聚类分析matlab代码

合集下载

matlab中kmeans代码

matlab中kmeans代码

一、前言在数据分析和机器学习领域,k-means算法是一种常用的聚类算法,它可以将数据集分成不同的簇,每个簇内的数据点彼此相似,而不同簇之间的数据点相似度较低。

在matlab中,可以利用其强大的数学计算功能来实现k-means聚类算法。

本文将介绍如何在matlab中编写k-means聚类算法的代码。

二、matlab中的k-means算法1. 初始化数据集需要准备好要进行聚类分析的数据集。

这些数据可以是一组二维或多维的点,代表不同的特征。

在matlab中,可以使用矩阵来表示这些数据集,每一行代表一个数据点,每一列代表一个特征。

2. 设置聚类数量在进行k-means聚类算法之前,需要先确定要分成的簇的数量。

这个数量可以根据业务需求或者领域知识来确定。

在matlab中,可以使用kmeans函数来执行聚类分析,该函数需要指定数据集和聚类数量。

3. 运行k-means算法一旦准备好了数据集和聚类数量,就可以调用matlab中的kmeans 函数来执行k-means算法。

该函数会根据数据集和聚类数量来计算出不同簇的中心点,并将每个数据点分配到最近的簇中。

4. 可视化聚类结果完成k-means算法之后,可以将聚类结果可视化出来,以便更直观地理解不同簇之间的分布情况。

在matlab中,可以使用plot函数来绘制数据点和聚类中心,以及不同簇的分布情况。

三、示例代码以下是一个简单的matlab代码示例,演示了如何使用kmeans函数来执行k-means聚类算法:```matlab读取数据data = load('data.txt');设置聚类数量k = 3;运行k-means算法[idx, centers] = kmeans(data, k);可视化聚类结果figure;gscatter(data(:,1), data(:,2), idx);hold on;plot(centers(:,1), centers(:,2), 'kx', 'MarkerSize', 15, 'LineWidth', 3); ```以上代码首先读取了名为data.txt的数据集,然后设置了聚类数量为3。

利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法

利用Matlab进行数据聚类与分类的方法导言在当今大数据时代,处理和分析庞大的数据成为许多领域的重要任务,而数据聚类与分类是其中重要的一环。

Matlab作为一种功能强大的编程语言和工具,在数据聚类与分类方面具有广泛的应用。

本文将介绍利用Matlab进行数据聚类与分类的常用方法和技巧。

一、数据聚类的概念与方法1.1 数据聚类的定义数据聚类是指将具有相似特征的数据对象自动分成若干组的过程,旨在将相似的数据归为一类,不相似的数据分开。

1.2 常用的数据聚类方法- K-means聚类算法:K-means是一种常见且简单的数据聚类方法,通过迭代优化的方式将数据划分成K个簇。

- 层次聚类算法:层次聚类是一种基于树形结构的聚类方法,它将数据逐步合并或分裂,直到得到最终的聚类结果。

- 密度聚类算法:密度聚类根据数据点的密度特征进行聚类,能够有效地发现任意形状和大小的聚类簇。

- 谱聚类算法:谱聚类结合图论的思想,通过计算数据的拉普拉斯矩阵特征向量,将数据聚类成多个划分。

二、利用Matlab进行数据聚类2.1 准备工作在使用Matlab进行数据聚类之前,需要准备好数据集。

通常,数据集需要进行预处理,包括数据清洗、特征选择和降维等步骤。

2.2 K-means聚类利用Matlab的统计工具箱,可以轻松实现K-means聚类算法。

首先,将数据集读入Matlab并进行必要的归一化处理。

然后,使用kmeans函数运行K-means聚类算法,指定聚类的簇数K和迭代次数等参数。

最后,根据聚类结果进行数据可视化或进一步的分析。

2.3 层次聚类Matlab中的cluster函数提供了层次聚类的功能。

将数据集转换为距离矩阵,然后调用cluster函数即可实现层次聚类。

该函数支持不同的聚类算法和距离度量方法,用户可以根据具体需求进行调整。

2.4 密度聚类实现密度聚类可以使用Matlab中的DBSCAN函数。

DBSCAN是一种基于密度的聚类算法,它通过确定数据点的领域密度来判定是否为核心对象,并通过核心对象的连接性将数据点分为不同的簇。

网络分析(聚类系数、最短路径、效率)matlab代码汇总

网络分析(聚类系数、最短路径、效率)matlab代码汇总
D=eye(length(G)); n=1;
nPATH=G; L=(nPATH~=0);
while find(L,1); D=D+n.*L; n=n+1; nPATH=nPATH*G; L=(nPATH~=0).*(D==0);
end
D(~D)=inf; D=D-eye(length(G));
%n-path matrix %shortest n-path matrix
% %Mika Rubinov, UNSW, 2007 (last modified July 2008)
%See comments for clustering_coef_bd %The weighted modification is as follows: %- The numerator: adjacency matrix is replaced with weights matrix ^ 1/3 %- The denominator: no changes from the binary version % %The above reduces to symmetric and/or binary versions of the % clustering coefficient for respective graphs.
function C=clustering_coef_bu(G) %C=clustering_coef_bu(G); clustering coefficient C, for binary undirected graph G % %Reference: Watts and Strogatz, 1998, Nature 393:440-442 % %Mika Rubinov, UNSW, 2007 (last modified September 2008)

