀速率转动的矢量,其长度等于谐振动的振幅A ,其角速度等于谐振动的角频率ω,且t=0时,它与x 轴的夹角为谐振动的初相ϕ,t=t 时刻它与x
轴的夹角为谐振动的相位ϕω+t 。

旋转矢量A ϖ的末端在x 轴上的投影点的运动代表着质
点的谐振动。

8. 简谐振动的能量 作谐振动的系统具有动能和势能,其
动能 )(sin ϕ+ωω==
t A m m E k 22222121v 势能 )(cos ϕ+ω==t kA kx E p 2222
121 机械能 22
1kA E E E p k =+= 9. 两个具有同方向、同频率的简谐振动的合成 其结果仍为一同频率的简谐振动,合振动的振幅
)cos(122122212ϕ-ϕ++=A A A A A
初相 22112
211ϕ+ϕϕ+ϕ=ϕcos cos sin sin tan A A A A
(1)当两个简谐振动的相差),,,( Λ210212±±=π=ϕ-ϕk k 时,合振动振幅最大,为21A A +,合振动的初相为1ϕ或2ϕ。

(2)当两个简谐振动的相差),,,( )(Λ2101212±±=π+=ϕ-ϕk k 时,合振动的振幅最小,为21A A -,合振动的初相与振幅大的相同。

10. 机械波产生的条件 机械波的产生必须同时具备两个条件:第一,要有作机械振动的物体——波源;第二,要有能够传播机械波的载体——弹性媒质。

11. 波长λ 在同一波线上振动状态完全相同的两相邻质点间的距离(一个完整波的长度),它是波的空间周期性的反映。

12. 周期与频率 波前进一个波长的距离所需的时间,它反映了波的时间周期性。


期的倒数称为频率,波源的振动频率也就是波的频率。

13. 波速u 单位时间里振动状态(或波形)在媒质中传播的距离,它与波源的振动速度是两个不同的概念。

波速u 、波长λ、周期T (频率ν)之间的关系为 uT =λ
14. 平面简谐波的波动方程 如果平面波沿x 轴正向传播,则其波动方程为
])(2 cos[ ])(2 cos[ ])([ cos 000ϕ+λ
-π=ϕ+λ-νπ=ϕ+-ω=x T t A x t A u x t A y 若波沿x 轴的负向传播,则其波动方程为
])(2 cos[ ])(2 cos[ ])([ cos 000ϕ+λ
+π=ϕ+λ+νπ=ϕ++ω=x T t A x t A u x t A y 其中0ϕ为坐标原点的初相。

15. 波的能量 波动中的动能和势能之和,其特点是同体积元中的动能和势能相等:
(1)在平衡位置处,动能最大,势能也最大;
(2)在最大位移处,动能最小(为零),势能也最小(为零);
(3)当媒质质元从最大位移处回到平衡位置的过程中:它从相邻的一段媒质质元获得能量,其能量逐渐增加。

(4) 当媒质质元从平衡位置运动到最大位移处的过程中:它把自己的能量传给相邻的一段质元,其能量逐渐减小。

16. 波的干涉 满足相干条件(同频率、同振动方向且相位差恒定)的两列波的叠加,其规律是:
(1)若两列波的相位差),,,( Λ210221212±±=π=λ
-π-ϕ-ϕ=ϕ∆k k r r 则合成振动的振幅有极大值:21A A A +=,为干涉加强(相长干涉)。

(2)若两列波的相位差),,,( )(Λ2101221
212±±=π+=λ-π-ϕ-ϕ=ϕ∆k k r r 合成振动的振幅有极小值:21A A A -=,为干涉减弱,当A 1=A 2时,相消干涉。

17. 驻波 无波形和能量传播的波称为驻波,它由两列同振幅的相干波在同一直线上沿相反方向传播时叠加而成,是波的干涉中的一个特例。

其振幅随x 作周期变化,因而为分段的独立振动,有恒定的波腹和波节出现。

相关文档
最新文档