变量间的相关关系及独立性检验(ppt 23页)
变量间的相关关系及独立性检验
判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。
最新-变量的相关性回归分析独立性检验1-PPT文档资料
对值之和的大小,则显得更有说服力.
方法提炼
1.计算回归直线方程中的参数a、b时应分 层进行,避免因计算错误而产生误差.
2.求线性回归方程之前,应对数据进行线 性相关分析.
3.回归分析的关键是根据散点图选择函数 模型,用相关系数判定哪种模型更好.
4.独立性检验不能用比例余数来判定,a、 b、c、d成比例扩大,K2的值是不同的,正确 列出2×2列联表是解题的关键步骤.
yˆ =menx, 则得到 yˆ =3.0519e0.6902x.
点评回归方程不一定惟一,该题还
可以用二次函数为模型.
题型二 独立性检验
例2 在对人群的休闲方式的一次调查中,
共调查了124人,其中女性70人,女性中 有43人主要的休闲方式是看电视,另外27 人主要的休闲方式是运动;男性中21人主 要的休闲方式是看电视,其余男性的主要 休闲方式是运动.
点评题型二回归分析例例2某车间为了规定工时定额需要确定加工零件所花费的时间为此做了四次试验根据试验数据得到如下图所示的散点图其中x表示零件的个数y表示加工时间
变量的相关性、回归分析、 独立性检验
1.两个变量间的相关关系
如果两个变量之间确实存在关系,但又没 有函数关系所具有的确定性,它们的关系带有 随机性,则称这两个变量具有①相关关系 .
质品,从而甲厂生产的零件的优质品率估 计为 3 6 0 =72%;乙厂抽查的产品中有320
500
件优质品,从而乙厂生产的零件的优质品 率估计为 3 2 0 =64%.
500
(2) 2×2列联表如下:
甲厂 乙厂 优质品 360 320 非优质品 140 180
合计 500 500
合计 680 320 1000
变量间的相关关系 课件
[解析] (1)依题意知,相应的回归直线的斜率应为正, 排除 C、D.且直线必过点(3,3.5),代入 A、B 得 A 正确.
答案:A (2)解:①散点图如图所示:
②近似直线如图所示:
③由 y≤10 得5710x-67≤10,解得 x≤14.9,所以机器的 运转速度应控制在 14 转/秒内.
求回归直线方程的步骤
变量间的相关关系
1.相关关系 如果两个变量中一个变量的取值一定时,另一个变量 的取值带有一定的随机性,那么这两个变量之间的关系叫 做_相__关__关__系__. 2.散点图 将各数据在平面直角坐标系中的对应点画出来,得到 表示两个变量的一组数据的图形,这样的图形叫做_散__点__ 图,利用散点图,可以判断两个变量是否相关,相关时是 正相关还是负相关.
4.回归直线方程 (1)回归直线:如果散点图中点的分布从整体上看大致 在_一__条__直__线__附近,就称这两个变量之间具有_线__性__相__关__关 系,这条直线叫做回归直线. (2)回归方程:_回__归__直__线__的方程,简称回归方程. (3)回归方程的推导过程: ①假设已经得到两个具有线性相关关系的变量的一组 数据(x1,y1),(x2,y2),…,(xn,yn). ②设所求回归方程为_^y_=__^b_x_+__^a_,其中^a,^b是待定参数.
答案:②④ (2)解:
①散点图如图所示. ②由图知,所有数据点接近一条直线排列,因此,认为 y 与 x 具有线性相关关系.
两个变量是否相关的两种判断方法 (1)根据实际经验:借助积累的经验进行分析判断. (2)利用散点图:通过散点图,观察它们的分布是否存 在一定的规律,直观地进行判断.
求回归方程
3.正相关和负相关 (1) 正相关:散 点图中的点散 布在从 _左__下__角__到 _右__上__角__ 的区域. (2) 负相关:散 点图中的点散 布在从 _左__上__角__到 _右__下__角__ 的区域.