Matlab中的聚类分析与分类算法实现

Matlab中的聚类分析与分类算法实现

Matlab中的聚类分析与分类算法实现导语:在数据科学和机器学习领域,聚类分析和分类算法是两个重要的主题。

数据的聚类能够将数据集中相似的观测值归为一类,而分类算法则是用于预测未知样本的类别标签。

在Matlab这一强大的数学计算工具中,我们可以利用其丰富的函数库和灵活的编程环境来实现聚类分析和分类算法。

一、聚类分析算法的实现1. K-means聚类算法K-means是最常用的聚类算法之一,它将数据集划分为k个簇,使得同一个簇内的数据点之间的距离最小化,并且不同簇之间的距离最大化。

在Matlab中,我们可以使用kmeans函数来实现K-means聚类算法。

该函数需要输入样本数据矩阵和簇数k,然后返回每个样本点所属的簇标签。

2. 层次聚类算法层次聚类是一种基于距离度量的聚类算法,它将样本逐步合并成越来越大的簇,直到所有样本都被分为一个簇。

在Matlab中,我们可以使用linkage函数来计算样本之间的距离,然后使用cluster函数进行层次聚类。

该函数可以根据指定的距离度量方法(如欧氏距离或曼哈顿距离)和链接方法(如单链接、完全链接或平均链接)对样本进行聚类。

3. DBSCAN聚类算法DBSCAN是一种基于密度的聚类算法,它可以发现任意形状的簇,并且对噪声数据有较高的鲁棒性。

在Matlab中,我们可以使用DBSCAN函数来实现DBSCAN聚类算法。

该函数需要输入样本数据矩阵、密度阈值和邻近距离等参数,然后返回每个样本点所属的簇标签。

二、分类算法的实现1. 决策树分类算法决策树是一种基于判断树结构的分类算法,它通过一系列的决策节点将样本逐步分类到不同的叶节点中。

在Matlab中,我们可以使用fitctree函数来建立决策树分类模型。

该函数需要输入训练数据矩阵和对应的类别标签,然后返回一个可以用于预测的决策树模型。

2. 支持向量机分类算法支持向量机是一种基于间隔最大化的分类算法,它通过在特征空间中找到一个最优超平面来进行分类。

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码(实用版)目录1.引言2.加权聚类系数和加权平均路径长度的定义和意义3.Matlab 代码实现4.结论正文一、引言在网络科学中,聚类系数和平均路径长度是两个重要的参数,用于描述网络的结构特性。

加权聚类系数和加权平均路径长度是在此基础上,对这两个参数进行加权处理,使得分析结果更加精确。

本文将介绍如何使用Matlab 代码实现加权聚类系数和加权平均路径长度的计算。

二、加权聚类系数和加权平均路径长度的定义和意义1.加权聚类系数加权聚类系数是用来衡量网络中节点之间联系紧密程度的参数。

其计算公式为:加权聚类系数 = (∑(权重^2)) / (∑(权重))其中,权重代表连接两个节点的边的权重。

2.加权平均路径长度加权平均路径长度是用来衡量网络中节点之间平均距离的参数。

其计算公式为:加权平均路径长度 = ∑(路径长度 * 权重) / ∑(权重)其中,路径长度代表从源节点到目标节点经过的边的权重之和,权重代表连接两个节点的边的权重。

三、Matlab 代码实现假设我们有一个邻接矩阵表示的网络,邻接矩阵如下:```A = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0];```我们可以使用以下 Matlab 代码实现加权聚类系数和加权平均路径长度的计算:```matlab% 邻接矩阵A = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0];% 计算加权聚类系数weight = A; % 假设权重与邻接矩阵相同clustering_coefficient = sum(weight.^2) / sum(weight);% 计算加权平均路径长度path_length = sum(sum(weight, 2) * weight) / sum(weight);```四、结论通过 Matlab 代码,我们可以方便地实现加权聚类系数和加权平均路径长度的计算。

matlab kmeans聚类算法代码

matlab kmeans聚类算法代码

一、引言在机器学习和数据分析中,聚类是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。

而k均值(k-means)聚类算法作为一种经典的聚类方法,被广泛应用于各种领域的数据分析和模式识别中。

本文将介绍matlab中k均值聚类算法的实现和代码编写。

二、k均值(k-means)聚类算法简介k均值聚类算法是一种基于距离的聚类算法,它通过迭代的方式将数据集划分为k个簇,每个簇内的数据点与该簇的中心点的距离之和最小。

