第三章 应变状态分析
第三章 变形几何理论
弹塑性力学
第三章 变形几何理论 (续1)
第三章概述与学习指导: ★ 第三章概述与学习指导:
本章介绍了弹塑性力学基本理论中的几何变形 的应变理论。 的应变理论。 在应变理论的研究过程中, 在应变理论的研究过程中,仅在连续性假设和 小变形的前提条件下研究变形, 小变形的前提条件下研究变形,而没有涉及到材料 具体的变形性质。 具体的变形性质。 因此, 因此,几何变形的应变理论是对固体力学各分 支学科普遍适用的理论。 支学科普遍适用的理论。 本章应变理论的学习可分成以下三部分进行学 习:
◆ 考察单元体在xy平面上投影 ABCD 的变形。 考察单元体在xy平面上投影 的变形。 xy ◆ 当微分体
变形并出现位 移后, 移后,其在xoy 平面上的投影
ABCD 就移至
新的位置: 新的位置:
A′B′C ′D′
如图所示。 如图所示。
弹塑性力学
位移、应变、应变状态、几何方程、 §3-1 位移、应变、应变状态、几何方程、应变张量 (续5)
位移
{
刚性位移:反映物体整体位置的变动; 刚性位移:反映物体整体位置的变动; 变形位移:反映物体的形状和尺寸发生变化; 变形位移:反映物体的形状和尺寸发生变化;
研究物体在外力作用下的变形规律, 研究物体在外力作用下的变形规律,只 需研究物体内各点的相对位置变动情况, 需研究物体内各点的相对位置变动情况,即 研究变形位移。 研究变形位移。
弹塑性力学
位移、应变、应变状态、几何方程、 §3-1 位移、应变、应变状态、几何方程、应变张量 (续1)
通常物体内各点的位移应是点的位置坐标函数, 通常物体内各点的位移应是点的位置坐标函数, 坐标即为: 参照 oxyz 坐标即为:
u = u (x , y , z) ; v = v (x , y , z) ; w = w (x , y , z)
第三章 应变状态理论
ε x ε y ε z ε xy ε yz ε zx
则相对位移张量(非对称) 则相对位移张量(非对称)可分解为应变张量与转 动张量。 动张量。
2010-11-10 19
3.3 转轴时应变分量的变换
设在坐标轴oxyz下,物体内某一点的 个应 下 物体内某一点的6个应 设在坐标轴 变分量为 εx ,ε y ,εz ,γ xy,γ yz,γ zx 。现使坐标轴旋 转一个角度,新老坐标的关系为: 转一个角度,新老坐标的关系为: x y z
∂ ∂ ∂ ∂
∂ ∂
v z w x u y
ω ω 称为转动分量。 称为转动矢量, 这里的ω 称为转动矢量,而ω x, y , z 称为转动分量。 由此,可将相对位移张量分解为两个张量: 由此,可将相对位移张量分解为两个张量:
∂u ∂x ∂v ∂x ∂w ∂x ∂u ∂y ∂v ∂y ∂w ∂y ∂u ∂z ∂v ∂z ∂w ∂z
x
+ε
y
+εz)
则体应变为
V * −V θ = = εx +εy +εz V
2010-11-10 27
又可表示为: 又可表示为:
∂u ∂v ∂w θ = + + ∂ x ∂ y ∂z
对于某一初始连续的物体,按某一应变状态变形 后必须保持其整体性和连续性,即物体既不开裂,又 不重叠,此时所给定的应变状态是协调的,否则是不 协调的。
2010-11-10 30
εij应变张量各分量满足的应变协调条件: 应变张量各分量满足的应变协调条件:
2 2 ∂ 2ε x ∂ ε y ∂ γ xy + 2 = 2 ∂y ∂x ∂x∂y
第三章-应变分析
3-4 体积应变
单元体的体积: dVdxdydz
变形后,体积: dV'(dxxdx)(dyydy)(dzzdz)
dxdy(d1z )(1 )(1 )
x
y
z
dxdy(d1z )
x
y
z
则,体积应变:
d' V d V d
x(1 d y d z) d
x
y
z
x d y d z
dV
d xd yd zx y z
Man◇ ._Ha!n.℡ɡ1rl。 ゜ eVer ㄨ 、 Give up沸 点 soon startˊ Sorry -aesar 凯 撒 Julietˋ A m , 七 分 醒 ▌SakitIf- ExpectΜ elod y丶 低 声 、 saybetrayeiove 均 My、
queen哀 伤 之 后 After sad□ Yinkuimy、 zyO° Myへ Loveヽ ρuzzledPoison丶
第二种位移是弹性体形状的变化,位移发生时不仅改变 物体的绝对位置,而且改变了物体内部各个点的相对位 置,这是物体形状变化引起的位移,称为变形位移。
