理科数学2010-2019高考真题分类训练排列与组合
(2010-2019)高考数学真题分类汇编专题07数列理(含解析)
专题07数列历年考题细目表历年高考真题汇编1.【2019年新课标1理科09】记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n n2﹣2n【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n﹣5,,故选:A.2.【2018年新课标1理科04】记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴a1+a1+d+4a1d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.3.【2017年新课标1理科04】记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.4.【2017年新课标1理科12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n2n+1﹣1,(n∈N+),则a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有2=3,不满足N >100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有5=440,满足N>100,∴该款软件的激活码440.故选:A.5.【2016年新课标1理科03】已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100 B.99 C.98 D.97【解答】解:∵等差数列{a n}前9项的和为27,S99a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.6.【2013年新课标1理科07】设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•,即有0,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+10,解得m=5.故选:C.7.【2013年新课标1理科12】设△A n B n∁n的三边长分别为a n,b n,c n,△A n B n∁n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,a n,∴b n+1+c n+1﹣2a n(b n+c n﹣2a n),∵b1+c1=2a1,∴b1+c1﹣2a1=0,∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、c n为焦点的椭圆上,又由题意,b n+1﹣c n+1,∴a1﹣b n,∴b n+1﹣a1,∴b n﹣a1,∴,c n=2a1﹣b n,∴[][][]单调递增(可证当n=1时0)故选:B.8.【2012年新课标1理科05】已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.9.【2019年新课标1理科14】记S n为等比数列{a n}的前n项和.若a1,a42=a6,则S5=.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5,故答案为:10.【2018年新课标1理科14】记S n为数列{a n}的前n项和.若S n =2a n+1,则S6=.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n﹣1=2a n﹣1+1,②,由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S663,故答案为:﹣6311.【2016年新课标1理科15】设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64 .【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•,当n=3或4时,表达式取得最大值:26=64.故答案为:64.12.【2013年新课标1理科14】若数列{a n}的前n项和为S n a n,则数列{a n}的通项公式是a n=.【解答】解:当n=1时,a1=S1,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣(),整理可得,即2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣113.【2012年新课标1理科16】数列{a n}满足a n+1+(﹣1)n a n=2n ﹣1,则{a n}的前60项和为.【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8)=183014.【2015年新课标1理科17】S n为数列{a n}的前n项和,已知a n >0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n,求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n(),∴数列{b n}的前n项和T n()().15.【2014年新课标1理科17】已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.也可以先考虑前3项成等差数列,得出λ,再进一步验证即可.16.【2011年新课标1理科17】等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2.由条件可知各项均为正数,故q.由2a1+3a2=1得2a1+3a1q=1,所以a1.故数列{a n}的通项式为a n.(Ⅱ)b n(1+2+…+n),故2()则2[(1)+()+…+()],所以数列{}的前n项和为.17.【2010年新课标1理科17】设数列满足a1=2,a n+1﹣a n=3•22n﹣1 (1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n ﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=32=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现。
2010-2019十年高考数学真题分类汇编专题08 数列 学生版解析版
22 243 3十年高考真题分类汇编(2010—2019)数学专题 08 数列一、选择题1.(2019·全国 1·理 T9)记 S n 为等差数列{a n }的前 n 项和.已知 S 4=0,a 5=5,则()A.a n =2n-5C.S n =2n 2-8nB.a n =3n-10D.S n =1n 2-2n2.(2019·浙江·T10)设 a,b∈R,数列{a n }满足 a 1=a,a n+1=a n +b,n∈N *,则()A.当 b=1时,a 10>10C.当 b=-2 时,a 10>10B.当 b=1时,a 10>10D.当 b=-4 时,a 10>103.(2018·全国 1·理 T4)记 S n 为等差数列{a n }的前 n 项和,若 3S 3=S 2+S 4,a 1=2,则 a 5=( )A.-12B.-10C.10D.124.(2018·浙江·T10)已知 a 1,a 2,a 3,a 4 成等比数列,且 a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若 a 1>1,则()A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 45.(2018·北京·理 T4 文 T5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 12√2.若第一个单音的频率为 f,则第八个单音的频率为()A. √2fB. √22f C. 12√25fD. 12√27f6.(2017·全国 1·理 T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动 .这款软件的激活码为下面数学问题的答案 :已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N:N>100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1107.(2017·全国 3·理 T9)等差数列{a n }的首项为 1,公差不为 0.若 a 2,a 3,a 6 成等比数列,则{a n }前 6 项的和为()A.-24B.-3C.3D.88.(2016·全国 1·理 T3)已知等差数列{a n }前 9 项的和为 27,a 10=8,则 a 100=()2B.192C.10D.122D.12D.n (n -1)3B.-13C.19D.-1432 2A.100B.99C.98D.979.(2015·浙江·理 T13)已知{a n }是等差数列,公差 d 不为零,前 n 项和是 S n ,若 a 3,a 4,a 8 成等比数列,则()A.a 1d>0,dS 4>0B.a 1d<0,dS 4<0C.a 1d>0,dS 4<0D.a 1d<0,dS 4>010.(2015·全国 2·文 T5)设 S n 是等差数列{a n }的前 n 项和,若 a 1+a 3+a 5=3,则 S 5=( )A.5B.7C.9D.1111.(2015·全国 1·文 T7)已知{a n }是公差为 1 的等差数列,S n 为{a n }的前 n 项和.若 S 8=4S 4,则 a 10= (A.1712.(2015·全国 2·理 T4)已知等比数列{a n }满足 a 1=3,a 1+a 3+a 5=21,则 a 3+a 5+a 7=()A.21B.42C.63D.8413.(2015·全国 2·文 T9)已知等比数列{a n }满足 a 1=1,a 3a 5=4(a 4-1),则 a 2=()A.2B.1C.18 14.(2014·大纲全国·文 T8)设等比数列{a n }的前 n 项和为 S n .若 S 2=3,S 4=15,则 S 6=()A.31B.32C.63D.6415.(2014·全国 2·文 T5)等差数列{a n }的公差为 2,若 a 2,a 4,a 8 成等比数列,则{a n }的前 n 项和 S n =(A.n(n+1)B.n(n-1)C.n (n+1)216.(2013·全国 2·理 T3)等比数列{a n }的前 n 项和为 S n .已知 S 3=a 2+10a 1,a 5=9,则 a 1=()A.1917.(2013·全国 1·文 T6)设首项为 1,公比为2的等比数列{a n }的前 n 项和为 S n ,则()A.S n =2a n -1B.S n =3a n -2C.S n =4-3a nD.S n =3-2a n18.(2013·全国 1·理 T12)设 A △n B n C n 的三边长分别为 a n ,b n ,c △n , A n B n C n 的面积为 S n ,n=1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=c n +a n ,c n+1=b n +a n ,则()A.{S n }为递减数列B.{S n }为递增数列C.{S 2n-1}为递增数列,{S 2n }为递减数列))2.(2019·全国3·理 T14)记 S n 为等差数列{a n }的前 n 项和.若 a 1≠0,a 2=3a 1,则S 10= .43 41 S4 4D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国 1·理 T7)设等差数列{a n }的前 n 项和为 S n ,若 S m-1=-2,S m =0,S m+1=3,则 m= ( )A.3B.4C.5D.620.(2012·全国·理 T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则 a 1+a 10=()A.7B.5C.-5D.-721.(2012·全国·文 T12)数列{a n }满足 a n+1+(-1)n a n =2n-1,则{a n }的前 60 项和为()A.3 690B.3 660C.1 845D.1 830二、填空题1.(2019·全国 3·文 T14)记 S n 为等差数列{a n }的前 n 项和.若 a 3=5,a 7=13,则 S 10=. S 53.(2019·江苏·T8)已知数列{a n }(n∈N *)是等差数列,S n 是其前 n 项和.若 a 2a 5+a 8=0,S 9=27,则 S 8 的值是. 4.(2019·北京·理 T10)设等差数列{a n }的前 n 项和为 S n .若 a 2=-3,S 5=-10,则 a 5= ,S n 的最小值为.5.(2019·全国 1·文 T14)记 S n 为等比数列{a n }的前 n 项和.若 a 1=1,S 3=3,则 S 4=.6.(2019·全国 1·理 T14)记 S n 为等比数列{a n }的前 n 项和.若 a 1=1 , a 2=a 6,则 S 5=________.7.(2018·全国 1·理 T14)记 S n 为数列{a n }的前 n 项和.若 S n =2a n +1,则 S 6=.8.(2018·北京·理 T9)设{a n }是等差数列,且 a 1=3,a 2+a 5=36,则{a n }的通项公式为.9.(2018·上海·T10)设等比数列{a n }的通项公式为 a n =q n-1(n∈N *),前 n 项和为 S n ,若 lim a S n = 2,则 q=.n →∞ n+110.(2018·江苏·T14)已知集合 A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将 A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记 S n 为数列{a n }的前 n 项和,则使得 S n >12a n+1 成立的 n 的最小值为 .n11.(2017·全国 2·理 T15)等差数列{a n }的前 n 项和为 S n ,a 3=3,S 4=10,则 ∑ 1 =____________.k=1 k 12.(2017·全国 3·理 T14)设等比数列{a n }满足 a 1+a 2=-1,a 1-a 3=-3,则 a 4=.13.(2017·江苏·理 T9 文 T9)等比数列{a n }的各项均为实数,其前 n 项和为 S n .已知 S 3=7,S 6=63,则 a 8=.14.(2016·浙江·理 T13 文 T13)设数列{a n }的前 n 项和为 S n ,若 S 2=4,a n+1=2S n +1,n∈N *,则 a 1=,S 5= .15.(2016·北京·理 T12)已知{a n }为等差数列,S n 为其前 n 项和.若 a 1=6,a 3+a 5=0,则 S 6= . 16.(2016·全国 1·理 T15)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为.17.(2015·全国 1·文 T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前 n 项和.若 S n =126,则 n=.18.(2015·湖南·理 T14)设 S n 为等比数列{a n }的前 n 项和,若 a 1=1,且 3S 1,2S 2,S 3 成等差数列,则 a n =.19.(2015·福建·文 T16)若 a,b 是函数 f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且 a,b,-2 这三个数可适a n =n+1(n∈N ).则数列{ }前 10 项的和为____________.*127.(2014·全国2·文 T16)数列{a n }满足 a n+1=,a 8=2,则 a 1=____________.13 3当排序后成等差数列,也可适当排序后成等比数列,则 p+q 的值等于.20.(2015·江苏·理 T11)设数列{a n }满足 a 1=1,且 a n+1-a n21.(2015·全国 2·理 T16)设 S n 是数列{a n }的前 n 项和,且 a 1=-1,a n+1=S n S n+1,则 S n =.22.(2015·广东·理 T10)在等差数列{a n }中,若 a 3+a 4+a 5+a 6+a 7=25,则 a 2+a 8=.23.(2015·陕西·文 T13)中位数为 1 010 的一组数构成等差数列,其末项为 2 015,则该数列的首项为 .24.(2014·江苏·理 T7)在各项均为正数的等比数列{a n }中,若 a 2=1,a 8=a 6+2a 4,则 a 6 的值是.25.(2014 · 广 东 · 文 T13) 等 比 数 列 {a n } 的 各 项 均 为 正 数 , 且a 1a 5=4, 则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=.26.(2014·安徽·理 T12)数列{a n }是等差数列,若 a 1+1,a 3+3,a 5+5 构成公比为 q 的等比数列,则 q=.1-a n28.(2014·北京·理 T12)若等差数列{a n }满足 a 7+a 8+a 9>0,a 7+a 10<0,则当 n=时,{a n }的前 n 项和最大.29.(2014·天津·理 T11)设{a n }是首项为 a 1,公差为-1 的等差数列,S n 为其前 n 项和.若 S 1,S 2,S 4 成等比数列, 则 a 1 的值为.30.(2013·全国 2·理 T16)等差数列{a n }的前 n 项和为 S n ,已知 S 10=0,S 15=25,则 nS n 的最小值为.31.(2013·辽宁·理 T14)已知等比数列{a n }是递增数列,S n 是{a n }的前 n 项和.若 a 1,a 3 是方程 x 2-5x+4=0 的两 个根,则 S 6=.32.(2013·全国 1·理 T14)若数列{a n }的前 n 项和 S n =2a n +1,则{a n }的通项公式是 a n =.33.(2012·全国·文 T14)等比数列{a n }的前 n 项和为 S n ,若 S 3+3S 2=0,则公比 q=.三、计算题1.(2019·全国 2·文 T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设 b n =log 2a n .