其基本思想是通过不断调整簇的中心点,使得簇内的数据点与中心点的距离最小化,从而实现数据的聚类分布。

三、matlab实现k均值聚类算法步骤在matlab中,实现k均值聚类算法的步骤如下:1. 初始化k个簇的中心点,可以随机选择数据集中的k个点作为初始中心点。

2. 根据每个数据点与各个簇中心点的距离,将数据点分配给距离最近的簇。

3. 根据每个簇的数据点重新计算该簇的中心点。

4. 重复步骤2和步骤3,直到簇的中心点不再发生变化或者达到预定的迭代次数。

在matlab中,可以通过以下代码实现k均值聚类算法:```matlab设置参数k = 3; 设置簇的个数max_iter = 100; 最大迭代次数初始化k个簇的中心点centroids = datasample(data, k, 'Replace', false);for iter = 1:max_iterStep 1: 计算每个数据点与簇中心点的距离distances = pdist2(data, centroids);Step 2: 分配数据点给距离最近的簇[~, cluster_idx] = min(distances, [], 2);Step 3: 重新计算每个簇的中心点for i = 1:kcentroids(i, :) = mean(data(cluster_idx == i, :)); endend得到最终的聚类结果cluster_result = cluster_idx;```四、代码解释上述代码实现了k均值聚类算法的基本步骤,其中包括了参数设置、簇中心点的初始化、迭代过程中的数据点分配和中心点更新。

使用Matlab进行模糊聚类分析

使用Matlab进行模糊聚类分析

使用Matlab进行模糊聚类分析概述模糊聚类是一种非常有用的数据分析方法,它可以帮助我们在数据集中找到隐藏的模式和结构。

在本文中,我们将介绍如何使用Matlab进行模糊聚类分析,以及该方法的一些应用和局限性。

引言聚类分析是一种数据挖掘技术,其目的是将数据集中相似的数据点划分为不同的群组或簇。

而模糊聚类则是一种非常强大的聚类方法,它允许数据点属于不同的群组,以及具有不同的隶属度。

因此,模糊聚类可以更好地处理一些模糊性或不确定性的情况。

Matlab中的模糊聚类分析工具Matlab是一种功能强大的数值计算和数据分析软件,它提供了一些内置的模糊聚类分析工具,可以帮助我们进行模糊聚类分析。

其中最常用的是fcm函数(fuzzy c-means clustering)。

fcm函数是基于fuzzy c-means算法的,它使用隶属度矩阵来度量数据点与不同类之间的相似性。

该函数需要指定聚类的数量和迭代次数,然后根据数据点与聚类中心之间的距离来计算隶属度矩阵,并不断迭代更新聚类中心和隶属度矩阵,直到收敛为止。

例如,假设我们有一个包含N个数据点的数据集X,每个数据点包含M个特征。

我们可以使用fcm函数对该数据集进行模糊聚类分析,首先将数据集归一化,并指定聚类的数量(如3个聚类),迭代次数(如100次),并设置模糊指数(如2)。

然后,我们可以使用聚类中心来获得每个数据点的隶属度,并根据隶属度矩阵来进行进一步的数据分析或可视化。

应用实例模糊聚类分析在实际中有很多应用,下面我们将介绍其中两个常见的应用实例。

1. 图像分割图像分割是一种将图像的像素点划分为不同区域或对象的过程。

模糊聚类分析可以在图像分割中发挥重要作用,因为它可以通过考虑像素点与不同区域之间的隶属度来更好地处理图像的模糊性和纹理。

通过使用Matlab中的模糊聚类分析工具,我们可以将一张图像分割为不同的区域,并进一步进行对象识别或图像处理。

2. 数据分类在数据挖掘和机器学习中,数据分类是一个非常重要的任务,其目的是将数据点划分到不同的类别中。

Matlab中的数据聚类和分类方法

Matlab中的数据聚类和分类方法

Matlab中的数据聚类和分类方法数据聚类和分类是数据分析和机器学习领域的重要技术,能够帮助我们理解数据中的隐藏模式和规律。

在Matlab中,有许多强大的工具和函数可以用来实现数据聚类和分类的任务。

本文将介绍一些常用的方法和技巧,并展示如何在Matlab 中应用它们。

一、数据聚类方法数据聚类是将相似的数据点分组的过程,目标是让同一类别的数据点尽可能地靠在一起,并保持不同类别之间的距离较远。

Matlab中的数据聚类方法包括K均值聚类、层次聚类和高斯混合模型聚类等。

1. K均值聚类K均值聚类是最常用的聚类算法之一,它将数据点划分为K个不同的簇。

在Matlab中,可以使用kmeans函数来实现K均值聚类。

该函数需要指定数据矩阵和簇的数量,返回每个数据点所属的簇标签。

示例代码:```matlabdata = [1, 2; 2, 1; 3, 4; 4, 5; 5, 5];k = 2;[idx, centroids] = kmeans(data, k);```2. 层次聚类层次聚类是一种自底向上的聚类方法,将数据点逐步分组形成一个树状结构。