(智慧测评)高考数学大一轮总复习 第9篇 第3节 变量间的相关关系与独立性检验课件 文 新人教A版
③相关系数
i=1
xi- x yi- y
;
n
n
a.r=
i=1
xi- x
2
i=1
n
yi- y 2
b.当r>0时,表明两个变量正相关; 当r<0时,表明两个变量负相关. r 的绝对值越接近于 1 ,表明两个变量的线性相关性越 强. r 的绝对值越接近于 0 ,表明两个变量之间相关性越
质疑探究1:相关关系与函数关系有何异同点? 提示:(1)相同点:两者均是指两个变量的关系. (2)不同点:①函数关系是一种确定的关系,相关关系 是一种非确定的关系.
②函数关系是一种因果关系,而相关关系不一定是因
果关系,也可能是伴随关系.
2.回归方程与回归分析 (1)线性相关关系与回归直线 如果散点图中点的分布从整体上看大致在_________ 一条直线 附
(4)独立性检验的步骤
①计算随机变量K2的观测值k,查表确定临界值k0: P(K2≥k0) k0 P(K2≥k0) k0 0.50 0.40 0.25 0.15 0.10 0.455 0.708 1.323 2.072 2.706 0.05 0.025 0.010 0.005 0.001
3.841 5.024 6.635 7.879 10.828
弱.通常 |r| 大于 0.75 时,认为两个变量有很强的线性相关
性.
3.独立性检验 (1)分类变量 变量的不同“值”表示个体所属的 不同类别 ,像这样
的变量称为分类变量.
(2)列联表 列出两个分类变量的 频数表 ,称为列联表.假设有两 个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2}, 其样本频数列联表(称为2×2相关关系 的两个变量进行统计分析的 一种常用方法.
《变量间的相关关系》PPT人教版1
《变量间的相关关系》PPT人教版1-精 品课件 ppt(实 用版)
Page 15
《变量间的相关关系》PPT人教版1-精 品课件 ppt(实 用版)
Page 4
《变量间的相关关系》PPT人教版1-精 品课件 ppt(实 用版)
《变量间的相关关系》PPT人教版1-精 品课件 ppt(实 用版)
数学成绩X 84 72 51 72 66 72 74 63 83 86 物理成绩Y 68 73 37 75 66 72 72 55 74 70 数学成绩X 77 71 67 59 61 64 73 79 82 80 物理成绩Y 81 65 60 74 49 63 68 83 69 85 数学成绩X 88 60 75 58 89 66 88 72 69 61 物理成绩Y 89 46 67 50 88 73 70 66 60 63 数学成绩X 76 59 95 81 75 64 65 70 67 82 物理成绩Y 68 50 91 67 61 43 52 79 55 65 数学成绩X 83 58 81 50 71 72 59 42 46 45 物理成绩Y 56 61 82 57 60 77 41 50 41 40
《变量间的相关关系》PPT人教版1-精 品课件 ppt(实 用版)
图1的r=0.97,这些点有明显 的从左下角到右上角沿直线分 布趋势, 这时用线性回归模型描述两个 变量之间的关系效果很好;
图2的r=-0.85,这时用线性 回归模型描述两个变量之间 的关系效果也较好;
图3的r=0.24,图4的r=-0.05, 这些点的分布几乎没有什么 规则,这时不能用线性回归 模型描述这两个变量之间的 关系.
(1)当 r 0 时,表明变量 x 与 y 正相关.
变量间的相关关系及独立性检验PPT(23张)
•
13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。
•
14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。
•
15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。
A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 解析:由图(1)可知,各点整体呈递减趋势,x与y负相关,由图(2)可知,各点整 体呈递增趋势,u与v正相关. 答案:C
判断两个变量正相关还是负相关,有三种方法: 1.利用散点图; 2.利用相关系数r的符号;当r>0时,正相关;r<0时,负相关; 3.在已知两变量线性相关时,也可以利用回归方程 =a+bx.当b>0时,
1.在对两个变量x,y进行线性回归分析时有下列步骤: ①对所求出的回归方程作出解释;②收集数据(xi,yi),i=1,2,…,n;③求 线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图. 如果根据可靠性要求能够作出变量x,y具有线性相关结论,则在下列操作顺 序中正确的是( ) A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③① 答案:D
•
16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。
•
17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。
高考数学(人教A,文科)一轮课件:第 9篇 第3节 变量间的相关关系与独立性检验
• ②如果k≥k0,就推断“X与Y有关系”,这 种推断犯错误的概率不超过P(K2≥k0);否 则,就认为在犯错误的概率不超过
• 质疑探究2:K2≥3.841和K2≥6.635分别说明 了什么问题?