求数列{b n }的前 n 项和.2.(2019·全国 2·理 T19)已知数列{a n }和{b n }满足 a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文 T18)设{a n }是等差数列,{b n }是等比数列,公比大于 0.已知 a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式;b k ,n = 2k ,(2)记 c n =√ a n**,n∈N ,证(2)已知数列{bn }(n∈N )满足:b 1=1,* 1 = 2 − 2 ,其中 S n 为数列{b n }的前 n 项和.b n ,n 为偶数,2(2)设数列{c n }满足 c n ={ 1,n 为奇数,求 a 1c 1+a 2c 2+…+a 2n c 2n (n∈N *).24.(2019·天津·理 T19)设{a n }是等差数列,{b n }是等比数列.已知 a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;1,2k < n < 2k1 ,(2)设数列{c n }满足 c 1=1,c n ={ 其中 k∈N *.①求数列{a 2n (c 2n -1)}的通项公式; 2n②求∑ a i c i (n∈N *).i=1 5.(2019 · 浙 江 · T 20) 设 等 差 数 列 {a n } 的 前 n 项 和 为 S n ,a 3=4,a 4=S 3. 数 列 {b n } 满 足 : 对 每 个 n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列.(1)求数列{a n },{b n }的通项公式;2b n6.(2019·江苏·T 20)定义首项为 1 且公比为正数的等比数列为“M - 数列”.(1)已知等比数列{a n }(n∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M - 数列”;S nb n b n1①求数列{b n }的通项公式;②设 m 为正整数.若存在“M - 数列”{c n }(n∈N *),对任意正整数 k,当 k≤m 时,都有 c k ≤b k ≤c k+1 成立,求 m 的 最大值.7.(2018·北京·文 T15)设{a n }是等差数列,且 a 1=ln 2,a 2+a 3=5ln 2.(1)求{a n }的通项公式; (2)求e a 1e a 2 +…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意 x∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为 1,公比为1的等比数列,b n =a n+1+1,n∈N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为 a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合 M={x|x=b i ,i=1,2,3,4},求 M 中元素的个数 m:(3)已知{a n }是公差为 d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在 b 2-b 1,b 3-b 2,…,b 201-b 200 中至少有 100 个为正数,求 d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为 a 1,公差为 d 的等差数列,{b n }是首项为 b 1,公比为 q 的等比数列.√ (k+1)(k+2)-2(n∈N *). a(1)设 a 1=0,b 1=1,q=2,若|a n -b n |≤b 1 对 n=1,2,3,4 均成立,求 d 的取值范围;(2)若 a 1=b 1>0,m∈N *,q∈(1, m 2],证明:存在 d∈R,使得|a n -b n |≤b 1 对 n=2,3,…,m+1 均成立,并求 d 的取值 范围(用 b 1,m,q 表示).10.(2018·天津·文 T18)设{a n }是等差数列,其前 n 项和为 S n (n∈N *);{b n }是等比数列,公比大于 0,其前 n 项 和为 T n (n∈N *).已知 b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求 S n 和 T n ;(2)若 S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数 n 的值.11.(2018·天津·理 T18)设{a n }是等比数列,公比大于 0,其前 n 项和为 S n (n∈N *),{b n }是等差数列.已知 a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前 n 项和为 T n (n∈N *), ①求 T n ;nk1②证明 ∑(T k +b k+2)b k 2n+2n+212.(2018·全国 2·理 T17 文 T17)记 S n 为等差数列{a n }的前 n 项和,已知 a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求 S n ,并求 S n 的最小值.13.(2018·全国 1·文 T17)已知数列{a n }满足 a 1=1,na n+1=2(n+1)a n .设 b n = n .(1)求 b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国 3·理 T17 文 T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记 S n 为{a n }的前 n 项和,若 S m =63,求 m.15.(2017·全国 1·文 T17)设 S n 为等比数列{a n }的前 n 项和,已知 S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求 S n ,并判断 S n+1,S n ,S n+2 是否成等差数列.16.(2017 · 全 国 2 · 文 T17) 已 知 等 差 数 列 {a n } 的 前 n 项 和 为 S n , 等 比 数 列 {b n } 的 前 n 项 和 为 T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若 a +b =5,求{b }的通项公式;(2){bn }为各项非零的等差数列,其前 n 项和为 S n .已知 S 2n+1=b n b n+1,求数列{b n }的前 n 项和 T n .(2)若 T 3=21,求 S 3.17.(2017·全国 3·文 T17)设数列{a n }满足 a 1+3a 2+…+(2n -1)a n =2n. (1)求{a n }的通项公式;(2)求数列{ a n }的前 n 项和.2n+118.(2017·天津·理 T18)已知{a n }为等差数列,前 n 项和为 S n (n∈N *),{b n }是首项为 2 的等比数列,且公比大 于 0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前 n 项和(n∈N *).19.(2017·山东·理 T19)已知{x n }是各项均为正数的等比数列,且 x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系 xOy 中,依次连接点 P 1(x 1,1),P 2(x 2,2)…P n+1(x n+1,n+1)得到折线 P 1P 2…P n+1,求由该 折线与直线 y=0,x=x 1,x=x n+1 所围成的区域的面积 T n .20.(2017·山东·文 T19)已知{a n }是各项均为正数的等比数列,且 a 1+a 2=6,a 1a 2=a 3.1)求数列{a n }的通项公式;a n21.(2017·天津·文 T18)已知{a n }为等差数列,前 n 项和为 S n (n∈N *),{b n }是首项为 2 的等比数列,且公比大于 0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b n }的前 n 项和(n∈N *).22.(2016·全国 2·理 T17)S n 为等差数列{a n }的前 n 项和,且 a 1=1,S 7=28.记 b n =[lg a n ],其中[x]表示不超过 x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求 b 1,b 11,b 101;(2)求数列{b n }的前 1 000 项和.(2)令 c n =(a n +1)(b n +2) ,求数列{c n }的前 n 项和 T n .(1)设 c n =b n+1 − b n 2,n∈N *,求证:数列{c n }是等差数列;(2)设 a 1=d,T n = ∑ (-1)k b k 2d 28.(2016·天津·文 T18)已知{a n }是等比数列,前 n 项和为 S n (n∈N *),且 1 − 133223.(2016·全国 2·文 T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设 b n =[a n ],求数列{b n }的前 10 项和,其中[x]表示不超过 x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文 T17)设数列{a n }的前 n 项和为 S n .已知 S 2=4,a n+1=2S n +1,n∈N *. (1)求通项公式 a n ;(2)求数列{|a n -n-2|}的前 n 项和.25.(2016·北京·文 T15)已知{a n }是等差数列,{b n }是等比数列,且 b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设 c n =a n +b n ,求数列{c n }的前 n 项和.26.(2016·山东·理 T18 文 T19)已知数列{a n }的前 n 项和 S n =3n 2+8n,{b n }是等差数列,且 a n =b n +b n+1. (1)求数列{b n }的通项公式;n+1n27.(2016·天津·理 T18)已知{a n }是各项均为正数的等差数列,公差为 d.对任意的 n∈N *,b n 是 a n 和 a n+1 的等比中项.22n n 2,n∈N *,求证: ∑ 1 k1 k1 Tk< 1 .2a 1 a 22 a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的 n∈N *,b n 是 log 2a n 和 log 2a n+1 的等差中项,求数列{(-1)n b 2n }的前 2n 项和.29.(2016·全国 1·文 T17)已知{a n }是公差为 3 的等差数列,数列{b n }满足 b 1=1,b 2=1,a n b n+1+b n+1=nb n .(1)求{a n }的通项公式;(2)求{b n }的前 n 项和.30.(2016·全国 3·文 T17)已知各项都为正数的数列{a n }满足 a 1=1, a 2n -(2a n+1-1)a n -2a n+1=0. (1)求 a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国 3·理 T17)已知数列{a n }的前 n 项和 S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若 S 5=31,求λ.(2)设 b n =n+1(2)设S n 为数列{a n }的前 n 项和,b n =,求数列{b n }的前 n 项和 T n .a(2)设 b n = 38.(2015·山东·文 T19)已知数列{a n }是首项为正数的等差数列,数列{ ,求数列{b n }的前 n 项和.,n∈N ,求数列{b n }的前 n 项和.*a n ·a n+1}的前 n 项和为 .n22 2 3132.(2015·北京·文 T16)已知等差数列{a n }满足 a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足 b 2=a 3,b 3=a 7.问:b 6 与数列{a n }的第几项相等?33.(2015·重庆·文 T16)已知等差数列{a n }满足 a 3=2,前 3 项和 S 3=9.(1)求{a n }的通项公式;(2)设等比数列{b n }满足 b 1=a 1,b 4=a 15,求{b n }的前 n 项和 T n . 34.(2015·福建·文 T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设 b n =2a n -2+n,求 b 1+b 2+b 3+…+b 10 的值.35.(2015·全国 1·理 T17)S n 为数列{a n }的前 n 项和.已知 a n >0,a n +2a n =4S n +3.(1)求{a n }的通项公式;1a n a n+136.(2015·安徽·文 T18)已知数列{a n }是递增的等比数列,且 a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;S n S n+137.(2015·天津·理 T18)已知数列{a n }满足 a n+2=qa n (q 为实数,且 q≠1),n∈N *,a 1=1,a 2=2,且 a 2+a 3,a 3+a 4,a 4+a 5 成等差数列.(1)求 q 的值和{a n }的通项公式;l o g 2a 2na 2n -112n+1 (1)求数列{a n }的通项公式;(2)设 b n =(a n +1)·2a n ,求数列{b n }的前 n 项和 T n .39.(2015·浙江·文 T17)已知数列{a n }和{b n }满足 a 1=2,b 1=1,a n+1=2a n (n∈N *),b 1+1b 2+1b 3+…+n b n =b n+1-1(n∈N *).(1)求 a n 与 b n ;(2)记数列{a n b n }的前 n 项和为 T n ,求 T n .40.(2015 · 天 津 · 文 T18) 已 知 {a n } 是 各 项 均 为 正 数 的 等 比 数 列 ,{b n } 是 等 差 数 列 , 且 a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)当d>1 时,记 c n =a n,求数列{c n }的前 n 项和 T n .2(2)证明: a 2a nS n =n +n ,n∈N *.(2)设 b n = a n a n+1项和 T n .,求数列{b n }的前 n(2)令b n =(-1)n-1 4n ,求数列{b n }的前 n 项和 T n .(2)设 c n =a n b n ,n∈N *,求数列{c n }的前 n 项和.41.(2015·湖北·文 T19)设等差数列 {a n }的公差为 d,前 n 项和为 S n ,等比数列 {b n }的公比为 q,已知 b 1=a 1,b 2=2,q=d,S 10=100.(1)求数列{a n },{b n }的通项公式;b n42.(2014·全国 2·理 T17)已知数列{a n }满足 a 1=1,a n+1=3a n +1.(1)证明:{a n + 1}是等比数列,并求{a n }的通项公式;1 a 1+ 1 +…+ 1 < 3.243.(2014·福建·文 T17)在等比数列{a n }中,a 2=3,a 5=81.(1)求 a n ;(2)设 b n =log 3a n ,求数列{b n }的前 n 项和 S n .44.(2014·湖南·文 T16)已知数列{a n }的前 n 项和22(1)求数列{a n }的通项公式;(2)设 b n =2a n +(-1)n a n ,求数列{b n }的前 2n 项和.45.(2014·北京·文 T14)已知{a n }是等差数列,满足 a 1=3,a 4=12,数列{b n }满足 b 1=4,b 4=20,且{b n -a n }为等比数 列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前 n 项和.46.(2014·大纲全国·理 T18)等差数列{a n }的前 n 项和为 S n .已知 a 1=10,a 2 为整数,且 S n ≤S 4. (1)求{a n }的通项公式;1 47.(2014·山东·理 T19)已知等差数列{a n }的公差为 2,前 n 项和为 S n ,且 S 1,S 2,S 4 成等比数列.(1)求数列{a n }的通项公式;a n a n+148.(2014·全国 1·文 T17)已知{a n }是递增的等差数列,a 2,a 4 是方程 x 2-5x+6=0 的根.(1)求{a n }的通项公式;22a 2n -1a 2n+1 }的前 n3 3- 2(2)求数列{a n }的前 n 项和.49.(2014·安徽·文 T18)数列{a n }满足 a 1=1,na n+1=(n+1)a n +n(n+1),n∈N *.(1)证明:数列{a n }是等差数列;n(2)设 b n =3n ·√a n ,求数列{b n }的前 n 项和 S n .50.(2014·山东·文 T19)在等差数列{a n }中,已知公差 d=2,a 2 是 a 1 与 a 4 的等比中项. (1)求数列{a n }的通项公式;(2)设 b n =a n (n+1),记 T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求 T n .51.(2014·大纲全国·文 T17)数列{a n }满足 a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设 b n =a n+1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.52.(2014·全国 1·理 T17)已知数列{a n }的前 n 项和为 S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数. (1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国 2·文 T17)已知等差数列{a n }的公差不为零,a 1=25,且 a 1,a 11,a 13 成等比数列. (1)求{a n }的通项公式; (2)求 a 1+a 4+a 7+…+a 3n-2.54.