M(x,y,z)移动至M'(x',y',z')
点的位移为MM'
z
u = x'- x = u(x,y,z)
v = y'- y = v(x,y,z)
w = z’- z = w(x,y,z)
变形后:
m'点的坐标为( x+u,y+v)
a '点的坐标为( x+dx+u+微分增量,y+v +微分增量)
b '点的坐标为 ( x+u+微分增量,y+dy+v +微分增量)
弹性力学_第三章 应变
x m xy xz eij yx y m yz zy z m zx 应变偏张量
该应变状态只有形状 畸变而没有体积改变。
应变张量分解和应变偏量不变量
1 2
xy y 1 2 zy
1 2 1 2
xz yz z
主应变和应变张量不变量
考虑一个法线为N的斜平面,方向余弦(l1=l,l2=m,l3=n) 斜平面上应变向量qN的三个分量: qNi=ij lj
q N 1 11 12 q N 2 21 22 q N 3 31 32
弹性力学
第三章 应变
§3-1 变形与应变概念 §3-2 变形连续条件 §3-3 应变增量和应变速率张量 §3-4 应力应变分析的相似性与差异性
§3-1 变形与应变概念
弹性体在受外力以后,还将发生变形。物体的 变形状态,一般有两种方式来描述: 1、给出各点的位移;2、给出各体素的变形。 弹性体内任一点的位移,用此位移在x、y、z 三个坐标轴上的投影u、v、w来表示。以沿坐标轴 正方向为正,沿坐标轴负方向为负。这三个投影称 为位移分量。一般情况下,弹性体受力以后,各点 的位移并不是定值,而是坐标的函数。
w u x z
该式表明了一点处的 位移分量和应变分量 所应满足的关系,称 为几何方程,也称为 柯西(Cauchy)关系。
几何方程是用位移导数表示应变,应变描述一点的变 形,但还不足以完全描述弹性单元体的位移变化,因为没 有考虑单元体位置的改变,即单元体的刚体位移。
应变张量
应变分量 x 、 y 、 z 、 xy 、 yz 、 zx 满足张量的性 质,构成一个二阶应变张量。 以 xi 记 x,y,z ; 以 ui 记 u,v,w
第三章应力分析应变分析屈服准则复习讲诉
a 0 0
1 ij
0
b
0
0 0 0
ab
2
ab 2
0
2 ij
a
b 2
ab 2
0
0
0 0
一、应力张量不变量及其应用
例题解答
对于
1 ij
J1 a b0 a b
J2
a 0
0b
b0
00
00
0
a
ab
a00 J3 0 b 0 0
000
同理,对于
2 ij
J1
a
2
b
a
2
b
0
a
b
ab
J2
试问上述应变场在什么情况下成立?
例题解答
2 xy xy
1 2
2 x y 2
2 y x2
(1)
2 xy 2 (2bxy) 2b xy xy
1
2
2 x y 2
2 y x2
1
2
2
a x2 y2 y 2
2
axy
x2
a
a 2b 即当a 2b时,上述应变场存在。
应变分析问题小 结
max min
2
C
2.2 单向拉伸时的Tresca屈服准则
2.2 Tresca yield criterion in uniaxial stretch test
三、应变连续方程问题
知识要点回顾
小应变几何方程
2 x y2
2 y2
u x
2 xy
u
y
(1)
2 y x2
2 x2
v y
2 v xy x
(2)
弹性力学-第三章-应变状态分析
第三章应变状态分析位移与变形正应变纯变形位移与刚性转动位移应变分量坐标转轴公式主应变齐次方程组体积应变变形协调方程变形协调方程证明变形与应变分量切应变几何方程与应变张量位移增量的分解应变张量应变状态特征方程变形协调的物理意义变形协调方程的数学意义多连域的变形协调一、内容介绍本章讨论弹性体的变形,物体的变形是通过应变分量确定的。
因此,首先确定位移与应变分量的基本关系-几何方程。
由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。
对于一点的应变分量,在不同坐标系中是不同的。
因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。
这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。
当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。