• 提示:独立性检验得出的结论带有概率性 质,只能说结论成立的概率有多大,而不 能完全肯定一个结论,因此才出现了临界 值,3.841和6.635就是两个常用的临界值 ,一般认为当K2≥3.841时,则有95%的把 握说事件A与B有关;当K2≥6.635时,则有 99%的把握说事件A与B有关.
• 如果散点图中点的分布从整体上看一大条直致线 在 _________附近,就称这两个变量之间具 有回线归直性线 相关关系,这条直线叫做 ___________.
• (2)回归方程
• ①最距小离二的平乘方和法:求回归直线使得样本数据 的点到回归直线的______________最小的 方法叫做最小二乘法.
• 解析:根据独立性检验的定义,由 K2≈7.8>6.635可知,我们有99%以上的把 握认为“爱好该项运动与性别有关”.故 选A.
• 答案:A
3.(2012年高考新课标全国卷)在一组样本数据(x1, y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等) 的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线
• 参照附表,得到的正确结论是( )
• A.有99%以上的把握认为“爱好该项运 动与性别有关”
• B.有99%以上的把握认为“爱好该项运 动与性别无关”
• C.在犯错误的概率不超过0.1%的前提下 ,认为“爱好该项运动与性别有关”
• D.在犯错误的概率不超过0.1%的前提下 ,认为“爱好该项运动与性别无关”
第3讲 变量间的相互关系与独立性检验
第3讲 变量间的相互关系与独立性检验◆高考导航·顺风启程◆[知识梳理]1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是 相关关系 ;与函数关系不同, 相关关系 是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为 正相关 ,点散布在左上角到右下角的区域内,两个变量的相关关系为 负相关 .2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有 线性相关关系 ,这条直线叫做 回归直线 .(2)回归方程为 y ^=b ^ x +a ^ ,其中b ^=ni =1x i y i -n x yn i =1x 2i -n x 2,a ^= y -b ^x .(3)通过求Q =ni =1(y i -bx i -a )2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r >0,表明两个变量 正相关 ; 当r <0,表明两个变量负相关 .r 的绝对值越接近于1,表明两个变量的线性相关性 越强 .r 的绝对值接近于0时,表明两个变量之间 越弱 .通常|r |大于 0.75 时,认为两个变量有很强的线性相关性.3.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2= n (ad -bc )(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).[知识感悟]1.线性回归直线方程的求法求解回归方程关键是确定回归系数a ^,b ^,因求解b ^的公式计算量太大,一般题目中给出相关的量,如x ,y,∑i =1nx 2i ,n i =1y 2i 等,便可直接代入求解.充分利用回归直线过样本中心点(x ,y ),即有y =b ^ x +a ^,可确定a .2.独立性检验思想的理解独立性检验的思想类似于反证法,即要确定“两个变量X 与Y 有关系”这一结论成立的可信度,首先假设结论不成立,即它们之间没有关系,也就是它们是相互独立的,利用概率的乘法公式可推知,(ad -bc )接近于零,也就是随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )应该很小,如果计算出来的K 2的观测值k 不是很小,通过查表P (K 2≥k 0)的概率很小.又根据小概率事件不可能发生,由此判断假设不成立,从而可以肯定地断言X 与Y 之间有关系.[知识自测]1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( ) (2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( )(4)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2 ℃时,一定可卖出143杯热饮.( )(5)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) (6)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.( )[答案] (1)× (2)√ (3)√ (4)× (5)√ (6)×2.某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论是:有多少的把握认为“学生性别与支持该活动有关系”.( )附:A.0.1%C .99%D .99.9%[解析] 因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“学生性别与支持该活动有关系”.[答案] C3.下面是一个2×2列联表则表中a 、b [解析] 因为a +21=73,所以a =52. 又因为a +2=b ,所以b =54. [答案] 52 54题型一 相关关系的判断(基础拿分题、自主练透)(1)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关,下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关[解析] 因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.[答案] C(2)对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3[解析] 易知题中图(1)与图(3)是正相关,图(2)与图(4)是负相关,且图(1)与图(2)中的样本点集中分布在一条直线附近,则r 2<r 4<0<r 3<r 1.