在Matlab中,可以使用linkage函数进行层次聚类。

该函数需要指定数据矩阵和距离度量方法,返回聚类结果和聚类树。

示例代码:```matlabdata = [1, 2; 2, 1; 3, 4; 4, 5; 5, 5];method = 'single';Z = linkage(data, method);```3. 高斯混合模型聚类高斯混合模型聚类是一种假设数据点服从多个高斯分布的聚类方法。

在Matlab 中,可以使用fitgmdist函数进行高斯混合模型聚类。

该函数需要指定数据矩阵和高斯分布数量,返回拟合的高斯混合模型。

示例代码:```matlabdata = [1, 2; 2, 1; 3, 4; 4, 5; 5, 5];k = 2;gmdist = fitgmdist(data, k);```二、数据分类方法数据分类是通过已知类别的样本训练模型,并将未知样本分到相应的类别中。

matlab中cluster用法

matlab中cluster用法

matlab中cluster用法随着数据量不断增加,数据分析和处理成为了许多行业的重要工作。

聚类是其中一种重要的数据分析方法,其通过分组相似的样本来揭示数据的结构和规律。

在matlab中,cluster是一个常用的聚类函数,本文将深入介绍其使用方法。

一、导入数据在使用cluster之前,我们需要先将数据导入matlab。

可以使用load命令导入由tab或space分割的文本格式数据,也可以使用xlsread命令导入Excel表格数据。

如有自定义数据格式,可以使用fopen和fscanf函数读取。

读取数据后,建议使用unique函数去重,剔除相同的数据。

二、数据预处理聚类分析的结果往往受到数据的影响,因此在对数据进行聚类之前,需要对数据进行合理的预处理。

常用的预处理方法包括:1、中心化:将所有数据减去其平均值。

这将使得数据的均值为0。

2、标准化:将数据除以其标准差,这将使得数据的标准差为1。

3、归一化:将数据缩放到[0,1]区间内。

可以使用一个简单的公式实现:$$ \frac{x-min(x)}{max(x)-min(x)} $$其中,x为原始数据,min和max分别为x的最小值和最大值。

三、聚类在完成数据预处理后,可以使用cluster函数对数据进行聚类。

cluster函数的基本语法如下:idx = cluster(linkage(X, method), 'maxclust', k)其中,X为样本的特征矩阵,linkage为连接函数,method为连接方法,'maxclust'为将数据分为k个簇,idx为每个样本所属的簇的编号。

常用的连接函数有:single(最小值),complete(最大值),average(平均值)和ward(方差)等。

连接方法表示如何计算样本间的“距离”,不同的方法会影响聚类结果。

四、聚类结果可视化对聚类结果进行可视化有助于更好地理解数据结构。

matlab聚类分析

matlab聚类分析

说明:如果是要用matlab做kmeans聚类分析,直接使用函数kmeans即可。

使用方法:kmeans(输入矩阵,分类个数k)。

转载一:MATLAB提供了两种方法进行聚类分析:1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,一般比较简单。

【clusterdata函数:调用格式:T=clusterdata(X,cutoff)等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 】2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.(2)用linkage函数来产生聚类树【linkage函数:调用格式:Z=linkage(Y,’method’)说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;‘average’:未加权平均距离法;’weighted’:加权平均法‘centroid’:质心距离法;‘median’:加权质心距离法;‘ward’:内平方距离法(最小方差算法)】返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。

用matlab做聚类分析

用matlab做聚类分析

用matlab做聚类分析MATLAB提供了两种方法进行聚类分析:一、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;二、步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenet函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,即Clusterdata函数调用了pdist、linkage和cluster,用来由原始样本数据矩阵X创建系统聚类,一般比较简单。

clusterdata函数的调用格式:T=clusterdata(X,cutoff)输出参数T是一个包含n个元素的列向量,其元素为相应观测所属类的类序号。

输入 的矩阵,矩阵的每一行对应一个观测(样品),每一列对应一个变量。

Cutoff 参数X是n p为阈值。

(1)当0<cutoff<2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,’cutoff’,cutoff) ;(‘cutoff’指定不一致系数或距离的阈值,参数值为正实数)(2)Cutoff>>2时,T=clusterdata(X,cutoff) 等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z, ‘maxclust’,cutoff) ;(‘maxclust’指定最大类数,参数值为正整数)2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集‘seuclidean’:metirc取值为:’euclidean’:欧氏距离(默认)标准化欧氏距离;‘mahalanobis’:马氏距离;闵科夫斯基距离:‘ minkowski’;绝对值距离:‘ cityblock’…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

matlab做聚类分析

matlab做聚类分析

matlab做聚类分析Matlab提供了两种方法进行聚类分析。

一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。

1.Matlab中相关函数介绍1.1 pdist函数调用格式:Y=pdist(X,’metric’)说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。