(2013·全国 1·文 T17)已知等差数列{a n }的前 n 项和 S n 满足 S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列{1项和.55.(2012·湖北·理 T18 文 T20)已知等差数列{a n }前三项的和为-3,前三项的积为 8.(1)求等差数列{a n }的通项公式;(2)若 a 2,a 3,a 1 成等比数列,求数列{|a n |}的前 n 项和.56.(2011·全国·文 T17)已知等比数列{a n }中,a 1=1,公比 q=1.(1)S n 为{a n }的前 n 项和,证明:S n =1 2a n ;(2)设 b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理 T17)等比数列{a n }的各项均为正数,且 2a 1+3a 2=1,a 3 =9a 2a 6.(1)求数列{a n }的通项公式;(2)设 b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前 n 项和.1 b n58.(2010·全国·理 T17)设数列{a n }满足 a 1=2,a n+1-a n =3·22n-1.(1)求数列{a n }的通项公式;(2)令 b n =na n ,求数列{b n }的前 n 项和 S n .59.(2010·全国·文 T17)设等差数列{a n }满足 a 3=5,a 10=-9, (1)求数列{a n }的通项公式;(2)求数列{a n }的前 n 项和 S n 及使得 S n 最大的序号 n 的值.2解得{ 1 故 a n =2n-5,S n =n 2-4n,故选 A. 2 2 21 2222222232 16 21616 16 × 1 +…>1+4+7>10,故选 A.a 1+a 2+a 3+a 4=a 1(1-q ),a 1+a 2+a 3=a 1(1-q ).十年高考真题分类汇编(2010—2019)数学专题 08 数列一、选择题1.(2019·全国 1·理 T9)记 S n 为等差数列{a n }的前 n 项和.已知 S 4=0,a 5=5,则()A.a n =2n-5C.S n =2n 2-8nB.a n =3n-10D.S n =1n 2-2n【答案】A【解析】由题意可知,{ S 4 = 4a 1 + 4×3 ·d = 0,a 5 = a 1 + 4d = 5,a = -3, d = 2.2.(2019·浙江·T10)设 a,b∈R,数列{a n }满足 a 1=a,a n+1=a n +b,n∈N *,则()A.当 b=1时,a 10>10C.当 b=-2 时,a 10>10B.当 b=4时,a 10>10D.当 b=-4 时,a 10>10【答案】A【解析】当b= 1 时 ,a 2= a 1 + 1 ≥ 1 ,a 3= a 2 + 1 ≥ 4 ,a 4= a 3 + 1 ≥ 17 ≥1,当 n≥4 时,a n+1= a n + 1≥ a n ≥1,则lo g 17 a n+1>2lo g 17 a n ⇒lo g 17 a n+1>2n-1, 则 a n+1≥ ( 17 )1616162n -1(n≥4), 则 a 10≥ ( 17 ) 26 = ( 1+ 16 ) 64=1+ 64 +64×63 2 1623.(2018·全国 1·理 T4)记 S n 为等差数列{a n }的前 n 项和,若 3S 3=S 2+S 4,a 1=2,则 a 5=()A.-12B.-10C.10D.12【答案】B【解析】因为 3S 3=S 2+S 4,所以 3S 3=(S 3-a 3)+(S 3+a 4),即 S 3=a 4-a 3.设公差为 d,则 3a 1+3d=d,又由 a 1=2,得 d=-3,所以 a 5=a 1+4d=-10.4.(2018·浙江·T10)已知 a 1,a 2,a 3,a 4 成等比数列,且 a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若 a 1>1,则( )A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 4【答案】B【解析】设等比数列的公比为 q,则4 3 1-q1-q3 3 a n , 由题意 , an = 12√2(n≥2),所以 {a n } 为等比数列 , 因为 a 1=f,所以为 n,则前 n 组的项数和为n (1n ).第 n 组的和为1-2 =2n -1,前 n 组总共的和为2(1-2 )-n=2n+1-2-n.∵a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),∴a 1+a 2+a 3=e a 1a2a 3a4,即 a 1(1+q+q 2)=e a 1(1qq2q 3).又 a 1>1,∴q<0.假设 1+q+q 2>1,即 q+q 2>0,解得 q<-1(q>0 舍去).由 a 1>1,可知 a 1(1+q+q 2)>1,∴a 1(1+q+q 2+q 3)>0,即 1+q+q 2+q 3>0,即(1+q)+q 2(1+q)>0,即(1+q)(1+q 2)>0,这与 q<-1 相矛盾.∴1+q+q 2<1,即-1<q<0.∴a 1>a 3,a 2<a 4.5.(2018·北京·理 T4 文 T5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 12√2.若第一个单音的频率为 f,则第八个单音的频率为()A. √2fB. √22f C. 12√25fD. 12√27f【答案】D【解析】设第 n 个单音的频率为a n -1a 8=a 1×(12√2)7= 12√27f,故选 D.6.(2017·全国 1·理 T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动 .这款软件的激活码为下面数学问题的答案 :已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N:N>100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【答案】A【解析】设数列的首项为第 1 组,接下来两项为第 2 组,再接下来三项为第 3 组,以此类推,设第 n 组的项数n n2 1-2 1-2由题意,N>100,令n (1n )>100,得 n≥14 且 n∈N *,即 N 出现在第 13 组之后.若要使最小整数 N 满足:N>100 且2前 N 项和为 2 的整数幂,则 S N -S n (1n )应与-2-n 互为相反数,即 2k -1=2+n(k∈N *,n≥14),所以 k=log 2(n+3),解 2得 n=29,k=5.22-a 3 31 3所以 N=29×(1+29 )+5=440,故选 A. 27.(2017·全国 3·理 T9)等差数列{a n }的首项为 1,公差不为 0.若 a 2,a 3,a 6 成等比数列,则{a n }前 6 项的和为( )A.-24B.-3C.3D.8【答案】A【解析】设等差数列的公差为 d,则 d≠0,a 23 =a 2·a 6,即(1+2d)2=(1+d)(1+5d),解得 d=-2,所以 S 6=6×1+6×5×(-2)=-24,故选 A.8.(2016·全国 1·理 T3)已知等差数列{a n }前 9 项的和为 27,a 10=8,则 a 100=()A.100B.99C.98D.97【答案】C【解析】因为 S 9=(a 1 +a9 )×9=27,a 1+a 9=2a 5,所以 a 5=3.又因为 a 10=8,所以 d=a 10-55=1.故 a 100=a 10+(100-10)×1=98.9.(2015·浙江·理 T13)已知{a n }是等差数列,公差 d 不为零,前 n 项和是 S n ,若 a 3,a 4,a 8 成等比数列,则( A.a 1d>0,dS 4>0 B.a 1d<0,dS 4<0 C.a 1d>0,dS 4<0 D.a 1d<0,dS 4>0【答案】B【解析】设{a n }的首项为 a 1,公差为 d,则 a 3=a 1+2d,a 4=a 1+3d,a 8=a 1+7d.∵a 3,a 4,a 8 成等比数列,∴(a 1+3d)2=(a 1+2d)(a 1+7d),即 3a 1d+5d 2=0.∵d≠0,∴a 1d=-5d 2<0,且 a 1=-5d.∵dS 4=4d(a 2+a 4)=2d(2a 1+3d)=-2d 2<0.10.(2015·全国 2·文 T5)设 S n 是等差数列{a n }的前 n 项和,若 a 1+a 3+a 5=3,则 S 5=()A.5B.7C.9D.11【答案】A【解析】由 a 1+a 3+a 5=3 及等差中项,得 3a 3=3,解得 a 3=1.故)2B.192C.10D.12【解析】由题意知a 1+a 3+a 5=1+q 2+q 4=21=7,解得 q 2=2(负值舍去).∴a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42.a 1 222 2424 2S 5=5(a 1+a 5)=5a 3=5.11.(2015·全国 1·文 T7)已知{a n }是公差为 1 的等差数列,S n 为{a n }的前 n 项和.若 S 8=4S 4,则 a 10= ()A.17【答案】B【解析】∵公差 d=1,S 8=4S 4,∴8(a 1+a 8) = 4×4(a 1+a 4),22即 2a 1+7d=4a 1+6d,解得 a 1=1.∴a 10=a 1+9d=1+9=19.12.(2015·全国 2·理 T4)已知等比数列{a n }满足 a 1=3,a 1+a 3+a 5=21,则 a 3+a 5+a 7=()A.21B.42C.63D.84【答案】B313.(2015·全国 2·文 T9)已知等比数列{a n }满足 a 1=1,a 3a 5=4(a 4-1),则 a 2=()A.2B.1C. 12D.1 8【答案】C【解析】∵a 3a 5=4(a 4-1),∴a 4 =4(a 4-1),解得 a 4=2.又 a 4=a 1q 3,且 a 1=1,∴q=2.∴a 2=a 1q=1.14.(2014·大纲全国·文 T8)设等比数列{a n }的前 n 项和为 S n .若 S 2=3,S 4=15,则 S 6=()A.31B.32C.63D.64【答案】C【 解 析 】 由 等 比 数 列 前 n 项 和 的 性 质 , 得 S 2,S 4-S 2,S 6-S 4 成 等 比 数 列 , 所 以 (S 4-S 2)2=S 2(S 6-S 4), 即(15-3)2=3(S 6-15),解得 S 6=63,故选 C.15.(2014·全国 2·文 T5)等差数列{a n }的公差为 2,若 a 2,a 4,a 8 成等比数列,则{a n }的前 n 项和 S n =( )A.n(n+1)C.n (n+1)2【答案】AB.n(n-1)D.n (n -1)23B.-13C.19D.-1q 4 = 9 = 1.【解析】由 S 3=a 2+10a 1,得 a 1+a 2+a 3=a 2+10a 1,整理得 a 3=9a 1,所以 q 2= 3=9.由 a 5=9,得 a 1= a123=1-2a n【解析】S n =a 1(1-q )1-q=a 1-a n q3 1-2 2 = 5a ,c =3 2 = 7a ,a 2=a 1,b 2=3 1 6 6 2 = 13a , 同理,a 3=a 1,b 3=6 112 2 23 3 2 2 2a 1 a 16√152a 13 a 1612 2a 15 724【解析】∵a 2,a 4,a 8 成等比数列,∴ =a 2·a 8,即(a 1+6)2=(a 1+2)(a 1+14),解得 a 1=2.∴S n =na 1+n (n -1)d=2n+n 2-n=n 2+n=n(n+1).16.(2013·全国 2·理 T3)等比数列{a n }的前 n 项和为 S n .已知 S 3=a 2+10a 1,a 5=9,则 a 1=()A.19【答案】Ca a 5 92 9 17.(2013·全国 1·文 T6)设首项为 1,公比为2的等比数列{a n }的前 n 项和为 S n ,则( )A.S n =2a n -1B.S n =3a n -2C.S n =4-3a nD.S n =3-2a n【答案】Dn3=3-2a n .18.(2013·全国 1·理 T12)设 A △n B n C n 的三边长分别为 a n ,b n ,c △n ,A nB nC n 的面积为 S n ,n=1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=c n +a n ,c n+1=b n +a n ,则()A.{S n }为递减数列B.{S n }为递增数列C.{S 2n-1}为递增数列,{S 2n }为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列 【答案】B【解析】因为 b 1>c 1,不妨设 b 1=4a 1,c 1=2a 1,p=1(a 1+b 1+c 1)=3a 1,则 S 1=√3a 1 · 2 · 6 · 5a 1= 12 a 21;2a +a 4a +a11 1121S 2=√3a 1 · 2 · 2a 1· 3 = √6 a 21;显然 S 2>S 1.7a +a115a +a c 3=6 12 1 = 11a 1,S 3=√3a 1 · 2 · 12 a 1· 12 a 1 = √105 a 21,显然 S 3>S 2.21 联立{a 4a = -8 可解得{a 4 = -2 或 {a 4 = 4,当{a 4 = -2时,q 3=-1, 2当{a 4 = 4时,q 3=-2,同理,有 a 1+a 10=-7. q 319.(2013·全国 1·理 T7)设等差数列{a n }的前 n 项和为 S n ,若 S m-1=-2,S m =0,S m+1=3,则 m= ()A.3B.4C.5D.6【答案】C【解析】∵S m-1=-2,S m =0,S m+1=3,∴a m =S m -S m-1=2,a m+1=S m+1-S m =3. ∴d=a m+1-a m =3-2=1.∵S m =m (a 1+a m ) = m (a 2+2)=0,∴a 1=-2,a m =-2+(m-1)×1=2.∴m=5.20.(2012·全国·理 T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则 a 1+a 10=( )A.7B.5C.-5D.-7【答案】D【解析】∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8. a + a = 2, a = 4, a = -2, 4 777a = 4, 7故 a 1+a 10=a 4+a 7q 3=-7;a = -2, 721.(2012·全国·文 T12)数列{a n }满足 a n+1+(-1)n a n =2n-1,则{a n }的前 60 项和为()A.3 690B.3 660C.1 845D.1 830【答案】D【解析】∵a n+1+(-1)n a n =2n-1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15×(10+234)=1 830.二、填空题1.(2019·全国 3·文 T14)记 S n 为等差数列{a n }的前 n 项和.若 a 3=5,a 7=13,则 S 10=.【答案】100【解析】设等差数列{a n }的公差为 d,则{a 3 = a 1 + 6d = 13,解得{d 1= 2. 2.(2019·全国 3·理 T14)记 S n 为等差数列{a n }的前 n 项和.若 a 1≠0,a 2=3a 1,则S 10=.2 d=10×1+ 2S 5 =10a 1+10×9d5a 1+ 25.(2019·全国 1·文 T14)记 S n 为等比数列{a n }的前 n 项和.若 a 1=1,S 3= ,则 S 4=.4a = a + 2d = 5, a = 1,71故 S 10=10a 1+10×9 10×9×2=100.S 5【答案】4【解析】设等差数列{a n }的公差为 d.∵a 1≠0,a 2=3a 1, ∴a 1+d=3a 1,即 d=2a 1.∴S 102 5×4d = 100a 1=4. 25a 13.(2019·江苏·T 8)已知数列 {a n }(n ∈N *)是等差数列 ,S n 是其前 n 项和 .若 a 2a 5+a 8=0,S 9=27,则 S 8 的值是.【答案】16【解析】∵{a n }为等差数列,设公差为 d,a 2a 5+a 8=0,S 9=27,∴(a 1 + d )(a 1 + 4d ) + a 1 + 7d = 0,①{9×89a 1 + 2 d = 27,②整理②得 a 1+4d=3,即 a 1=3-4d,③把③代入①解得 d=2,∴a 1=-5. ∴S 8=8a 1+28d=16.4.(2019·北京·理 T10)设等差数列{a n }的前 n 项和为 S n .若 a 2=-3,S 5=-10,则 a 5= ,S n 的最小值为.【答案】0-10【解析】等差数列{a n }中,由 S 5=5a 3=-10,得 a 3=-2,又 a 2=-3,公差 d=a 3-a 2=1,a 5=a 3+2d=0,由等差数列{a n }的性质得当 n≤5 时,a n ≤0,当 n≥6 时,a n 大于 0,所以 S n 的最小值为 S 4 或 S 5,即为-10.3 4【答案】58【解析】设等比数列{a n }的公比为 q.S 3=a 1+a 1q+a 1q 2=1+q+q 2=3,即 q 2+q+1=0.解得 q=-1.42=1--1)1+1 323 32 93 ∴S 5=a 1(1-q )1-q=3(1-3 ) 3 S 6=-1(1-2 )=-63.9.(2018·上海·T10)设等比数列{a n } 的通项公式为a n =q n-1(n ∈N *), 前 n 项和为 S n , 若 lim S n = 1 , 则n →∞ a n+1【解析】由 a n =q n-1,得 a n+1=q n .当 q=1 时,不满足题意;当 q≠1 时,S n =a 1(1-q ) = 1-q .若 0<|q|<1,则 lim 不存在;若|q|>1,则 lim S n = lim = lim1-q = 1,解得 q=3.故 S 4=a 1 (1-q 4) 22 4 = 5. 86.(2019·全国 1·理 T14)记 S n 为等比数列{a n }的前 n 项和.若 a 1=1 , a 4 =a 6,则 S 5=________.【答案】1213【解析】设等比数列{a n }的公比为 q,则 a 4=a 1q 3=1q 3,a 6=a 1q 5=1q 5.