[答案] A方法感悟判定两个变量正、负相关性的方法1.画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.2.相关系数:r >0时,正相关;r <0时,负相关. 3.线性回归方程中:b ^>0时,正相关:b ^<0时,负相关. 【针对补偿】1.下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )[解析] 观察散点图可知,只有D 选项的散点图表示的是变量x 与y 之间具有负的线性相关关系.[答案] D2.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423;②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④D .①④[解析] 由线性回归方程y ^=b ^x +a ^知当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误.[答案] D题型二 回归分析(重点保分题、共同探讨)(2016·全国Ⅲ卷)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.参考数据:7i =1y i =9.32,7i =1t i y i =40.17,7i =1(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =n i =1(t i -t )(y i -y )n i =1(t i -t )27i =1(y i -y )2回归方程y ^=a ^+b ^ t 中斜率和截距最小二乘估计公式分别为b ^=ni =1(t i -t )(y i -y )ni =1(t i -t )2,a ^=y -b ^t .[解] (1)由折线图中数据和附注中参考数据得t =4,7i =1(t i -t )2=28,7i =1(y i -y )2=0.55,7i =1(t i -t )(y i -y )=7i =1t i y i -t7i =1y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=7i =1 (t i-t )(y i -y )7i =1(t i -t )2=2.8928≈0.103. a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以,y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.方法感悟1.正确理解计算b ^,a ^的公式和准确的计算是求线性回归方程的关键. 2.回归直线方程y ^=b ^x +a ^必过样本点中心(x ,y ).3.在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.【针对补偿】3.某百货公司1~6月份的销售量x 与利润y 的统计数据如下表:(1)根据2~5月份的数据,画出散点图,求出y 关于x 的线性回归方程y =b ^x +a ^; (2)若由线性回归方程得到的估计1~6月份与检验数据的误差均不超过2万元,则认为得到的线性回归方程是理想的,试问所得线性回归方程是否理想?[解] (1)根据表中2~5月份的数据作出散点图,如图所示:计算得x =11,y =24,∑i =25x i y i =11×25+13×29+12×26+8×16=1 092,∑i =25x 2i =112+132+122+82=498,则b ^=∑i =25x i y i -4x y∑i =25x 2i -4x2=1 092-4×11×24498-4×112=187, a ^=y -b ^x =24-187×11=-307.故y 关于x 的线性回归方程为y ^=187x -307. (2)当x =10时,y ^=187×10-307=1507, 此时⎪⎪⎪⎪1507-22<2;当x =6时,y ^=187×6-307=787, 此时⎪⎪⎪⎪787-12<2.故所得的线性回归方程是理想的.题型三 独立性检测(重点保分题、共同探讨)(2017·课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50 kg, 新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)(精确到0.01) 附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解] (1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”由题意知P (A )=P (BC )=P (B )P (C )旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62新养殖法的箱产量不低于50 kg 的频率为(0.068+0.046+0.010+0.008)×5=0.66,故P (C )的估计值为0.66因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)100×100×96×104≈15.705由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法箱产量的中位数的估计值为50+0.5-0.340.068≈52.35(kg).方法感悟 独立性检验的一般步骤(1)根据样本数据制成2×2列联表;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算K 2的值;(3)查表比较K 2与临界值的大小关系,作出统计判断. 【针对补偿】4.(2018·九江第一次统考)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.