’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。

metric’取值如下:‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;‘minkowski’:明可夫斯基距离;‘cosine’:‘correlation’:‘hamming’:‘jaccard’:‘chebychev’:Chebychev距离。

1.2 squareform函数调用格式:Z=squareform(Y,..)说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。

1.3 linkage函数调用格式:Z=linkage(Y,’method’)说明:用‘method’参数指定的算法计算系统聚类树。

Y:pdist函数返回的距离向量;method:可取值如下:‘single’:最短距离法(默认);‘complete’:最长距离法;‘average’:未加权平均距离法;‘weighted’:加权平均法;‘centroid’:质心距离法;‘median’:加权质心距离法;‘ward’:内平方距离法(最小方差算法)返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法

kmeans函数:输入为类别数量k和数据矩阵A;输出为聚类结果A,和迭代次数,并将聚类结果数据以excel形式保存在工作路径下function km(k,A)%函数名里不要出现“-”warning off[n,p]=size(A);%输入数据有n个样本,p个属性cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性%A(:,p+1)=100;A(:,p+1)=0;for i=1:k%cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心m=i*floor(n/k)-floor(rand(1,1)*(n/k))cid(i,:)=A(m,:);cid;endAsum=0;Csum2=NaN;flags=1;times=1;while flagsflags=0;times=times+1;%计算每个向量到聚类中心的欧氏距离for i=1:nfor j=1:kdist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离end%A(i,p+1)=min(dist(i,:));%与中心的最小距离[x,y]=find(dist(i,:)==min(dist(i,:)));[c,d]=size(find(y==A(i,p+1)));if c==0 %说明聚类中心变了flags=flags+1;A(i,p+1)=y(1,1);elsecontinue;endendiflagsfor j=1:kAsum=0;[r,c]=find(A(:,p+1)==j);cid(j,:)=mean(A(r,:),1);for m=1:length(r)Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); endCsum(1,j)=Asum;endsum(Csum(1,:))%if sum(Csum(1,:))>Csum2% break;%endCsum2=sum(Csum(1,:));Csum;cid; %得到新的聚类中心endtimesdisplay('A矩阵,最后一列是所属类别');Afor j=1:k[a,b]=size(find(A(:,p+1)==j));numK(j)=a;endnumKtimesxlswrite('',A); %把矩阵A写到excel文件中,保存在工作路径下display('数据已保存为excel格式');。