∵a 4 =a 6,∴1q 6=1q 5.∵q≠0,∴q=3.5 1 51-3 = 121.7.(2018·全国 1·理 T14)记 S n 为数列{a n }的前 n 项和.若 S n =2a n +1,则 S 6=.【答案】-63【解析】∵S n =2a n +1,①∴S n-1=2a n-1+1(n≥2).②①-②,得 a n =2a n -2a n-1,即 a n =2a n-1(n≥2).又 S 1=2a 1+1,∴a 1=-1.∴{a n }是以-1 为首项,2 为公比的等比数列,则6 1-28.(2018·北京·理 T9)设{a n }是等差数列,且 a 1=3,a 2+a 5=36,则{a n }的通项公式为.【答案】a n =6n-3【解析】∵{a n }为等差数列,设公差为 d, ∴a 2+a 5=2a 1+5d=36.∵a 1=3,∴d=6.∴a n =3+(n-1)×6=6n -3.2q=.【答案】3nn 1-q1-q1-q nn →∞ (1-q )q n1-q n 1 n →∞ a n+1n →∞ (1-q )q nn →∞ (1-q ) · 1 -1)=- 1q n 211.(2017·全国 2·理 T15)等差数列{a n }的前 n 项和为 S n ,a 3=3,S 4=10,则 ∑ 1=____________.a 1,10, d 1.n (n+1)=2(1 - 1 ). 2 22所以 ∑ 1 =2[(1- 1) + (1 - 1)+…+(1 - 1 )]=2(1- 1 ) n2nk1 S k得{ 1 解得{q 1 -2,故 a 4=a 1q 3=-8.744 710.(2018·江苏·T 14)已知集合 A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将 A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记 S n 为数列{a n }的前 n 项和,则使得 S n >12a n+1 成立的 n 的最小值为.【答案】27【解析】①若 a n+1=2k (k∈N *),则 S n =21+22+…+2k-1+1+3+…+2k -1=2k -2+(2k-1)2⇒(2k-1)2+2k -2>12·2k .令 2k =t ⇒1t 2+t-2>12t ⇒t(t-44)>8.4∴t≥64⇒k≥6.此时,n=k-1+2k-1=37.②若 a n+1=2k+1(k∈N *),则 S n =21+22+…+2t +1+3+…+2k -1(2t <2k+1,t∈N *), ∴S n =2t+1-2+k 2>12(2k+1)⇒2t+1>-k 2+24k+14. ∴-k 2+24k+14<2t+1<4k+2⇒k(k-20)>12.取 k=21,此时77<2t <43(舍),取 k=22,29<2t <45,t=5,n=5+22=27.2由①②,得 n min =27.n k1 S k【答案】 2nn+1【解析】设等差数列的首项为 a 1,公差为 d,由题意可知{所以 S n =na 1+n (n -1)d=n (1+n ).所以 12 S n n n+1 a 1 + 2d 3,4a 1 + 4×3 d解得{ 1.22 3 n n+1 n+1 n+112.(2017·全国 3·理 T14)设等比数列{a n }满足 a 1+a 2=-1,a 1-a 3=-3,则 a 4=.【答案】-8【解析】设{a n }的公比为 q,则由题意, a (1 + q )-1, a1,a 1(1-q 2) -3,13.(2017·江苏·理 T9 文 T9)等比数列{a n }的各项均为实数,其前 n 项和为 S n .已知 S 3=4,S 6=63,则 a 8=.【答案】32【解析】设该等比数列的公比为 q,则 S 6-S 3=63 − 4=14,即 a 4+a 5+a 6=14.①。
理科数学2010-2019高考真题分类训练专题一集合与常用逻辑用语第一讲集合答案部分
专题一 集合与常用逻辑用语第一讲 集合答案部分2019年1.解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-I <<. 故选C .2.解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞U ,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞I .故选A.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-剟?, 所以{}1,0,1A B =-I .故选A .4.解析 因为{}1,0,1,6A =-,{}|0,B x x x =>∈R ,所以{}{}{}1,0,1,6|0,1,6A B x x x =->∈=R I I .5.解析:{1,3}U A =-ð,{1}U A B =-I ð.故选A . 6.解析 设集合{}1,1,2,3,5A =-,{}13C x x =∈<R „, 则{}1,2A C =I . 又{}2,3,4B =, 所以{}{}{}{}1,22,3,41,2,3,4A C B ==I U U .故选D.2010-2018年1.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =I ,故选A .2.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x ð {|12}=-≤≤x x ,故选B .3.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =I .故选C .4.B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<ð,因为{02}A x x =<<,所以()=R I A B ð{|01}x x <<,故选B .5.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .6.A 【解析】通解 由223+≤x y知,xy又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.A 【解析】∵{|0}B x x =<,∴{|0}A B x x =<I ,选A .8.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .9.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B I 中元素的个数为2.选B .10.D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<I I ≤≤≤,选D.11.B 【解析】(){1246}[15]{124}A B C =-=U I I ,,,,,, ,选B.12.A 【解析】由题意可知{|12}P Q x x =-<<U ,选A .13.A 【解析】{}21A B x x =-<<-I ,故选A.14.C 【解析】因为{|||2}{|22}A x x x x =<=-<<,所以{1,0,1}A B =-I .15.C 【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞U .故选C .16.D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =I .17.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2A B =I .选D .18.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =U ,,,,故选C . 19.D 【解析】(,2][3,)S =-∞+∞U ,所以(0,2][3,)S T =+∞I U ,故选D .20.A 【解析】由于{|21}B x x =-<<,所以{1,0}A B =-I .21.C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q =x x I ð.22.A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<<U .23.C 【解析】由已知得{},1,,1A i i =--,故A B =I {}1,1-,故选C .24.D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.25.C 【解析】∵A B A =I ,得A B Í,反之,若A B Í,则A B A =I ;故“A B A =I ”是“A B ⊆”的充要条件.26.D 【解析】 由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅I M N .27.A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤, 所以[]0,1M N =U ,故选A .28.A 【解析】{2,5,8}U B =ð,所以{2,5}U A B =I ð,故选A.29.C 【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.30.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].31.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.32.B 【解析】∵{}1,2B =-,∴A B ⋂={}233.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B ⋂=.34.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =I [1,2).35.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .36.A 【解析】P Q ⋂=}{34x x ≤<37.B 【解析】由题意知{|2}U x N x =∈≥,{|5}A x N x =∈,所以=A C U {|25}x N x ∈<≤,选B .38.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =I ={}0,2.39.C 【解析】A B =I {|23}x x <<40.B 【解析】∵21x <,∴11x -<<,∴M N =I {}|01x x <≤,故选B . 41.C 【解析】{}|3,3A x x =-<,{}C |15R B x x x =->≤或,∴()R A C B =I {}|31x x --≤≤42.D 【解析】由已知得,{=0A B x x ≤U 或}1x ≥,故()U C A B =U {|01}x x <<.43.A 【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-44.C 【解析】{}2,4,7U A =ð.45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A I ”,选C . 46.B 【解析】A=(-∞,0)∪(2,+),∴A ∪B=R ,故选B .47.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=48.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =I49.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N I {2,1,0}=--,选C.50.A 【解析】由题意{}1,2,3A B =U ,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故U A B =I ð{}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.52.A 【解析】A :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B A C R I ,所以答案选A53.D 【解析】由集合A ,14x <<;所以(1,2]A B ⋂=54.B 【解析】集合B 中含-1,0,故{}1,0A B =-I55.A 【解析】∵{}2,0S =-,{}0,2T =,∴S T =I {}0.56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.57.D 【解析】()f x 的定义域为M =[1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D .58.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59.C 【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞I U .60.A 【解析】U C M ={,,}24661.D 【解析】{}3,4,5Q =,U Q ð={}1,2,6, U P Q ⋂ð={}1,2. 62.D 【解析】由M ={1,2,3,4},N ={2,2},可知2∈N ,但是2∉M ,则N ⊄M ,故A错误.∵M U N ={1,2,3,4,2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D63.B 【解析】A =(1,2),故B ⊂≠A ,故选B.64.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=I65.C 【解析】根据题意,容易看出x y +只能取1,1,3等3个数值.故共有3个元素.66.D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D .67.B 【解析】{1,3}P M N ==I ,故P 的子集有4个.68.D 【解析】因为集合[1,1]P =-,所以(,1)(1,)U C P =-∞-+∞U .69.D 【解析】因为{1,2,3,4}M N =U ,所以()()n n C M C N ⋂=()U C M N U ={5,6}.70.B 【解析】因为U C M N ⊂,所以()()()U U U U N N C M C C N C M ==U U=[()]U U N M I 痧={1,3,5}.71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =, 这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.72.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =-I I .73.C 【解析】因为P M P =U ,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =I .75.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =U .76.C 【解析】{}{}{}1,2,32,3,42,3M N ==I I 故选C.77.D 【解析】{}{}|1,|12R R B x x A B x x =≥⋂=≤≤痧78.B 【解析】{}22<<x x Q -=,可知B 正确, 79.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得2x „, 所以R A ð=(,0]2⎛⎫-∞+∞ ⎪ ⎪⎝⎭U .80.D 【解析】因为{3}A B =I ,所以3∈A ,又因为{9}U B A =I ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.81.{1,8}【解析】由集合的交运算可得A B =I {1,8}.82.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 83.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==U U ,5个元素.84.{}1,3-【解析】=B A I {}1,3-85.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð, {}()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.87.{}6,8【解析】()U A B I ð={6,8}{2,6,8}{6,8}=I .88.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,7)的值易推导出所求子集为12578{,,,,}a a a a a .89.1【解析】考查集合的运算推理.3B ,23a +=,1a =.90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅U U U . 对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥. 所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +. 取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-). 令1211(,,,)n n n B e e e S S -+=⋅⋅⋅U U ,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。
(2010-2019)高考数学真题分类汇编 专题07 数列 理(含解析)