附表及公式K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解] (1)x 男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5, x 女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5, 从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:可得K 2=100×(15×25-15×45)60×40×30×70≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.◆牛刀小试·成功靠岸◆课堂达标(五十一)[A 基础巩固练]1.(2018·湖北七市联考)为研究语文成绩和英语成绩之间是否具有线性相关关系,统计某班学生的两科成绩得到如图所示的散点图(x 轴、y 轴的单位长度相同),用回归直线方程y ^=bx +a 近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系较弱,无研究价值[解析] 由散点图可以看出两个变量所构成的点在一条直线附近,所以线性相关关系较强,且应为正相关,所以回归直线方程的斜率应为正数,且从散点图观察,回归直线方程的斜率应该比y =x 的斜率要小一些,综上可知应选B.[答案] B2.(2018·山东省青岛市数学一模试卷)已知变量x ,y 具有线性相关关系,它们之间的一组数据如下表所示,若y 关于x 的线性回归方程为y ^=1.3x -1,则m =______________.[解] 由题意,x =2.5,代入线性回归方程为y ^=1.3x -1,可得y =2.25, ∴0.1+1.8+m +4=4×2.25,∴m =3.1. 故答案为3.1. [答案] 3.13.(2018·兰州、张掖联考)对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116B.18C.14D.12[解析] 依题意可知样本中心点为⎝⎛⎭⎫34,38,则38=13×34+a ^,解得a ^=18. [答案] B4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),算得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”[解析] 根据独立性检验的定义,由K 2≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”,故选C.[答案] C5.(2017·山东)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑i =110x i =225,∑i =110y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( )A .160B .163C .166D .170[解析] 由已知x =22.5,y =160,∴a ^=160-4×22.5=70,y =4×24+70=166,选C.[答案] C6.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:附:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按97.5%的可靠性要求,不能认为“成绩与班级有关系” [解析] 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>5.024,因此有97.5%的把握认为“成绩与班级有关系”. [答案] C7.(2018·济宁二模)已知下表所示数据的回归直线方程为y ^=4x +242,则实数a =______.[解析] 回归直线y ^=4x +242必过样本点的中心(x ,y ),而x =2+3+4+5+65=4,y =251+254+257+a +2665=1 028+a5,∴1 028+a5=4×4+242, 解得a =262. [答案] 2628.(2018·山东省济宁市二模试卷)为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如下2×2列联表:性别有关(临界值参考表如下).>7.879,∴有99.5%的把握认为喜爱打篮球与性别有关. [答案] 99.59.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为______cm.[解析] 儿子和父亲的身高可列表如下:设回归直线方程y ^=a ^+b x ,由表中的三组数据可求得b =1,故a ^=y -b ^x =176-173=3,故回归直线方程为y ^=3+x ,将x =182代入得孙子的身高为185 cm.[答案] 18510.(2018·唐山一模)为了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下实验数据:(1)求y 关于(2)利用(1)中的回归方程,预测t =8时,细菌繁殖个数. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=ni =1 (t i -t )(y i -y )ni =1(t i -t )2,a ^=y -b ^t . [解] (1)由表中数据计算得,t =5,y =4,ni =1(t i -t )(y i -y )=8.5,ni =1(t i -t )2=10,b ^=ni =1(t i -t )(y i -y )ni =1(t i -t )2=0.85, a ^=y -b ^t =4-0.85×5=-0.25. 所以回归方程为y ^=0.85t -0.25. (2)将t =8代入(1)的回归方程中得 y ^=0.85×8-0.25=6.55.故预测t =8时,细菌繁殖个数为6.55千个.[B 能力提升练]1.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方程,求得回归直线分别为l 1和l 2,已知两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( )A .l 1和l 2必定平行B .l 1与l 2必定重合C .l 1和l 2一定有公共点(s ,t )D .l 1与l 2相交,但交点不一定是(s ,t ) [解析] 注意到回归直线必经过样本中心点. [答案] C2.(2018·郑州预测)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a .