模糊c均值聚类FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MATLAB代码写于下,也许有的同学会用得着:m文件1/7:function[U,P,Dit,Cluter_Re,Obj_Fcn,iter]=fuzzycm(Data,C,plot flag,M,epm)%模糊C均值聚类FCM:从随机初始化划分矩阵开始迭代%[U,P,Dit,Cluter_Re,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M, epm)%输入:%Data:N某S型矩阵,聚类的原始数据,即一组有限的观测样本集,%Data的每一行为一个观测样本的特征矢量,S为特征矢量%的维数,N为样本点的个数%C:聚类数,1%plotflag:聚类结果2D/3D绘图标记,0表示不绘图,为缺省值%M:加权指数,缺省值为2%epm:FCM算法的迭代停止阈值,缺省值为1.0e-6%输出:%U:C某N型矩阵,FCM的划分矩阵%P:C某S型矩阵,FCM的聚类中心,每一行对应一个聚类原型%Dit:C 某N型矩阵,FCM各聚类中心到各样本点的距离,聚类中%心i到样本点j的距离为Dit(i,j)%Cluter_Re:聚类结果,共C行,每一行对应一类%Obj_Fcn:目标函数值%iter:FCM算法迭代次数%Seealo:fuzzyditma某rowffcmplotifnargin<5epm=1.0e-6;endifnargin<4M=2;endifnargin<3plotflag=0;end[N,S]=ize(Data);m=2/(M-1);iter=0;Dit(C,N)=0;U(C,N)=0;P(C,S)=0;%随机初始化划分矩阵U0=rand(C,N);U0=U0./(one(C,1)某um(U0));%FCM的迭代算法whiletrue%迭代计数器iter=iter+1;%计算或更新聚类中心PUm=U0.^M;P=Um某Data./(one(S,1)某um(Um'))';%更新划分矩阵Ufori=1:C forj=1:NDit(i,j)=fuzzydit(P(i,:),Data(j,:));endendU=1./(Dit.^m.某(one(C,1)某um(Dit.^(-m))));%目标函数值:类内加权平方误差和ifnargout>4|plotflagObj_Fcn(iter)=um(um(Um.某Dit.^2));end%FCM算法迭代停止条件ifnorm(U-U0,Inf)U0=U;end%聚类结果ifnargout>3re=ma某rowf(U);forc=1:Cv=find(re==c);Cluter_Re(c,1:length(v))=v;endend%绘图ifplotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function[U,P,Dit,Cluter_Re,Obj_Fcn,iter]=fuzzycm2(Data,P0,pl otflag,M,epm)%模糊C均值聚类FCM:从指定初始聚类中心开始迭代%[U,P,Dit,Cluter_Re,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag, M,epm)%输入:Data,plotflag,M,epm:见fuzzycm.m%P0:初始聚类中心%输出:U,P,Dit,Cluter_Re,Obj_Fcn,iter:见fuzzycm.m%Seealo:fuzzycmifnargin<5epm=1.0e-6;endifnargin<4M=2;endifnargin<3plotflag=0;end[N,S]=ize(Data);m=2/(M-1);iter=0;C=ize(P0,1);Dit(C,N)=0;U(C,N)=0;P(C,S)=0;%FCM的迭代算法whiletrue%迭代计数器iter=iter+1;%计算或更新划分矩阵Ufori=1:Cforj=1:NDit(i,j)=fuzzydit(P0(i,:),Data(j,:));endendU=1./(Dit.^m.某(one(C,1)某um(Dit.^(-m))));%更新聚类中心PUm=U.^M;P=Um某Data./(one(S,1)某um(Um'))';%目标函数值:类内加权平方误差和ifnargout>4|plotflagObj_Fcn(iter)=um(um(Um.某Dit.^2));end%FCM算法迭代停止条件ifnorm(P-P0,Inf)%聚类结果ifnargout>3re=ma某rowf(U);forc=1:Cv=find(re==c);Cluter_Re(c,1:length(v))=v;endend%绘图ifplotflagfcmplot(Data,U,P,Obj_Fcn);endm文件3/7:functionfcmplot(Data,U,P,Obj_Fcn)%FCM结果绘图函数%Seealo:fuzzycmma某rowfellipe[C,S]=ize(P);re=ma某rowf(U);tr='po某某+d^v><.h>figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontize',8)%2D绘图ifS==2 figure(2),plot(P(:,1),P(:,2),'r'),holdonfori=1:Cv=Data(find(re==i),:);plot(v(:,1),v(:,2),tr(rem(i,12)+1))ellipe(ma某(v(:,1))-min(v(:,1)),...ma某(v(:,2))-min(v(:,2)),...[ma某(v(:,1))+min(v(:,1)),...ma某(v(:,2))+min(v(:,2))]/2,'r:')endgridon,title('2D聚类结果图','fontize',8),holdoffend%3D绘图ifS>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'r'),holdonfori=1:Cv=Data(find(re==i),:);plot3(v(:,1),v(:,2),v(:,3),tr(rem(i,12)+1))ellipe(ma某(v(:,1))-min(v(:,1)),...ma某(v(:,2))-min(v(:,2)),...[ma某(v(:,1))+min(v(:,1)),...ma某(v(:,2))+min(v(:,2))]/2,...'r:',(ma某(v(:,3))+min(v(:,3)))/2)endgridon,title('3D聚类结果图','fontize',8),holdoffendm文件4/7:functionD=fuzzydit(A,B)%模糊聚类分析:样本间的距离%D=fuzzydit(A,B)D=norm(A-B);m文件5/7:functionmr=ma某rowf(U,c)%求矩阵U每列第c大元素所在行,c的缺省值为1%调用格式:mr=ma 某rowf(U,c)%Seealo:addrifnargin<2c=1;endN=ize(U,2);mr(1,N)=0;forj=1:Naj=addr(U(:,j),'decend');mr(j)=aj(c);endm文件6/7:functionellipe(a,b,center,tyle,c_3d)%绘制一个椭圆%调用:ellipe(a,b,center,tyle,c_3d)%输入:%a:椭圆的轴长(平行于某轴)%b:椭圆的轴长(平行于y轴)%center:椭圆的中心[某0,y0],缺省值为[0,0]%tyle:绘制的线型和颜色,缺省值为实线蓝色%c_3d:椭圆的中心在3D空间中的z轴坐标,可缺省ifnargin<4tyle='b';endifnargin<3|iempty(center)center=[0,0];endt=1:360;某=a/2某cod(t)+center(1);y=b/2某ind(t)+center(2);ifnargin>4 plot3(某,y,one(1,360)某c_3d,tyle)eleplot(某,y,tyle)endm文件7/7:functionf=addr(a,trort)%返回向量升序或降序排列后各分量在原始向量中的索引%函数调用:f=addr(a,trort)%trort:'acend'or'decend'%defaulti'acend'%--------e某ample--------%addr([4512])returnan:%[3412]。