专题数列1.【2019年新课标1理科09】记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n n2﹣2n【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n﹣5,,故选:A.2.【2018年新课标1理科04】记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴a1+a1+d+4a1d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.3.【2017年新课标1理科04】记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.4.【2017年新课标1理科12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n2n+1﹣1,(n∈N+),则a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n ﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D 项不符合题意.故选A.方法二:由题意可知:,,,,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有5=440,满足N>100,∴该款软件的激活码440.故选:A.5.【2016年新课标1理科03】已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【解答】解:∵等差数列{a n}前9项的和为27,S99a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.6.【2013年新课标1理科07】设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•,即有0,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+10,解得m=5.故选:C.7.【2013年新课标1理科12】设△A n B n∁n的三边长分别为a n,b n,c n,△A n B n∁n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,a n,∴b n+1+c n+1﹣2a n(b n+c n﹣2a n),∵b1+c1=2a1,∴b1+c1﹣2a1=0,∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、c n为焦点的椭圆上,又由题意,b n+1﹣c n+1,∴a1﹣b n,∴b n+1﹣a1,∴b n﹣a1,∴,c n=2a1﹣b n,∴[][][]单调递增(可证当n=1时0)故选:B.8.【2012年新课标1理科05】已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.9.【2019年新课标1理科14】记S n为等比数列{a n}的前n项和.若a1,a42=a6,则S5=.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5,故答案为:10.【2018年新课标1理科14】记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n﹣1=2a n﹣1+1,②,由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S663,故答案为:﹣6311.【2016年新课标1理科15】设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64 .【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•,当n=3或4时,表达式取得最大值:26=64.故答案为:64.12.【2013年新课标1理科14】若数列{a n}的前n项和为S n a n,则数列{a n}的通项公式是a n=.【解答】解:当n=1时,a1=S1,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣(),整理可得,即2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣113.【2012年新课标1理科16】数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8)=183014.【2015年新课标1理科17】S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n,求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n(),∴数列{b n}的前n项和T n()().15.【2014年新课标1理科17】已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.也可以先考虑前3项成等差数列,得出λ,再进一步验证即可.16.【2011年新课标1理科17】等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.【解答】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2.由条件可知各项均为正数,故q.由2a1+3a2=1得2a1+3a1q=1,所以a1.故数列{a n}的通项式为a n.(Ⅱ)b n(1+2+…+n),故2()则2[(1)+()+…+()],所以数列{}的前n项和为.17.【2010年新课标1理科17】设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=32=22(n+1)﹣1.而a 1=2,所以数列{a n }的通项公式为a n =22n ﹣1.(Ⅱ)由b n =na n =n •22n ﹣1知S n =1•2+2•23+3•25+…+n •22n ﹣1①从而22S n =1•23+2•25+…+n •22n +1②①﹣②得(1﹣22)•S n =2+23+25+…+22n ﹣1﹣n •22n +1.即.考题分析与复习建议本专题考查的知识点为:数列的概念与简单表示法,等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.历年考题主要以选择填空或解答题题型出现.重点考查的知识点为:等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项等.预测明年本考点题目会比较稳定,备考方向以知识点等差数列及其前n 项和,等比数列及其前n 项和,数列求和,数列求通项为重点较佳.最新高考模拟试题1.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( ) A .1- B .0C .2D .3【答案】B 【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=, 则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0. 故选:B .2.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A .253B .503C .507D .1007【答案】D 【解析】因为5斗=50升,设羊、马、牛的主人应偿还的量分别为123,,a a a , 由题意可知其构成了公比为2的等比数列,且350S =则31(21)5021a -=-,解得1507a =, 所以马主人要偿还的量为:2110027a a ==, 故选D.3.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记n 阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么 9N 的值为( )A .41B .45C .369D .321【答案】C 【解析】根据题意可知,幻方对角线上的数成等差数列, 31(123456789)153N =++++++++=,41(12345678910111213141516)344N =+++++++++++++++=,51(12345678910111213141516171819202122232425)655N =++++++++++++++++++++++++=,…222211(1)(1)(12345)22n n n n n N n n n ++∴=+++++⋯+=⨯=.故299(91)9413692N +==⨯=.故选:C4.设数列{}n a 的前n 项和为n S ,且11a = 2(1)()nn S a n n N n *=+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是( ) A .290 B .920C .511D .1011【答案】C 【解析】 由()2(1)nn S a n n N n*=+-∈得2(1)n n S na n n =--, 当2n ≥时,11(1)4(1)n n n n n a S S na n a n --=-=----,整理得14n n a a --=, 所以{}n a 是公差为4的等差数列,又11a =, 所以()43n a n n N*=-∈,从而()2133222(1)2n n n a a Sn n n n n n ++=+=+=+, 所以1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭,数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和115121111S ⎛⎫=-= ⎪⎝⎭.故选C .5.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,,即()()()()()121,12F F F n F n F n ===-+-()3,n n N*≥∈,此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{}n a ,则数列{}n a 的前2019项的和为( )A .672B .673C .1346D .2019【答案】C 【解析】由数列1,1,2,3,5,8,13,21,34,55,...各项除以2的余数, 可得{}n a 为1,1,0,1,1,0,1,1,0,1,1,0,..., 所以{}n a 是周期为3的周期数列, 一个周期中三项和为1102++=, 因为20196733=⨯,所以数列{}n a 的前2019项的和为67321346⨯=, 故选C.6.已知数列{}n a 是等比数列,数列{}n b是等差数列,若2610a a a ⋅⋅=16117b b b π++=,则21039tan1b b a a +-⋅的值是( )A .1 B.2C.2-D.【答案】D 【解析】{}n a 是等比数列326106a a a a ∴⋅⋅==6a ∴={}n b 是等差数列 1611637b b b b π∴++== 673b π∴=2106239614273tan tan tan tan tan 111333b b b a a a πππ+∴===-=-=-⋅--本题正确选项:D 7.已知数列{}n a 满足2*123111()23n a a a a n n n N n++++=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T,若*()1n n N T n nλ<∈+恒成立,则实数λ的取值范围为( ) A .1[,)4+∞B .1(,)4+∞ C .3[,)8+∞ D .3(,)8+∞【答案】D 【解析】解:数列{}n a 满足212311123n a a a a n n n ++++=+,① 当2n ≥时,21231111(1)(1)231n a a a a n n n -+++⋯+=-+--,② ①﹣②得:12n a n n=,故:22n a n =,数列{}n b 满足:22121214(1)n n n n n b a a n n +++==+221114(1)n n ⎡⎤=-⎢⎥+⎣⎦, 则:2222211111114223(1)n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21114(1)n ⎛⎫=- ⎪+⎝⎭, 由于*()1n n N T n nλ<∈+恒成立, 故:21114(1)1n n n λ⎛⎫-< ⎪++⎝⎭, 整理得:244n n λ+>+,因为211(1)4441n y n n +==+++在*n N ∈上单调递减, 故当1n =时,max213448n n +⎛⎫= ⎪+⎝⎭ 所以38λ>. 故选:D .8.已知函数()y f x =的定义域为R ,当0x <时()1f x >,且对任意的实数,x y R ∈,等式()()()f x f y f x y =+成立,若数列{}n a 满足()()1111n n f a f n N a *+⎛⎫=∈ ⎪+⎝⎭,且()10a f =,则下列结论成立的是( ) A .()()20162018f a f a >B .()()20172020f a f a >C .()()20182019f a f a >D .()()20162019f a f a >【答案】A 【解析】由()()()f x f y f x y =+,令0x =,1y =-,则()()()011f f f -=-0x <时,()1f x > ()11f ∴-> ()01f ∴= 11a ∴=当0x >时,令y x =-,则()()()01f x f x f -==,即()()1f x f x =-又()1f x -> ∴当0x >时,()01f x << 令21x x >,则21>0-x x()()()1212f x f x x f x ∴-=,即()()()()22110,1f x f x x f x =-∈ ()f x ∴在R 上单调递减又()()11111011n n n n f a f f a f a a ++⎛⎫⎛⎫=+== ⎪ ⎪++⎝⎭⎝⎭111n na a +∴=-+ 令1n =,212a =-;令2n =,32a =-;令3n =,41a =∴数列{}n a 是以3为周期的周期数列201632a a ∴==-,201711a a ==,2018212a a ==-,201932a a ==-,202011a a ==()f x 在R 上单调递减 ()()1212f f f ⎛⎫∴->-> ⎪⎝⎭()()20162018f a f a ∴>,()()20172020f a f a =,()()20182019f a f a <,()()20162019f a f a =本题正确选项:A 9.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 【答案】1【解析】 因为11,(*)(1)n n a a n N n n +=+∈+所以1111(1)1n n a a n n n n +-==-++,2111,2a a -=-3211,23a a -=-...,201920181120182019a a -=-, 各式相加,可得20191112019a a -=-, 201911120192019a -=-,所以,20191a =,故答案为1.10.已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得1a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=,432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =,存在两项m a ,n a 使得1a ,2221164m n a q a +-∴=, 整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m+=++=++19(10)28m n +=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,但此时m ,*n N ∉.又8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:211.已知数列{}n a 满足对*,m n N ∀∈,都有m n m n a a a ++=成立,72a π=,函数()f x =2sin 24cos2xx +,记()n n y f a =,则数列{}n y 的前13项和为______. 【答案】26 【解析】 解:对*,m n ∀∈N ,都有m n m n a a a ++=成立,可令1m =即有11n n a a a +-=,为常数, 可得数列{}n a 为等差数列, 函数2()sin 24cos 2xf x x =+sin 22(1cos )x x =++, 由()()()sin 221cos f x fx x x π+-=++()()()sin 221cos 4x x ππ+-++-=,可得()f x 的图象关于点,22π⎛⎫⎪⎝⎭对称,113212a a a a +=+=6872a a a π=+==,∴()()()()113212f a f a f a f a +=+=()()()6874,2f a f a f a =+==,∴可得数列{}n y 的前13项和为46226⨯+=.故答案为:26.12.已知数列{}n a 的前n 项和为n S ,满足22()n n S a n n N *=+∈,则n a =_____.【答案】122n +- 【解析】由题意,数列{}n a 满足22()n n S a n n N *=+∈,则1122(1)(2,)n n S a n n n N *--=+-≥∈,两式相减可得11222,(2,)n n n n S S a a n n N *--+≥∈-=-, 即1222,(2,)n n n a a a n n N *-=+≥∈-整理得122,(2)n n a a n -=-≥,即12(2),(22)n n a a n -=-≥-,即12,(2)22n n a n a -=≥--,当1n =时,1122S a =+,即1122a a =+,解得12a =-,所以数列{}2n a -表示首项为124a -=-,公比为2的等比数列,所以112422n n n a -+-=-⨯=-,所以122n n a +=-.13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,数列{}n a 前20项的和20S =____ 【答案】200或330 【解析】设数列{}n a 的公差为d ,则3410a a d d =-=-,641042102,6106a a d d a a d d =+=+=+=+,由3610,,a a a 成等比数列,得23106a a a =,即()()()210106102d d d -+=+,整理得210100d d -=,解得0d =或1d =, 当0d =时,20420200S a ==;当1d =时,14310317a a d =-=-⨯=, 于是2012019202071903302S a d ⨯=+=⨯+=, 故答案为200或330.14.已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.