若在这些样本点中任取一点,则它在回归直线左下方的概率为( )A.16B.13C.12D.23[解析] 依题意得x =16×(4+5+6+7+8+9)=132,y =16×(90+84+83+80+75+68)=80,又回归直线必经过样本中心点(x ,y ),于是有a =80+4×132=106,不等式4x+y -106<0表示的是回归直线的左下方区域.注意到在6个样本数据中,共有2个样本数据位于回归直线的左下方区域,因此所求的概率等于13.[答案] B3.以下四个命题,其中正确的序号是______.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.[解析] ①是系统抽样;对于④,随机变量K 2的观测值k 越小,说明两个相关变量有关系的把握程度越小.[答案] ②③4.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得x 2≈3.918,已知P (x 2≥3.841)≈0.05.对此,四名同学作出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”; q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒; r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%. 则下列结论中,正确结论的序号是______. ①p ∧綈q ;②綈p ∧q ;③(綈p ∧綈q )∧(r ∨s ); ④(p ∨綈r )∧(綈q ∨s ).[解析] 本题考查了独立性检验的基本思想及常用逻辑用语.由题意,得x 2≈3.918,P (x 2≥3.841)≈0.05,所以,只有第一位同学的判断正确,即有95%的把握认为“这种血清能起到预防感冒的作用”.由真值表知①④为真命题.[答案] ①④5.(2018·广西玉林、贵港联考)某市地铁即将于2016年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:与“认为价格偏高者”的月平均收入的差距是多少?(结果保留2位小数);(2)由以上统计数据填下面2×2列联表,分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解] (1)“x 1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x 2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x 1-x 2=50.56-38.75=11.81(百元)(2)根据条件可得2×2列联表如下:K 2=50×(3×11-7×29)10×40×18×32≈6.27<6.635,∴没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.[C 尖子生专练](2018·保定调研)某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:(1)(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生做进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.下面的临界值表供参考:(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )[解] (1)由公式K 2=55×(20×20-10×5)230×25×25×30≈11.978>7.879,所以有99.5%的把握认为喜欢“应用统计”课程与性别有关.(2)设所抽样本中有m 个男生,则630=m20,得m =4,所以样本中有4个男生,2个女生,分别记作B 1,B 2,B 3,B 4,G 1,G 2.从中任选2人的基本事件有(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,G 1),(B 1,G 2),(B 2,B 3),(B 2,B 4),(B 2,G 1),(B 2,G 2),(B 3,B 4),(B 3,G 1),(B 3,G 2),(B 4,G 1),(B 4,G 2),(G 1,G 2),共15个,其中恰有1个男生和1个女生的事件有(B 1,G 1),(B 1,G 2),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2),(B 4,G 1),(B 4,G 2),共8个.所以恰有1个男生和1个女生的概率为815.。
相关关系、回归分析与独立性检验课件
(2)回归直线方程的求法 ①回归直线:观察散点图的特征,如果散点图中点的分 布从整体上看大致在一条直线附近,我们就称这两个变量之 间具有线性相关关系,这条直线叫做回归直线. ②回归直线方程的求法——最小二乘法. 设具有线性相关关系的两个变量 x、 的一组观察值为(xi, y ^ ^ ^ yi)(i=1,2,„,n),则回归直线方程y=a+bx 的系数为:
3.独立性检验 (1)若变量的不同“值”表示个体所属的不同类别,则这 些变量称为分类变量. (2)两个分类变量 X 与 Y 的频数表,称为 2×2 列联表. y1 x1 x2 合计 a c a+c y2 b d b+d 合计 a+b c+d a+b+c+d
在
2×2
列 联 表 中 , 随 机 变 量
(2)正相关、负相关 散点图中各点散布的位置是从 左下角 到 右上角 的区 域,即一个变量的值由小变大时,另一个变量的值也由小变 大,这种相关称为正相关. 散点图中点散布的位置是从 左上角到 右下角的区域,即 一个变量的值由小变大时,另一个变量的值由大变小,这种 相关称为负相关.
2.回归分析 (1)回归分析 对具有相关关系的两个变量进行统计分析的方法叫回归 分析.其基本步骤是:①画散点图,②求回归直线方程,③ 用回归直线方程作预报.
1 解析:(1)由于 x = (x1+x2+x3+x4+x5+x6)=8.5, 6 1 y =6(y1+y2+y3+y4+y5+y6)=80. 所以 a= y -b x =80+20×8.5=250,从而回归直线方程 ^ 为y=-20x+250.