在Matlab中实现模糊聚类和模糊决策的方法

在Matlab中实现模糊聚类和模糊决策的方法

在Matlab中实现模糊聚类和模糊决策的方法引言:模糊聚类和模糊决策作为模糊理论的重要应用分支,已经在各个领域得到了广泛的研究与应用。

在实际问题中,常常会面临到数据具有模糊性、不确定性等挑战。

而模糊聚类和模糊决策方法能够有效地处理这些问题,为解决实际问题提供了有力的工具。

本文将介绍在Matlab中实现模糊聚类和模糊决策的方法,详细介绍模糊聚类和模糊决策的基本原理和常用方法,并以实例进行说明。

一、模糊聚类方法的基本原理模糊聚类方法是在传统的聚类算法的基础上引入了模糊理论的思想,将每个样本与各个聚类中心之间的关系表示为隶属度,从而实现对模糊数据的聚类。

在Matlab中,常用的模糊聚类方法有模糊C均值聚类(FCM)和模糊谱聚类(FSC)等。

(1)模糊C均值聚类(FCM):模糊C均值聚类是模糊聚类方法中最常用的一种方法。

其基本原理是通过迭代的方式,更新样本的隶属度和聚类中心,直至收敛。

在Matlab中,可以使用fcm函数来实现模糊C均值聚类。

下面是一个示例代码:```matlabdata = load('data.mat'); % 导入数据[U, centroids] = fcm(data, k); % 调用fcm函数进行聚类,k是聚类的类别数```(2)模糊谱聚类(FSC):模糊谱聚类是一种基于图论的聚类方法,它通过建立样本的相似度矩阵,然后通过对相似度矩阵进行模糊化处理,进而得到聚类结果。

在Matlab中,可以使用fuzzy_spectral_clustering函数来实现模糊谱聚类。

下面是一个示例代码:```matlabdata = load('data.mat'); % 导入数据[U, V] = fuzzy_spectral_clustering(data, k); % 调用fuzzy_spectral_clustering函数进行聚类,k是聚类的类别数```二、模糊决策方法的基本原理模糊决策方法是一种基于模糊理论的决策方法,它通过将问题中的模糊性和不确定性转化为数学上的隶属度,从而实现对决策问题的处理。

Matlab中的聚类分析工具简介

Matlab中的聚类分析工具简介

Matlab中的聚类分析工具简介聚类分析作为一种常用的数据分析方法,在不同领域和应用中发挥着重要的作用。

而Matlab作为一种支持数值计算和数据可视化的软件,为用户提供了方便且强大的聚类分析工具。

本文将介绍Matlab中几个常用的聚类分析工具及其使用方法。

一、K-means聚类分析工具K-means是一种常见的划分聚类算法,它的基本思想是将n个样本划分为K个不相交的簇,以使得簇内的样本之间的相似度最大化,而簇间的相似度最小化。