【答案】3【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)a q qq a q --+--=11311a q q a -+≥-, 当11311a q q a -=-,即1a =时,631S S +取得最小值, 所以919(1)1a q S q -==-9(1)1q q --故答案为:315.设数列{}n a 的前n 项和为n S ,且满足11222n n a a a n -++⋯+=,则5S =____.【答案】3116【解析】 解:11222n n a a a n -+++=,可得1n =时,11a = ,2n ≥时,2121221n n a a a n --++⋯+=-,又11222n n a a a n -++⋯+=,两式相减可得121n n a -=,即112n n a -⎛⎫= ⎪⎝⎭,上式对1n =也成立,可得数列{}n a 是首项为1,公比为12的等比数列,可得551131211612S -==-. 故答案为:3116.16.已知数列{}n a 满足112(1)0,4n n n a na a ++-==,则数列(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和为___________.【答案】2222n n +-+【解析】由12(1)0n n n a na ++-=,得121n n a an n+=⨯+, 所以数列n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,于是11422n n na n-+=⨯=, 所以12n n a n +=⋅,因为12(1)(2)(1)(2)n n a n n n n n +⋅=++++212221n n n n ++=-++, 所以(1)(2)na n n ⎧⎫⎨⎬++⎩⎭的前n 项和324321222222324321n n n S n n ++⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭2222n n +=-+. 17.定义:从数列{}n a 中抽取(,3)m m N m ∈≥项按其在{}n a 中的次序排列形成一个新数列{}n b ,则称{}n b 为{}n a 的子数列;若{}n b 成等差(或等比),则称{}n b 为{}n a 的等差(或等比)子数列. (1)记数列{}n a 的前n 项和为n S ,已知21n n S =-. ①求数列{}n a 的通项公式;②数列{}n a 是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由. (2)已知数列{}n a 的通项公式为()n a n a a Q +=+∈,证明:{}n a 存在等比子数列.【答案】(1)①12n n a ;②见解析;(2)见证明【解析】解:(1)①因为21n n S =-,所以当1n =时,11211a =-=, 当2n ≥时,1121n n S --=-,所以()()1121212nn n n a --=---=.综上可知:12n na .②假设从数列{}n a 中抽3项,,()k l m a a a k l m <<成等差, 则2l k m a a a =+,即1112222l k m ---⨯=+, 化简得:2212l k m k --⨯=+.因为k l m <<,所以0l k ->,0m k ->,且l k -,m k -都是整数, 所以22l k -⨯为偶数,12m k -+为奇数,所以2212l k m k --⨯=+不成立. 因此,数列{}n a 不存在三项等差子数列.若从数列{}n a 中抽(,4)m m N m ∈≥项,其前三项必成等差数列,不成立. 综上可知,数列{}n a 不存在等差子数列.(2)假设数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比. 设0n a b +=,则b Q +∈,故可设qb p=(p 与q 是互质的正整数). 则需满足()()()2000n a k n a n a l ++=+++,即需满足2()()b k b b l +=+,则需满足2222k pk l k k b q=+=+. 取k q =,则2l k pq =+.此时222222()2q q q b q q q p p p ⎛⎫+=+=++ ⎪⎝⎭,2222()22q q q q b b l q pq q p p pp ⎛⎫+=++=++ ⎪⎝⎭.故此时2()()b k b b l +=+成立.因此数列{}n a 中存在3项0n a +,0n a k ++,0()n a l k l ++<成等比, 所以数列{}n a 存在等比子数列.18.在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项 (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足3122331313131nn nb b b ba =++++++++,求数列{}n b 的通项公式; (3)令()*4n nn a b c n N =∈,数列{}n c 的前n 项和为n T . 【答案】(1)2n a n =;(2)2(31)nn b =+;(3)()()12133142n n n n n T +-⨯++=+. 【解析】(1)因为2a 是1a 与4a 的等比中项,所以21111(2)(6)2a a a a +=+∴=,∴数列{}n a 的通项公式为2n a n =.(2)∵()31223131313131n n n b b b ba n =+++++≥++++① ∴311212313131313131n n n n n b b b b ba +++=+++++++++++②②-①得:111231n n nn b a a +++=-=+,()11231n n b ++=+,故()()*231n n b n N =+∈。
2010-2019高考真题分类训练理数专题六 数列 第十八讲 数列的综合应用答案
专题六 数列 第十八讲 数列的综合应用答案部分 2019年1.解析:对于B ,令2104x λ-+=,得12λ=, 取112a =,所以211,,1022n a a ==<L , 所以当14b =时,1010a <,故B 错误;对于C ,令220x λ--=,得2λ=或1λ=-, 取12a =,所以22,,210n a a ==<L , 所以当2b =-时,1010a <,故C 错误; 对于D ,令240x λ--=,得12λ±=,取1a =2a =,…,10n a =<, 所以当4b =-时,1010a <,故D 错误;对于A ,221122a a =+…,223113224a a ⎛⎫=++ ⎪⎝⎭…,242431911714216216a a a ⎛⎫=++++=> ⎪⎝⎭…,10n n a a +->,{}n a 递增,当4n …时,11132122n n n n a a a a +=+>+=,所以5465109323232a a a a a a ⎧>⎪⎪⎪>⎪⎨⎪⎪⎪>⎪⎩M,所以610432a a ⎛⎫> ⎪⎝⎭,所以107291064a >>故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立;②假设()*n k k =∈N时不等式成立,即12h c c c +++<L . 那么,当1n k =+时,121k k c c c c +++++<<L<==即当1n k =+时不等式也成立.根据(1)和(2),不等式12n c c c +++<L 对任意*n ∈N 成立.3.解析(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩. 因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.3.解析:(I )1,3,5,6.(答案不唯一).(II )设长度为q 末项为0n a 的一个递增子列为110,...,,q r r n a a a -.由p q <,10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a .又12,,...,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0,p m r a a ≤所以00m n a a <.(III )由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m -1之前(m 为正整数).假设2m 排在2m -1之后,设121,,...,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m -1的递增子列,则121,,...,,2 1.2m p p p a a a m m --是数列{}n a 的长度为m+1末项为2m 的递增子列,与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小正偶数为2m.因为2k 排在2k -1之前() 1,2,1k m =⋯- ,所以2k 和2k -1不可能在{}n a 的同一个子列中. 又{}n a 中不超过 21m +的数为1,2,….., 21m -, 21m +, 所以{}n a 的长度为 1m +末项为 21m +的递增子列个数至多为12222112 2m m -⨯⨯⨯⋅⋅⋅⨯⨯⨯=<,与已知矛盾.最后证明 2m 排在 23m -之后( 2m ≥为整数).假设存在 2m ( 2m ≥),使得 2m 排在 23m -之前,则{}n a 的长度为 1m +末项为 21m +的递增子列个数小于 2m ,与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,,23,2,21,m m m ⋅⋅⋅--⋅⋅⋅. 经验证,数列2,1,4,3,,23,2,21,m m m ⋅⋅⋅--⋅⋅⋅符合条件,所以1,1.n n n a n n +⎧=⎨-⎩为奇数为偶数.2010-2018年1.A 【解析】对数列进行分组如图k321∙∙∙,222121,2k 22,21,20,20,20,20则该数列前k 组的项数和为(1)1232k k k ++++⋅⋅⋅+= 由题意可知100N >,即(1)1002k k +>,解得14k ≥,n ∈*N 即N 出现在第13组之后.又第k 组的和为122112kk -=-- 前k 组的和为1(12)(122)k +++⋅⋅⋅+++⋅⋅⋅+12(21)(21)(21)k =-+-+⋅⋅⋅+- 12(222)k k =++⋅⋅⋅+-122k k +=--,设满足条件的的N 在第1k +(k ∈*N ,13k ≥)组,且第N 项为第1k +的第m ()m ∈*N 个数,第1k +组的前m 项和为211222m -+++⋅⋅⋅+21m =-,要使该数列的前N 项和为2的整数幂, 即21m -与2k --互为相反数, 即212mk -=+, 所以23mk =-,由14k ≥,所以2314m-≥,则5m ≥,此时52329k =-= 对应满足的最小条件为29(291)54402N +=+=,故选A . 2.C 【解析】由题意可得10a =,81a =,2a ,3a ,…,7a 中有3个0、3个1,且满足对任意k ≤8,都有1a ,2a ,…,k a 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111, 00011011, 00011101,00100111, 00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.3.A 【解析】对命题p :12,,,n a a a L 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.4.A 【解析】2a ,4a ,8a 成等比数列,∴2428a a a =⋅,即2111(6)(2)(14)a a a +=++,解得12a =,所以(1)n S n n =+.5.B 【解析】∵21)(x x f =在[0,1]上单调递增,可得1110()()0f a f a ->,1211()()0f a f a ->,…,199198()()0f a f a ->,∴111101211199198|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+-1110121119919819910()()+()()()()=()()f a f a f a f a f a f a f a f a --+⋅⋅⋅+--=299-0=199() ∵),(2)(22x x x f -=在490]99[,上单调递增,在50[,1]99单调递减 ∴2120()()0f a f a ->,…,249248()()0f a f a ->,250249()()0f a f a -=,251250()()0f a f a -<,…,299298()()0f a f a -<∴221202221299298|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+- =24920299250()()[()()]f a f a f a f a ---=250202992()()()f a f a f a --=505098004(1)199999801⨯⨯-=< ∵|2sin |31)(3x x f π=在24[0,]99,5074[,]9999上单调递增,在2549[,]9999,75[,1]99上单调递减,可得33253493742492()2()2(=(2sin sin )39999I f a f a f a ππ=-+-)252(2sin sin )(1312123444ππ>-=-=> 因此312I I I <<.6.27【解析】所有的正奇数和2n (*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.7.5【解析】设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5.8.12【解析】将82a =代入111n n a a +=-,可求得712a =;再将712a =代入111n na a +=-,可求得61a =-;再将61a =-代入111n na a +=-得52a =;由此可知数列{}n a 是一个周期数列,且周期为3,所以1712a a ==. 9.64【解析】由11a =且125,,a a a 成等比数列,得2111(4)()a a d a d +=+,解得2d =,故81878642S a d ⨯=+=. 102a t =,则23112t q t q t q ++≤≤≤≤≤≤,由于1t ≥,所以max{q t ≥,故q.11.4【解析】由题意得1122(4)()(1)(14)()3322(4)()(1)(14)()33k k k k k k k k k k k k -+⎧+>--+⎪⎪⎨⎪+>+++⎪⎩,得22(1)1010k k ⎧-<⎨>⎩,因此*k N ∈,所以4k =.12.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:1(1)n a b n d =+-,11n n b b q -=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1),即当2,3,,1n m =+L 时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+L 均成立. 因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+L 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+L ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当0x >时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()(0)1f x f <=.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.13.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(Ⅱ)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 14.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得 由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .15.【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +, 则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N . (Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-,故1231433n nn e e e --++鬃?>. 16.【解析】(Ⅰ)由题意有,1110451002a d a d +=⎧⎨=⎩ ,即1129202a d a d +=⎧⎨=⎩.解得112a d =⎧⎨=⎩ 或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或11(279)929()9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩. (Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++L , ① 2345113579212222222n n n T -=++++++L . ② ①-②可得221111212323222222n n n n n n T --+=++++-=-L ,故n T 12362n n -+=-. 17.【解析】(Ⅰ)2()()212,nn n F x f x x x x =-=+++-L 则(1)10,n F n =->1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-L 所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x . 又1()120n n F x x nx-'=++>L ,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1(,1)2内有且仅有一个零点n x .