应该注意的问题是变形协调条件,就是位移的单值连续性质。
假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。
这在数学上,就是应变分量必须满足变形协调方程。
在弹性体的位移边界,则必须满足位移边界条件。
二、重点1、应变状态的定义:正应变与切应变;应变分量与应变张量;2、几何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程与位移边界条件。
§3.1 位移分量与应变分量几何方程学习思路:知识点由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。
这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。
变形位移是与弹性体的应力有着直接的关系。
弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。
由于是小变形问题,单元变形可以投影于坐标平面分析。
塑性力学_第三章应变状态
第三章 应变状态理论在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化,即发生位移。
如果物体内各点发生位移后仍保持各质点间初始状态的相对位置,则物体实际上只发生了刚体平移和转动,这种位移称为刚体位移。
如果物体各质点发生位移后改变了各点间初始状态的相对位置,则物体同时也产生了形状的变化,其中包括体积改变和形状畸变,物体的这种变化称为物体的变形运动或简称为变形,它包括微元体的纯变形和整体运动。
应变状态理论就是研究物变形后的几何特性。
即给定物体内各点变形前后的位置,确定无限接近的任意两点之间所连矢量因物体变形所引起剧烈变化。
这是一个单纯的几何问题,并不涉及物体变形的原因,也就是说并不涉及物体抵抗变形的物理规律。
本章主要从物体变形前后的几何变化论述物体内一点的应变状态。
3.1 位移与线元长度、方向的变化1.1坐标与位移设变形前物体上各点的位置在笛卡尔坐标(Descarter coordinate)系的轴(X 、、Y、Z )上的投影为(z y x ,,),又设物体上各点得到一位移,并在同一坐标轴上的投影为(u 、v 、w ),这些位移分量可看作是坐标(z y x ,,)的函数。
于是物体上任点的最终位置由下述坐标值决定。
即⎪⎭⎪⎬⎫+=+=+=),,(),,(),,(z y x w z z y x v y z y x u x ζηξ (3.1-1)上式中函数u 、v 、w 以及它们对坐标(z y x ,,)的偏导数假设是连续的,则式(3.1-1)确定了变量(z y x ,,)与),,(ζηξ之间的关系。
因为物体中变形前各点对应看变形后的各点,因此式(3.1-1)是单值的,所以式(3.1-1)可看成是坐标的一个变换。
如果在(3.1-1)中,假设00,y y x x ==,则由(3.1-1)式可得如下三个方程⎪⎭⎪⎬⎫+=+=+=),,(),,(),,((00000000z y x w z z y x v y z y x u x ςηξ (3.1-2)式(3.1-2)决定了一条曲线,曲线上各点 ,,21**M M ,在物体变形前为平行于z 轴的直线(00,y y x x ==)上(图3.1)。
高等材料力学课件第三章-应变状态
应变与变形
1 变与变形的关系
应变是描述物体形变程度的量,而变形是指物体由于受力而发生的形状改变。
2 应变分量与应力分量的关系
应变和应力是密切相关的,通过应变和应力之间的关系可以对材料的力学性质进行分析。
3 应变表面与应力表面的关系
应变表面和应力表面是描述物体应变和应力分布情况的图形,它们是密切相关的。
总结
1 本章主要内容回顾
本章我们深入学习了材料力学中的应变状态,包括应变概念、应变矩阵、平面应变状态 和空间应变状态等。
2 应变概念和应变矩阵的关系
应变概念是研究物体形变程度的基本概念,而应变矩阵是用于描述物体应变状态的重要 工具。
3 平面应变状态和空间应变状态的区别和联系
平面应变状态是指物体在平面内发生的应变情况,而空间应变状态是指物体在三维空间 内发生的应变情况。
高等材料力学课件第三章 变状态
欢迎来到本课件第三章,我们将深入探讨材料力学中的应变状态。了解应变 概念、应变矩阵、平面应变状态和空间应变状态等重要内容。
应变概念
1 应变定义
