2008年浙江省杭州市各类高中招生文化考试答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年浙江省杭州市各类高中招生文化考试
数学参考答案及评分标准
一. 选择题(每小题3分, 共30分)
二. 填空题(每小题4分, 共24分) 11. 5.0-; 12+-等, 答案不惟一
12.BCD △ CAD △; 9∶16 或BCD △ BAC △; 9∶25
或CAD △ BAC △; 16∶25
13. 说得不对, 不光看图象, 要看到纵坐标的差距不是很大. 14. 32
15.
r r 3
4;
5 16. 4或7或9或12或15
三. 解答题(8小题共66分) 17. (本题6分) 方程组如下:⎩⎨
⎧=+=+94
4235
y x y x , ······················································································· 4分
可以用代入消元和加减消元法来解这个方程组. ······························································· 2分 18. (本题6分)
(1) 对应关系连接如下: ······························································································ 4分
(2) 当容器中的水恰好达到一半高度时, 函数关系图上t 的位置如上: ····················· 2分 19. (本题6分)
凸八边形的对角线条数应该是20. ······························································ 2分
思考一: 可以通过列表归纳分析得到:
思考二: 从凸八边形的每一个顶点出发可以作出5(8-3)条对角线, 8个顶点共40条, 但其一条对角线对应两个顶点, 所以有20条对角线. ······················································· 4分 (如果直接利用公式: 2
)
3(-n n 得到20而没有思考过程, 全题只给3分) 20. (本题8分)
作图如下, BCD ∠即为所求作的γ∠.
········· 图形正确4分, 痕迹2分, 结论2分
21. (本题8分)
(1) 补全表格: ········································································································· 4分
(2) 折线图: ··············································································································· 4分
22. (本题10分)
(1) 将点132P ⎛⎫ ⎪⎝⎭
,代入函数关系式t a y =, 解得23
=
a , 有
t
y 23=
将1=y 代入t
y 23
=
, 得2
3
=
t , 所以所求反比例函数关系式为33
()22y t t =
≥; ········ 3分 再将)1,(2
3代入kt y =, 得32
=k ,所以所求正比例函数关系式为23(0)32
y t t =≤≤. ··············································································································································· 3分 (2) 解不等式
4
123
, 解得 6>t , 所以至少需要经过6小时后,学生才能进入教室. ························································· 4分 23. (本题10分) (1) ∵△ABC 是等腰△,CH 是底边上的高线,∴AC BC ACP BCP =∠=∠,, 又∵CP CP =, ∴△ACP ≌△BCP , ∴CBP CAP ∠=∠, 即CBF CAE ∠=∠; ······························································· 3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =, ∴△ACE ≌△BCF ,∴BF AE =; ··································································· 3分 (3) 由(2)知△ABG 是以AB 为底边的等腰△,∴ABG ABC S S ∆∆= 等价于AC AE =, 1)当∠C 为直角或钝角时,在△ACE 中,不论点P 在CH 何处,均有AC AE >,所以结论不成立; 2)当∠C 为锐角时, =∠A - 902 1∠C ,而A CAE ∠<∠,要使AC AE =,只需 使∠C =∠CEA ,此时,∠=CAE 180°–2∠C , 只须180°–2∠C <- 902 1∠C ,解得 60°<∠C < 90°. ·························· 4分 (也可在CEA ∆中通过比较C ∠和CEA ∠的大小而得到结论) 24. (本题12分) (1) ∵ 平移2 tx y -=的图象得到的抛物线F 的顶点为Q , ∴ 抛物线F 对应的解析式为:b t x t y +--=2 )(. ···················································· 2分 ∵ 抛物线与x 轴有两个交点,∴0>b t . ······································································ 1分 令0=y , 得- =t OB t b ,+=t OC t b ,