因为n x 是()n F x 的零点,所以()=0n n F x ,即11201n n nx x +--=-,故111=+22n n n x x +.(Ⅱ)解法一:由题设,()()11().2nnn x g x ++=设()()211()()()1,0.2nnn n n x h x f x g x x x x x ++=-=+++->L当1x =时, ()()n n f x g x = 当1x ≠时, ()111()12.2n n n n x h x x nx--+'=++-L若01x <<,()11111()22n n n n n n h x xx nx x ----+'>++-L()()11110.22n n n n n n x x --++=-=若1x >,()11111()22n n n n n n h x x x nx x ----+'<++-L()()11110.22n n n n n n x x --++=-=所以()h x 在(0,1)上递增,在(1,)+∞上递减, 所以()(1)0h x h <=,即()()n n f x g x <.综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <. 解法二 由题设,()()211()1,(),0.2nn n n n x f x x x x g x x ++=+++=>L当1x =时, ()()n n f x g x =;当1x ≠时, 用数学归纳法可以证明()()n n f x g x <. 当2n =时, 2221()()(1)0,2f xg x x -=--<所以22()()f x g x <成立. 假设(2)n k k =≥时,不等式成立,即()()k k f x g x <. 那么,当+1n k =时,()()111k+1k 11()()()2kk k k k k x f x f x x g x x x+++++=+<+=+()12112k k x k x k +++++=.又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(x 0)k k k h x kx k x +=-++>, 则()()11()(k 1)11(x 1)kk k k h x k x k k xk k x --'=+-+=+-.所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减; 当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>.故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,1,2,...,1k n =+.则111a b ==,11nn n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤ 令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =. 当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--, 而2k n ≤≤,所以10k ->,11n k -+≥. 若01x <<, 11n k x -+<,()0k m x '<,当1x >,11n k x-+>,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <18.【解析】(Ⅰ)由21=0=22()n n n a a a n N λμ++-=∈,,有.若存在某个0,n N +∈使得0,no a =则由上述递推公式易得10,no a -=重复上述过程可得10a =,此与13a =矛盾,所以对任意,0n n N a +∈≠.从而12(),n n a a n N ++=∈即{}n a 是一个公比2q =的等比数列.故11132n n n a a q --==⋅.(Ⅱ)由01,1k λμ==-,数列{}n a 的递推关系式变为211010n n n n a a a a k +++-=, 变形为2101()().n n n a a a n N k +++=∈由上式及130a =>, 归纳可得12130n n a a a a +=>>⋅⋅⋅>>>⋅⋅⋅>.因为22220010001111111n nn n n n n a a k k a a k k a a a k k +-+===-?+++, 所以对01,2,,n k =⋅⋅⋅求和得01010121()()k k k a a a a a a ++=+-+⋅⋅⋅+-010000102011111 =()111k a k k k k a k a k a -⋅+⋅++⋅⋅⋅++++0000011111>2+( )231313131k k k k k k ⋅++⋅⋅⋅+=+++++1444442444443. 另一方面,由上已证的不等式知001212k k a a a a +>>⋅⋅⋅>>>,得00110000102011111()111k k a a k k k k a k a k a +=-⋅+⋅++⋅⋅⋅++++0000011111<2+()221212121k k k k k k ⋅++⋅⋅⋅+=+++++1444442444443. 综上,0100112+23121k a k k +<<+++.19.【解析】(Ⅰ),64,2,,2141211d a S d a S a S d +=+===4122421,,S S S S S S =∴成等比Θ解得12,11-=∴=n a a n (Ⅱ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n ,当n 为偶数时11111(1)()()33557n T =+-+++-L L1111()()23212121n n n n ++-+---+ 1221211+=+-=∴n nn T n 11111(1)()()33557n n T =+-+++--L L 当为奇数时, 1111()()23212121n n n n +++---+12221211++=++=∴n n n T n ⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,122. 20.【解析】(Ⅰ)由题意,()()*∈=N n a a a nb n 221Λ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==L ,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈; (Ⅱ)(i )由(Ⅰ)知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭, 所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>; 当5n ≥时,()()11112n nn n c n n +⎡⎤=-⎢⎥+⎣⎦,而()()()()()11112120222n n n n n n n n n ++++++--=>, 得()()51551122n n n ++≤<, 所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.21.【解析】(I )因为{}n a 是递增数列,所以11n n n n n a a a a p ++-=-=.而11a =,因此又123,2,3a a a 成等差数列,所以21343a a a =+,因而230p p -=, 解得1,03p p == 当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾。
2010-2019十年高考数学真题分类汇编专题08 数列 学生版+解析版
十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8nD.S n =12n 2-2n2.(2019·浙江·T10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10D.当b=-4时,a 10>103.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10D.124.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 45.(2018·北京·理T4文T5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23fB.√223fC.√2512fD.√2712f6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.1107.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3C.3D.88.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.979.(2015·浙江·理T13)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(2015·全国2·文T5)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.1111.(2015·全国1·文T7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10= ( )A.172B.192C.10D.1212.(2015·全国2·理T4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.8413.(2015·全国2·文T9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=()A.2B.1C.1D.114.(2014·大纲全国·文T8)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.6415.(2014·全国2·文T5)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)216.(2013·全国2·理T3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-1917.(2013·全国1·文T6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n18.(2013·全国1·理T12)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.620.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5D.-721.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .3.(2019·江苏·T8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 . 4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 . 5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .9.(2018·上海·T10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S n a n+1=12,则q=.10.(2018·江苏·T14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 .11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k =____________.12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= .13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 18.(2015·湖南·理T14)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = . 19.(2015·福建·文T16)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 20.(2015·江苏·理T11)设数列{a n }满足a 1=1,且a n+1- a n =n+1(n ∈N *).则数列{1a n}前10项的和为____________.21.(2015·全国2·理T16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 22.(2015·广东·理T10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .23.(2015·陕西·文T13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 24.(2014·江苏·理T7)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 25.(2014·广东·文T13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .26.(2014·安徽·理T12)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 27.(2014·全国2·文T16)数列{a n }满足a n+1=11-a n,a 8=2,则a 1=____________.28.(2014·北京·理T12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 29.(2014·天津·理T11)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为 .30.(2013·全国2·理T16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 31.(2013·辽宁·理T14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= .32.(2013·全国1·理T14)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 33.(2012·全国·文T14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 三、计算题1.(2019·全国2·文T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.2.(2019·全国2·理T19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文T18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).4.(2019·天津·理T19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N *.①求数列{a 2n (c 2n -1)}的通项公式;②求∑i=12na i c i (n ∈N *).5.(2019·浙江·T 20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 6.(2019·江苏·T 20)定义首项为1且公比为正数的等比数列为“M- 数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M- 数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n−2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M- 数列”{c n }(n ∈N *),对任意正整数k,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.7.(2018·北京·文T15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意x ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n+1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由; (2)设数列{a n }的前四项为a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m:(3)已知{a n }是公差为d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1, √2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).10.(2018·天津·文T18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.11.(2018·天津·理T18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k=1n(T k +b k+2)b k(k+1)(k+2)=2n+2n+2-2(n ∈N *). 12.(2018·全国2·理T17文T17)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.13.(2018·全国1·文T17)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =an n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国3·理T17文T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m.15.(2017·全国1·文T17)设S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.16.(2017·全国2·文T17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T3=21,求S3.17.