应变是描述物体在受到力 作用后形变程度的量,可 分为线性应变和非线性应 变。
2 应变率
应变率是指物体单位时间 内的形变速率,可以用来 描述物体的变形速度。
3 应变分量
应变分量是指在应变矩阵 中表示物体变形情况的各 个分量,分为正应变和剪 应变。
应变矩阵
1 应变矩阵的表示
应变矩阵是用矩阵形式表示物体各个方向上的应变分量。
2 应变矩阵的性质
应变矩阵具有可逆性、对称性和线性性等特点,这些性质在材料的力学分析中起到重要 的作用。
3 应变矩阵的运算
应变矩阵可以进行加法、减法和乘法等基本运算,这些运算可以用于分析和计算材料的 应变状态。
连续介质力学第三章(分析“应力”文档)共110张PPT
x xy xz
ij
y
yz
=
(对称)
z
x
1 2
xy
y
(对称 )
u
x
1 2
u y
v x
1 2
u z
w x
=
v y
1 2
v z
w y
(对称)
w
z
1
2 1
2
xz yz
z
◆ 几何方程:
x
u x
;
y
v y
性体变,从而出现奇异屈服面。
⑩.平衡(或运动)微分方程
◆ 平衡微分方程:
x
x
yx
y
zx
z
F
x 0
2u t2
xy
x
y
y
zy
z
F
y
0
2v t2
xz
x
yz
y
z
z
F
z 0
2w t2
ij'j Fi 0
◆ 一个客观的弹性力学问题,在物体体内任意一点的 应力分量和体力分量必定满足这组方程。
xxyssii n n xyycco o s sq q00sci on s xy
(xyq0)ctg (xyq0) tg
yxtan
左边界:据圣文南原理和平衡的原理得:
Fx 0 , Fy 0 , M0 0 ,
h
hxdy 0
h
hxydy P0
h
h x ydy M 0
h xdy 0
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
高弹第三章应变状态(1)
•应变张量一旦确定,则任意坐标系下的应变 分量均可确定。因此应变状态就完全确定。 •坐标变换后各应变分量均发生改变,但作为 一个整体,所描述的应变状态并未改变。
•主应变与应变主轴
• 应变主轴—— 切应变为0的方向 •
主应变—— 应变主轴方向的正应变
主应变确定 ——应变主轴方向变形
1 1 (ε x − ε )l + γ xy m + γ xz n = 0 2 2 1 1 γ xyl + (ε y − ε )m + + γ yz n = 0 2 2 1 1 γ xz l + γ yz m + (ε z − ε )n = 0 2 2
1 γ xy 2 1 γ xz 2 dx 1 γ yz dy 2 dz εz
位移增量是由两部分组成的
du 0 dv = ω z dw − ω y − ωz 0 εx ω y dx 1 − ω x dy + γ yx dz 2 0 Leabharlann 1 γ 2 zx c
x
b
c
o
P
u
P’
A
∂u u + dx ∂x
A’’
x
v
B
∂v v + dy ∂y
α
β
∂v v + dx ∂x
A’
B’’
∂u u + dy ∂y
B’
y
PA的正应变 PA的正应变:
∂u u + dx − u ∂u ∂x εx = = dx ∂x
同理线段PB的正应变为: 同理线段PB的正应变为: PB的正应变为
第三章应变状态理论
w y
v z
mn
u z
w x
ln
v x
u y
lm
可写成: r xl2 ym2 zn2 g yzmn g zxln g xylm
表明:如知物体内某点的6个应变分量,即可求得过该点的任
切应变xyyzzx六个应变分量我们从物体中取出x方向上长dx的线段pa变形后dxdxpa的正应变在小变形时是由x方向的位移所引起的因此pa正应变为pa的转角为dxdx我们从物体中取出y方向上长dy的线段pb变形后为pbb点y方向的位移为x方向上的位移为pb的正应变在小变形时是由y方向的位移所引起的因此pb正应变为线段pa的转角是线段pb的转角是于是直角apb的改变量为这样平面上一点的变形我们用该点x方向上的正应变y方向上的正应变和xy方向构成的直角的变化切应力来描述称为应变分同样空间一点的变形我们用该点xyz方向上的正应变和xyyzzx方向构成的直角的变化切应变来描述
dy
w
w
1 2
y
1 2
x
0
dz
1 2
g
zx
1 2
g
yz
dz
z
x
ij
1 2
g
xy
1 2
g
xy
y
1 2 1 2
g g
zx yz