在Matlab中,我们可以使用`kmeans`函数来实现K-means聚类分析。

使用`kmeans`函数时,我们需要提供待聚类的样本数据矩阵以及聚类的簇数K作为输入参数。

函数将返回每个样本所属的簇的索引,以及簇的中心点坐标。

我们可以根据簇的索引和中心点坐标进行进一步的分析和可视化。

二、层次聚类分析工具层次聚类是一种基于距离的聚类算法,其基本思想是根据样本之间的相似性将它们逐步地合并为更大的簇,从而形成一个层次化的聚类结果。

在Matlab中,我们可以使用`linkage`函数和`cluster`函数来实现层次聚类分析。

首先,我们可以使用`linkage`函数计算样本之间的距离,并得到一个距离矩阵。

然后,我们可以使用`cluster`函数基于距离矩阵进行聚类,指定簇数或者距离阈值。

该函数将返回每个样本所属的簇的索引。

通过层次聚类分析工具,我们可以获得一个层次化的聚类结果,以及聚类过程中形成的类别树图。

这些结果可以帮助我们更好地理解数据的相似性和结构。

三、密度聚类分析工具与划分和层次聚类不同,密度聚类不依赖于簇的形状和个数的先验知识,而是通过找寻高密度区域来划分数据。

在Matlab中,我们可以使用`dbscan`函数来实现基于密度的聚类分析。

`dbscan`函数需要提供待聚类的样本数据矩阵、邻域半径和邻域密度阈值作为输入参数。

函数将返回每个样本所属的簇的索引,以及噪音点的索引。

密度聚类可以有效地处理数据中的噪音和离群点,并且适用于各种形状和密度不均的数据集。

模糊聚类分析及matlab程序实现

模糊聚类分析及matlab程序实现

模糊聚类分析及matlab 程序实现采用模糊数学语言对按一定的要求进行描述和分类的数学方法称为模糊聚类分析。

聚类分析主要经过标定和聚类两步骤。

【1】 1 标定(建立模糊相似矩阵)城市居民食品零售价格,第t 时刻第i 种食品的零售价记为),(t i x 。

相似矩阵R 的构建方法:NTV 法设时间序列),(j i A 表示食品i 在时间t 的价格,其中i=1,2…42;t=1,2…39。

∑∑==--=mk jk ik m k jk ik x xx x j i R 11),max (1),((其中i,j,k=1,2…42,m=39) 42*42),(j i R R = 2 聚类2.1 计算R 的传递闭包:对模糊相似矩阵R,依次用平方法计算,2R ,4R ,…,t2R ,…,当第一次出现k k k R R R =*时,则称k R 为传递闭包。

【1】2.2 开始聚类:【2】 (1)令T={1,2,3…42},取)1(xi T ∈ ,令X 、Q 为空集;(2)令0=j ;(3)若λ>=),(j xi R 且X x j ∉,则令}{j X X ⋃=,}{j Q Q ⋃=;(4)1+=j j ;(5)若n j <,返回(1);(6)若Q 为空集,怎输出聚类x,X -T T =;(7))1(xi Q =,}{xi Q Q -=,返回(2)。

设置不同的置信水平λ值,就可以得到不同的分类。

Matlab 程序实现:A=data;[N M] = size(A);for i = 1:Nfor j = 1:NR(i,j)=abs(1-sum(abs(A(i,:)-A(j,:)))/sum(max([A(i,:);A(j,:)])));endendfor j=1:42for i=1:42y(i,j)=0;for k=1:42mn(k)=min(R(i,k),R(k,j));endy(i,j)=max(mn);endendnumda=[1 0.9 0.95 0.85 0.8 0.75 0.55 0.7 0.655 0.65 0.6 0.55 0.5 0.45 0.454 0.4 0.45 0.3 0.35 0.255 0.25 0.2 0.15 0.1];for i=1:42TT(i)=i;endfor i=1:length(numda)disp ('当分类系数是');disp(numda(i));a=numda(i);T=TT;disp ('分类为');while 1if ~isempty(T)xi=T(1);endX=[];Q=[];while 1for j=1:42if (y(xi,j)>=a)&isempty(intersect(X,j))X=union(X,j);Q(length(Q)+1)=j;endendif isempty(Q)disp(X);breakelsexi=Q(1);Q(1)=[];endendT=setdiff(T,X); if isempty(T) breakendendend。

聚类分析代码-matlab程序-可运行

聚类分析代码-matlab程序-可运行
for i =1:3
clust = find(cidx3 == i);
plot(X(clust,1),X(clust,2),ptsymb{i},'MarkerSize',3,'MarkerFace',MarkFace{i},'MarkerEdgeColor','black');
plot(cmeans3(i,1),cmeans3(i,2),ptsymb{i},'MarkerSize',10,'MarkerFace',MarkFace{i});
[~,order] = sort(P(:,1));
plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-',1:size(X,1),P(order,3),'y-');
legend({'Cluster 1 Score' 'Cluster 2 Score' 'Cluster 3 Score'},'location','NW');
cluster3 = (cidx3 == 2);
% 通过观察,K均值方法的第二类是gm的第三类
cluster2 = (cidx3 == 3);
% 计算分类概率
P = posterior(gm,X);
P8 = figure;clf
plot3(X(cluster1,1),X(cluster1,2),P(cluster1,1),'r.')
end
hold off

abc kmeans算法matlab代码

abc kmeans算法matlab代码

abc kmeans算法matlab代码以下是一个简单的 MATLAB 代码实现 ABC KMeans 算法。

该算法是一种无监督学习算法,用于对数据集进行聚类。

```matlab% 加载数据集data = load("data.mat");% 设定聚类数为 kk = 3;% 随机选择 k 个样本作为初始聚类中心centers = zeros(size(data, 1), k);for i = 1:kcenters(i,:) = data(randperm(size(data, 1), k), :);end% 计算每个数据的聚类编号labels = find(clustering(data, centers) == i);% 更新聚类中心for i = 1:size(labels, 1)new_center = mean(centers(labels(i),:), 2);centers(labels(i),:) = new_center;end% 判断聚类效果coherence = mean(diff(centers));fprintf("聚类效果:%.2f", coherence);```代码中,首先加载数据集`data`。

然后,设定聚类数为`k`,并随机选择`k`个样本作为初始聚类中心。

接下来,计算每个数据的聚类编号,并更新聚类中心。

最后,计算聚类效果并输出结果。

该代码实现了 ABC KMeans 算法的基本思想,但在某些情况下可能会导致聚类效果不理想。

因此,在实际应用中,需要根据具体情况进行调整和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档