(2)设工厂获得的利润为 L 元,依题意得 L=x(-20x+250)-4(-20x+250) =-20x2+330x-1000 33 2 =-20(x- 4 ) +361.25. 当且仅当 x=8.25 时,L 取得最大值. 故当单价定价为 8.25 元时,工厂可获得最大利润.
变量间的相关关系及独立性检验
1.在对两个变量x,y进行线性回归分析时有下列步骤: ①对所求出的回归方程作出解释;②收集数据(xi,yi),i=1,2,…,n;③求 线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图. 如果根据可靠性要求能够作出变量x,y具有线性相关结论,则在下列操作顺 序中正确的是( ) A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③① 答案:D
9.3 变量间的相关关系、回归分析及 独立性检验
(会作两个相关变量的数据的散点图,会利用散点图认识变量的相关关系/了解最 小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程)
1.相关关系的量:当自变量一定时,因变量的取值带有一定的随机性的两个变 量之间的关系称为相关关系.
2.回归分析:对具有相关关系的两个变量进行统计分析的方法叫做回归分析. 3.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图. 4.正相关与负相关概念:如果散点图中的点散布在从左下角到右上角的区域内
A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 解析:由图(1)可知,各点整体呈递减趋势,x与y负相关,由图(2)可知,各点整 体呈递增趋势,u与v正相关. 答案:C
判断两个变量正相关还是负相关,有三种方法: 1.利用散点图; 2.利用相关系数r的符号;当r>0时,正相关;r<0时,负相关; 3.在已知两变量线性相关时,也可以利用回归方程 =a+bx.当b>0时,
D.若变量y和x之间的相关系数为r=-0.9362,则变量y和x之间具有线性相 关关系
答案:C
3.(2009·宁夏、海南)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点 图(1);对变量u、v有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由这 两个散点图可以判断( )
变量间的相关关系与独立性检验
第3节 变量间的相关关系与独立 性检验
◆考纲·了然于胸◆ 1.会作两个相关变量的数据的散点图,会利用散点图认 识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程 系数公式建立线性回归方程. 3.了解独立性检验(只要求2×2列联表)的基本思想、方法 及其简单应用. 4.了解回归分析的基本思想、方法及其简单应用.
[解析] 由观测值 k=27.63 与临界值比较,我们有 99.9% 的把握说打鼾与患心脏病有关.
[答案] 有关
考点一 相关关系的判断(基础型考点——自主练透)
[方法链接]
(1)相关关系的直观判断方法就是作出散点图,若散点图呈
带状且区域较窄,说明两个变量有一定的线性相关性;若散点
图分布在从左下角到右上角的区域内,则正相关;若散点图分
[答案] A
考点二 回归方程的求法及回归分析(重点型考点——师
生共研)
【例 1】 (2014·新课标全国卷Ⅱ)某地区 2007 年至 2013
年农村居民家庭人均纯收入 y(单位:千元)的数据如下表:
年份
2007 2008 2009 2010 2011 2012 2013
年份代号 t
1234567
人均纯收入 y 2.9 3.3 3.6 4.4 4.8 5.2 5.9
i=1 1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,
7
ti- t yi- y
b∧=i=1
7
ti- t 2
=1248=0.5,
i=1
∧
∧
∧
a= y -b t =4.3-0.5×4=2.3,所求回归方程为y=0.5t+
2.3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例2】 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某 机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速 度而变化,下表为抽样试验结果:
转速x(转/秒)
1 6
1 4
1 2
8
每小时生产有缺点 的零件数y(件)
1 1
9
85
(1)对变量y与x进行相关性检验; (2)如果y与x有线性相关关系,求回归直线方程; (3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器 的运转速度应控制在什么范围内? 思维点拨:利用相关系数r进行线性相关检验(也可利用散点图).如果线性相关, 再求回归直线方程并加以判断.
(1)画出散点图; (2)判断是否具有相关关系.