11 21
12 22
v
v
1 2
g
xydy
弹性力学第三章:应变分析
y
x
正应变
微元体棱边的相对伸长度
棱边夹角之间的变化
x y z
剪应变
z
将平行六面体 分别投影到3 个坐标面上
M A o m x a
B
y
b
z
M点在Ox轴的位移分量为
u ( x, y, z )
M点在Oy轴的位移分量为 M A o
v ( x, y , z )
B y A点和B点相应的位移分别为
u ( x dx, y, z )
2 2 z ' xl32 y m3 z n3 xyl3m3 yz m3n3 zxn3l3 3 T 3
x ' y ' 2 xl1l2 2 y m1m2 2 z n1n2 xy (l1m2 m1l2 )
dy u m’
a’ a
u x
同理
v m
o
dx
x
v y y
w z z
u
u dy y
y b
b’’
1 tan 1
v v dx v x u dx dx x
u u dx x
b’
2
dy u m’
a’’ m
o
a’
a dx
x
顺次轮换 x, y, z 和
u , v, w
可得其他两个切应变分量
yz
w v y z
xz
u w z x
当 xy , yz , zx 大于零, 表示角度缩小, 反之则表示角度扩大 综上所述。可以得到以下6个关系式
u w v x , yz x y z v u w y , zx y z x w w u z , xy z x y
弹性力学徐芝纶第三章详解
在数学上,x',y',z' 必为x,y,
z的单值连续函数
y
x
位移函数具有三阶连续导数
二、应变
对于微分单元体的变形,将分 为两个部分讨论。
一是微分单元体棱边的伸长和缩短 正应变 二是棱边之间夹角的变化 (剪)切应变
符号规定: 伸长为正,缩短为负 直角变小为正,直角变大为负
正应力 剪应力
正应变 剪应变
v x
u y
xy
v x
u y
yz
w y
v z
zx
u z
w x
上式为剪应变的几何方程
x
u x
y
v y
z
w z
xy
v x
u y
yz
w y
v z
zx
u z
w x
这六式为几何方程(柯西方程)
四、转角方程
x
w y
v z
y
u z
w x
z
v x
u y
3-3 一点应变状态、应变张量
一、应变张量
与应力张量相同,应变张量也是二阶对称张量
则,a点的位移为:
u u dx x
v v dx x
b点的位移为:
u u dy y
v v dy y
x
M
' a' 'Ma Ma
(dx
u dx) x
dx
dx
u x
(dy v dy) dy
y
M 'b''Mb Mb
y dy
v y
同理:
x
u x
y
v y
z
w z
第三章 杆件横截面上的应力应变分析
第三章杆件横截面上的应力应变分析利用截面法可以确定静定问题中的杆件横截面上的内力分量,但内力分量只是横截面上连续分布内力系的简化结果,仅根据内力并不能判断杆件是否有足够的强度。
如用同一种材料制成粗细不同的两根杆,在相同的拉力作用下,两杆的轴力是相同的,当拉力增大时,细杆必定先被拉断。
这说明拉杆的强度不仅与轴力大小有关,还与横截面面积有关,因此还必须引入内力集度的概,即应力的概念。
本章在此基础上分别讨论了杆件在拉压、扭转和弯曲三种基本变形和组合变形下横截面上应力的分布规律,导出了应力计算公式,为后面对杆件进行强度计算打下了基础。
第一节应力、应变及其相互关系一、正应力、剪应力观察图3-1a所示受力杆件,在截面上围绕K点取微小面积,其上作用有微内力,于是在上内力的平均集度为:(3-1)亦称为面积上的平均应力。
一般来说截面上的内力并不均匀分布,因此平均应力随所取ΔA的不同而变化。
当ΔA趋向于零时,的大小方向都将逐渐趋于某一极限。
(3-2)式中,p称为K点的应力,它反映内力系在K点的强弱程度。
p是一个矢量,一般说既不与截面垂直,也不与截面相切。
通常将其分解为垂直于截面的应力分量和相切于截面的应力分量(图3-1b)。
称为正应力,称为切应力。
在国际单位制中,应力的单位是牛顿/米2(N/M2),称为帕斯卡,简称帕(Pa)。
由于这个单位太小,通常使用兆帕(MPa),1MPa = 106Pa。
二、正应变、切应变杆件在外力作用下,其尺寸或几何形状将发生变化。
若围绕受力弹性体中任意点截取一个微小正六面体(当六面体的边长趋于无限小时称为单元体),六面体的棱边边长分别为Δx 、Δy 、Δz (图3-2 )。
把该六面体投影到xy平面(图3-2b)。
变形后,六面体的边长和棱边夹角都将发生变化(图3-2c)。
变形前长为Δx的线段MN,变形后长度为Δx+Δs。
相对变形(3-3)表示线段MN单位长度的平均伸长或缩短,称为平均应变。
当Δx趋向于零,即点N趋向于M点时,其极限为(3-4)式中,ε称为M点沿x方向的线应变或正应变,ε为无量纲量。
弹性力学 第三章应变状态理论
w
w
1 2
xz
dx
1 2
yz
dy
z
dz
1 2
y
dx
1 2
xdy
§3-2 相对位移张量 转动分量
0
u u
v
v
1 2
z
w
w
1 2
y
1 2
z
0
1 2
x
1 2
y
dx
1 2
x
dy
dz
0
x
1 2
xy
1 2
xz
dx
1 2
xy
y
1 2
yz
dy
1 2
xz
1 2
yz
dz
x
u x
y
v y
z
w z
yz
w y
v z
zx
u z
w x
xy
v x
u y
1 2
yz
yz
,
1 2
zx
zx ,
1 2
xy
xy
ij
1 2
(ui,
j
u j,i )
§3-2 相对位移张量 转动分量
相对位移张量:
u u u
x
y
z
v v v
x
y
z
w w w
x y z
转动矢量:
u(x dx, y, z) u u dx
a:
x
v(x dx, y, z) v v dx x
u(x, y dy, z) u u dy
b:
y
b a
v(x, y dy, z) v v dy
金属塑性成形原理第三章金属塑性成形的力学基础第二节应变分析-无动画版
四、点的应变状态与应力状态的比较
6.主应变图
主应变图是定性判断塑性变形类型的图示方法。主应变图只 可能有三种形式
广义拉伸:挤压和拉拔 广义剪切:宽板弯曲、无限长板镦粗、纯剪切和轧制板带 广义压缩:展宽的轧制和自由镦粗;
一、位移和应变
对应的各阶段的相对应变为
l1 l0 01 l0
显然
l2 l1 12 l1
l3 l2 23 l2
03 01 12 23
一、位移和应变
③对数应变为可比应变,工程应变为不可比应变。
假设将试样拉长一倍,再压缩一半,则物体的变形程 L 度相同。 拉长一倍时 压缩一半时
因此,工程应变为不可比应变。
二、应变状态和应变张量
现设变形体内任一点 a(x,y,z)应变分量为
ε 。由a引一任意方向
ij
线元ab,长度为r, 方向余弦为l,m,n。 小变形前,b可视为a点无 限接近的一点,其坐标为 (x+dx,y+dy,z+dz)
四、点的应变状态与应力状态的比较
一、位移和应变
=
+
单元体变形
=
纯切应变
+
刚体转动
切应变及刚性转动 设实际偏转角为αxy,αyx,
xy yx xy xy yx xy
1 2
xy xy z yx yz z 1 z ( yx xy ) 2
四、点的应变状态与应力状态的比较
将八面体剪应变γ8 乘以系数 ,可得等效应变(广 2 义应变、应变强度)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章应变状态分析内容介绍知识点位移与变形正应变纯变形位移与刚性转动位移应变分量坐标转轴公式主应变齐次方程组体积应变变形协调方程变形协调方程证明多连域的变形协调变形与应变分量切应变几何方程与应变张量位移增量的分解应变张量应变状态特征方程变形协调的物理意义变形协调方程的数学意义由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。
这个移动过程,弹性体将可能同时发生两种位移变化。
第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。
第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。
一般来说,刚体位移和变形是同时出现的。
当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。
根据连续性假设,弹性体在变形前和变形后仍保持为连续体。
那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连续的,如图所示。
在数学上,x',y',z'必为x,y,z的单值连续函数。
设MM'=S为位移矢量,其三个分量u,v,w为位移分量。
则u=x'(x,y,z)-x=u(x,y,z)v=y'(x,y,z)-y=v(x,y,z)w=z'(x,y,z)-z=w(x,y,z)显然,位移分量u,v,w也是x,y,z的单值连续函数。