思维点拨:用施化肥量x作为横轴,产量y为纵轴可 作出散点图,由散点图即可分析是否具有线性相关 关系. 解答:(1)散点图如右图所示, (2)由散点图知,各组数据对应点大致都在一条直线 附近,所以施化肥量x与产量y具有线性相关关系.
对具有相关关系的两个变量进行统计分析时,首先要作出散点图,然后进行相 关性检验,在确认具有线性相关关系后,再求其回归直线.
A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 解析:由图(1)可知,各点整体呈递减趋势,x与y负相关,由图(2)可知,各点整 体呈递增趋势,u与v正相关. 答案:C
判断两个变量正相关还是负相关,有三种方法: 1.利用散点图; 2.利用相关系数r的符号;当r>0时,正相关;r<0时,负相关; 3.在已知两变量线性相关时,也可以利用回归方程 =a+bx.当b>0时,
2.回归分析是处理变量相关关系的一种数学方法.主要解决:①确定特定量之间 是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察 值,预测变量的取值及判断变量取值的变化趋势;③求出回归直线方程.
3.独立性检验是一种假设检验,在对总体的估计中,通过抽取样本,构造合适的 随机变量,对假设的正确性进行判断.
解答:
(2) =0.728 6x-0.857 1. (3)要使 ≤10⇒0.728 6x-0.857 1≤10,所以x≤14.901 3. 所以机器的转速应控制在14.901 3转/秒以下.
变式2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计 资料:
使用年限 (x)/年 2 3 4 5 6
1.在对两个变量x,y进行线性回归分析时有下列步骤: ①对所求出的回归方程作出解释;②收集数据(xi,yi),i=1,2,…,n;③求 线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图. 如果根据可靠性要求能够作出变量x,y具有线性相关结论,则在下列操作顺 序中正确的是( ) A.①②⑤③④ B.③②④⑤① C.②④③①⑤ D.②⑤④③① 答案:D
=a+bx是增函数,两变量是正相关,当b<0时, =a+bx是减函数, 两变量是负相关.
【例1】山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对 某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数 据(单位:kg).
施化肥量x 15 20 25 30 35 40 45 棉花产量y 330 345 365 405 445 450 455
D.若变量y和x之间的相关系数为r=-0.936பைடு நூலகம்,则变量y和x之间具有线性相 关关系
答案:C
3.(2009·宁夏、海南)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点 图(1);对变量u、v有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由这 两个散点图可以判断( )
9.3 变量间的相关关系、回归分析及 独立性检验
(会作两个相关变量的数据的散点图,会利用散点图认识变量的相关关系/了解最 小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程)
1.相关关系的量:当自变量一定时,因变量的取值带有一定的随机性的两个变 量之间的关系称为相关关系.
2.回归分析:对具有相关关系的两个变量进行统计分析的方法叫做回归分析. 3.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图. 4.正相关与负相关概念:如果散点图中的点散布在从左下角到右上角的区域内,
2.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…, (xn,yn),则下列说法中不正确的是( )
A.由样本数据得到的回归方程 =bx+a 必过样本中心(
)
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好
称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负 相关.
5. 回归直线:设所求的直线方程为
,其中
求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做 最小二乘法.
6.相关系数:r=
叫做变量y与x之间的样本相关系数,简称相关系数,用 它来衡量两个变量之间的线性相关程度. 7.相关系数的性质:|r|≤1,且|r|越接近1,相关程度越大;且|r|越接近0,相关程 度越小.
维修费用 2. 3. 5. 6. 7. (y)/万元 2 8 5 5 0
(1)y与x间是否有线性相关关系?若有,求出线性回归方程; (2)估计使用年限为10年时的维修费用.
【方法规律】
1.求回归方程,关键在于正确求出系数a,b,由于a,b的计算量大,计算时应仔 细谨慎,分层进行,避免因计算而产生错误.(注意回归直线方程中一次项系数 为b,常数项为a,这与一次函数的习惯表示不同).
为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现 对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
数学 88 83 117 92 108 100 112 物理 94 91 108 96 104 101 106
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明; (2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115 分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相 关性,给出该生在学习数学、物理上的合理建议.