以后的分析将进一步假定位移函数具有三阶连续导数。
为进一步研究弹性体的变形情况,假设从弹性体中分割出一个微分六面体单元,其六个面分别与三个坐标轴垂直。
对于微分单元体的变形,将分为两个部分讨论。
一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化。
弹性力学分别使用正应变和切应变表示这两种变形的。
对于微分平行六面体单元,设其变形前与x,y,z坐标轴平行的棱边分别为MA,MB,MC,变形后分别变为M'A',M'B',M'C'。
假设分别用εx, εy, εz表示x,y,z轴方向棱边的相对伸长度,即正应变;分别用γxy, γyz, γzx表示x和y,y和z,z和x轴之间的夹角变化,即切应变。
则对于小变形问题,为了简化分析,将微分单元体分别投影到Oxy,Oyz,Ozx平面来讨论。
显然,单元体变形前各棱边是与坐标面平行的,变形后棱边将有相应的转动,但我们讨论的是小变形问题,这种转动所带来的影响较小。
特别是物体位移中不影响变形的计算,假设各点的位移仅为自身的大小和形状的变化所确定,则这种微分线段的转动的误差是十分微小的,不会导致微分单元体的变形有明显的变化。
首先讨论Oxy面上投影的变形。
设ma,mb分别为MA,MB的投影,m'a',m'b'分别为M'A',M'B',即变形后的MA,MB的投影。
微分单元体的棱边长为d x,d y,d z,M点的坐标为(x,y,z),u(x,y,z),v(x, y, z)分别表示M点x,y方向的位移分量。
则A点的位移为u(x+d x,y,z),v(x+d x,y,z),B点的位移为u(x,y+d y,z),v(x,y+d y,z)。
按泰勒级数将A,B两点的位移展开,并且略去二阶以上的小量,则A,B点的位移分别为因为所以同理可得由此可以得到弹性体内任意一点微分线段的相对伸长度,即正应变。
显然微分线段伸长,则正应变εx, εy, εz大于零,反之则小于零。
以下讨论切应变表达关系。
假设βyx为与x轴平行的微分线段ma向y轴转过的角度,βxy为与y轴平行的mb向x轴转过的角度。
则切应变因为上式的推导中,利用了小变形条件下位移的导数是高阶小量的结论。
同理可得βyx和βxy可为正或为负,其正负号的几何意义为:βyx大于零,表示位 移v随坐标x而增加,即x方向的微分线段正向向y轴旋转。
将上述两式代入切应变表达式,则同理可得切应变分量大于零,表示微分线段的夹角缩小,反之则增大。
应变可以描述一点的变形,即对微分平行六面体单元棱边的伸长以及棱边之间夹角的改变做出定义。
但是这还不足以完全描述弹性体的变形,原因是应变分析仅仅讨论了棱边伸长和夹角变化,而没有考虑微分单元体位置的改变,即单元体的刚体转动。
通过分析弹性体内无限邻近两点的位置变化,则可得出刚体的转动位移与纯变形位移之间的关系。
设P点无限邻近O点,P点及其附近区域绕O作刚性转动,转过微小角度。
设转动矢量为ω,OP之间的距离矢量为 ,如图所示。
则引入拉普拉斯算符矢量综上所述,应变分量与位移分量之间的关系为上述公式称为几何方程,又称柯西方程。
柯西方程给出了位移分量和应变分量之间的关系。
如果已知位移,由位移函数的偏导数即可求得应变;但是如果已知应变,由于六个应变分量对应三个位移分量,则其求解将相对复杂。
这个问题以后作专门讨论。
几何方程给出的应变通常称为工程应变。
如果使用张量符号,则几何方程可以表达为上式表明应变分量εij将满足二阶张量的坐标变换关系,应变张量分量与工程应变分量的关系可表示为设P点的位移矢量为U,有U =u i +u j +u k由于位移矢量可以表示为U =ω×ρ ,所以即其中ωx, ωy, ωz为转动分量,是坐标的函数,表示了弹性体内微分单元体的刚性转动。
设M点的坐标为(x,y,z),位移(u,v,w)。
与M点邻近的N点,坐标为(x+d x,y+d y,z+d z),位移为(u+d u,v+d v,w+d w)。
则MN两点的相对位移为(d u,d v,d w)。
因为位移为坐标的函数,所以同理可得以上位移增量公式中,前三项为产生变形的纯变形位移,后两项是某点邻近区域的材料绕该点像刚体一样转动的刚性转动位移。
刚性转动位移的物理意义为,如果弹性体中某点及邻近区域没有变形,则与某点无限邻近这一点的位移,根据刚体动力学可知,是由两部分组成。
分别是随这点的平动位移和绕这点的转动位移。
对于弹性体中某一点,一般还要发生变形,因此位移中还包括纯变形位移。
根据公式即d u等于纯变形位移与刚性转动位移在x方向的分量之和。
根据上述公式,可得或者写作同理可得上述公式是关于l,m,n的齐次线性方程组。
如果以n ij(i,j=1,2,3)表示新旧坐标系之间的夹角的方向余弦,并注意到应变张量表达式,则上述应变分量变换公式可以写作εij=n ii' n jj' εij因此,如果将应变分量写作下列形式则应变分量满足张量变换关系。
与应力张量相同,应变张量也是二阶对称张量。
由公式可知,一点的六个独立的应变分量一旦确定,则任意坐标系下的应变分量均可确定,即一点的应变状态就完全确定了。
不难理解,坐标变换后各应变分量均发生改变,但它们作为一个整体,所描述的一点的应变状态是不会改变的。
若用V'表示变形后的微分单元体体积,则将行列式展开并忽略二阶以上的高阶小量,则若用θ表示单位体积的变化即体积应变,则由上式可得显然体积应变θ就是应变张量的第一不变量J1。
因此θ常写作体积应变θ大于零表示微分单元体膨胀,小于零则表示单元体受压缩。
若弹性体内θ处处为零,则物体变形后的体积是不变的。
对于l,m,n的齐次线性方程组,其非零解的条件为其系数行列式的值为零。
即将上式展开,可得主应变特征方程,其中显然与应力不变量相同,J1,J2,J3为应变不变量,分别称为第一,第二和第三应变不变量。
根据特征方程,可以求解得到三个主应变。
将求解后的主应变代入公式,并注意到任意一点三个方向余弦的平方和等于1,则可解应变主轴的方向余弦。
由应力张量和应变张量,应力不变量和应变不变量之间的公式的比较可知,主应变和应变主轴的特性与主应力和应力主轴是类似的。
首先从几何方程中消去位移分量,把几何方程的第一式和第二式分别对x和y求二阶偏导数,然后相加,并利用第四式,可得若将几何方程的第四,五,六式分别对z,x,y求一阶偏导数,然后四和六两式相加并减去第五式,则将上式对x求一阶偏导数,则分别轮换x,y,z,则可得如下六个关系式,上述方程称为应变协调方程或者变形协调方程,又称圣维南(Saint Venant)方程。
几何方程表明,六个应变分量是通过三个位移分量表示的,因此六个应变分量将不可能是互不相关的,应变分量之间必然存在某种联系。
这个问题对于弹性力学分析是非常重要的。
因为如果已知位移分量,容易通过几何方程的求导过程获得应变分量;但是反之,如果已知应变分量,则几何方程的六个方程将仅面对三个未知的位移函数,方程数显然超过未知函数的个数,方程组将可能是矛盾的。
随意给出六个应变分量,不一定能求出对应的位移。
例如:例1设应变分量为:,,求其位移解:显然该应变分量没有对应的位移。
要使这一方程组不矛盾,则六个应变分量必须满足一定的条件。
以下我们将着手建立这一条件。
所谓的单连通域,是指该物体内任一条闭曲线可以收缩到一点而不越出界外。
设应变分量εij单值连续,并有连续的二阶导数,则由轮换x, y, z计算,可得d v,d w 和dω y,dω z。
如果能够通过积分,计算出上述位移和转动分量如果是单值连续的,则可得到弹性体的位移单值连续的条件。
变形协调方程的数学意义是:要使三个位移分量为未知函数的六个几何方程不相矛盾,则应变分量必须满足的必要条件。
应变协调方程的物理意义可以从弹性体的变形连续作出解释。
假如物体分割成无数个微分六面体单元,变形后每一单元体都发生形状改变,如变形不满足一定的关系,变形后的单元体将不能重新组合成连续体,其间将产生缝隙或嵌入现象。
为使变形后的微分单元体仍能重新组合成连续体,应变分量必须满足一定的关系,这一关系就是应变协调方程。
假如弹性体是单连通域的,则应变分量满足应变协调方程不仅是变形连续的必要条件,而且也是充分条件。
为证明应变协调方程是变形体连续的必要和充分条件,我们可利用弹性体变形连续的物理意义,反映在数学上则要求位移分量为单值连续函数的性质。
我们的目的就是证明:如果已知应变分量满足应变协调方程,则对于单连通域,就一定可以通过几何方程的积分求得单值连续的位移分量。
下面我们推导单连通域的变形协调关系如果弹性体中的一条封闭曲线,若收缩至一点必须越出域外,则为:多连通域物体。
一个多连通域物体,可用若干个截面将物体部分的截开,使之成为单连通域。
如果所需的截面数为n,则物体为n+1连域。
平面为有两个环形孔的物体,两个截面即可使其成为单连通域,所以为三连域。
对于多连通域问题,应变满足变形协调方程并不能确保位移在分割后的单连通域内单值连续。