(2017·全国3·文T17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;}的前n项和.(2)求数列{a n2n+118.(2017·天津·理T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(2017·山东·理T19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.20.(2017·山东·文T19)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.1)求数列{a n}的通项公式;}的前n项和T n.(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列{b na n21.(2017·天津·文T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).22.(2016·全国2·理T17)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.23.(2016·全国2·文T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文T17)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.25.(2016·北京·文T15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.26.(2016·山东·理T18文T19)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .27.(2016·天津·理T18)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12−b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)kb k 2,n ∈N *,求证:∑k=1n1T k<12d 2.28.(2016·天津·文T18)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1−1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n 2}的前2n 项和.29.(2016·全国1·文T17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.30.(2016·全国3·文T17)已知各项都为正数的数列{a n }满足a 1=1, a n 2-(2a n+1-1)a n -2a n+1=0. (1)求a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国3·理T17)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.32.(2015·北京·文T16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 33.(2015·重庆·文T16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 34.(2015·福建·文T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n,求b 1+b 2+b 3+…+b 10的值.35.(2015·全国1·理T17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.36.(2015·安徽·文T18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =an+1S n S n+1,求数列{b n }的前n 项和T n .37.(2015·天津·理T18)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.38.(2015·山东·文T19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .39.(2015·浙江·文T17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n+1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .40.(2015·天津·文T18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.41.(2015·湖北·文T19)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=a nb n,求数列{c n}的前n项和T n.42.(2014·全国2·理T17)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+…+1a n<32.43.(2014·福建·文T17)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.44.(2014·湖南·文T16)已知数列{a n}的前n项和S n=n 2+n,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(-1)n a n,求数列{b n}的前2n项和.45.(2014·北京·文T14)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.46.(2014·大纲全国·理T18)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.47.(2014·山东·理T19)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.48.(2014·全国1·文T17)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{ann }的前n 项和.49.(2014·安徽·文T18)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *.(1)证明:数列{an}是等差数列;(2)设b n =3n·√a n ,求数列{b n }的前n 项和S n .50.(2014·山东·文T19)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .51.(2014·大纲全国·文T17)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2. (1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.52.(2014·全国1·理T17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数. (1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国2·文T17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n-2.54.(2013·全国1·文T17)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列{1a2n -1a 2n+1}的前n项和.55.(2012·湖北·理T18文T20)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 56.(2011·全国·文T17)已知等比数列{a n }中,a 1=13,公比q=13. (1)S n 为{a n }的前n 项和,证明:S n =1-a n2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理T17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n}的前n项和. 58.(2010·全国·理T17)设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.59.(2010·全国·文T17)设等差数列{a n}满足a3=5,a10=-9,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n及使得S n最大的序号n的值.十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8n D.S n =12n 2-2n【答案】A【解析】由题意可知,{S 4=4a 1+4×32·d =0,a 5=a 1+4d =5,解得{a 1=-3,d =2.故a n =2n-5,S n =n 2-4n,故选A.2.(2019·浙江·T10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10 D.当b=-4时,a 10>10【答案】A【解析】当b=12时,a 2=a 12+12≥12,a 3=a 22+12≥34,a 4=a 32+12≥1716≥1,当n≥4时,a n+1=a n 2+12≥a n 2≥1,则lo g 1716a n+1>2lo g 1716a n ⇒lo g 1716a n+1>2n-1,则a n+1≥(1716 )2n -1(n≥4),则a 10≥(1716) 26=(1+116)64=1+6416+64×632×1162+…>1+4+7>10,故选A. 3.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10 D.12【答案】B【解析】因为3S 3=S 2+S 4,所以3S 3=(S 3-a 3)+(S 3+a 4),即S 3=a 4-a 3.设公差为d,则3a 1+3d=d,又由a 1=2,得d=-3,所以a 5=a 1+4d=-10.4.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 4 【答案】B【解析】设等比数列的公比为q,则 a 1+a 2+a 3+a 4=a 1(1-q 4)1-q ,a 1+a 2+a 3=a 1(1-q 3)1-q.∵a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),∴a 1+a 2+a 3=e a 1+a 2+a 3+a 4,即a 1(1+q+q 2)=e a 1(1+q+q2+q 3).又a 1>1,∴q<0.假设1+q+q 2>1,即q+q 2>0,解得q<-1(q>0舍去). 由a 1>1,可知a 1(1+q+q 2)>1, ∴a 1(1+q+q 2+q 3)>0,即1+q+q 2+q 3>0,即(1+q)+q 2(1+q)>0,即(1+q)(1+q 2)>0,这与q<-1相矛盾. ∴1+q+q 2<1,即-1<q<0.∴a 1>a 3,a 2<a 4.5.(2018·北京·理T4文T 5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23f B.√223fC.√2512fD.√2712f【答案】D【解析】设第n 个单音的频率为a n ,由题意,a na n -1=√212(n≥2),所以{a n }为等比数列,因为a 1=f,所以a 8=a 1×(√212)7=√2712f,故选D.6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110 【答案】A【解析】设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n 组的项数为n,则前n组的项数和为n (1+n )2.第n 组的和为1-2n 1-2=2n -1,前n 组总共的和为2(1-2n )1-2-n=2n+1-2-n.由题意,N>100,令n (1+n )2>100,得n≥14且n ∈N *,即N 出现在第13组之后.若要使最小整数N 满足:N>100且前N 项和为2的整数幂,则S N -S n (1+n )2应与-2-n 互为相反数,即2k-1=2+n(k ∈N *,n≥14),所以k=log 2(n+3),解得n=29,k=5.所以N=29×(1+29)2+5=440,故选A. 7.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3 C.3 D.8【答案】A【解析】设等差数列的公差为d,则d≠0,a 32=a 2·a 6, 即(1+2d)2=(1+d)(1+5d), 解得d=-2,所以S 6=6×1+6×52×(-2)=-24,故选A.8.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98 D.97【答案】C 【解析】因为S 9=(a 1+a 9)×9=27,a 1+a 9=2a 5, 所以a 5=3.又因为a 10=8,所以d=a 10-a 510-5=1. 故a 100=a 10+(100-10)×1=98.9.(2015·浙江·理T13)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A.a 1d>0,dS 4>0 B.a 1d<0,dS 4<0 C.a 1d>0,dS 4<0 D.a 1d<0,dS 4>0【答案】B【解析】设{a n }的首项为a 1,公差为d,则a 3=a 1+2d,a 4=a 1+3d,a 8=a 1+7d. ∵a 3,a 4,a 8成等比数列,∴(a 1+3d)2=(a 1+2d)(a 1+7d),即3a 1d+5d 2=0. ∵d≠0,∴a 1d=-53d 2<0,且a 1=-53d. ∵dS 4=4d (a 1+a 4)2=2d(2a 1+3d)=-23d 2<0. 10.(2015·全国2·文T5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A.5 B.7 C.9 D.11 【答案】A【解析】由a 1+a 3+a 5=3及等差中项,得3a 3=3,解得a 3=1.故S 5=5(a 1+a 5)2=5a 3=5. 11.(2015·全国1·文T7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10= ( ) A.172B.192C.10D.12【答案】B【解析】∵公差d=1,S 8=4S 4, ∴8(a 1+a 8)2=4×4(a 1+a 4)2, 即2a 1+7d=4a 1+6d,解得a 1=12. ∴a 10=a 1+9d=1+9=19.12.(2015·全国2·理T4)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.84【答案】B 【解析】由题意知a 1+a 3+a 5a 1=1+q 2+q 4=213=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42.13.(2015·全国2·文T9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A.2 B.1C.12D.18【答案】C【解析】∵a 3a 5=4(a 4-1),∴a 42=4(a 4-1),解得a 4=2.又a 4=a 1q 3,且a 1=14,∴q=2.∴a 2=a 1q=12.14.(2014·大纲全国·文T8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A.31 B.32 C.63 D.64【答案】C【解析】由等比数列前n 项和的性质,得S 2,S 4-S 2,S 6-S 4成等比数列,所以(S 4-S 2)2=S 2(S 6-S 4),即(15-3)2=3(S 6-15),解得S 6=63,故选C.15.(2014·全国2·文T5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A.n(n+1) B.n(n-1)C.n (n+1)2D.n (n -1)2【答案】A【解析】∵a 2,a 4,a 8成等比数列, ∴ =a 2·a 8,即(a 1+6)2=(a 1+2)(a 1+14), 解得a 1=2. ∴S n =na 1+n (n -1)2d=2n+n 2-n=n 2+n=n(n+1). 16.(2013·全国2·理T3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B.-13C.19D.-19【答案】C【解析】由S 3=a 2+10a 1,得a 1+a 2+a 3=a 2+10a 1,整理得a 3=9a 1,所以q 2=a 3a 1=9.由a 5=9,得a 1=a 5q 4=992=19.17.(2013·全国1·文T6)设首项为1,公比为2的等比数列{a n }的前n 项和为S n ,则( ) A.S n =2a n -1 B.S n =3a n -2 C.S n =4-3a n D.S n =3-2a n 【答案】D【解析】S n =a 1(1-q n )1-q=a 1-a n q 1-q=1-23a n 1-23=3-2a n .18.(2013·全国1·理T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,….若 b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=c n +a n ,c n+1=b n +an ,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n-1}为递增数列,{S 2n }为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列 【答案】B【解析】因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13,p=12(a 1+b 1+c 1)=32a 1,则S 1=√3a 12·a 12·a 16·5a16=√1512a 12; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2=√3a12·a12·2a13·a13=√66a 12;显然S 2>S 1.同理,a 3=a 1,b 3=76a 1+a 12=1312a 1,c 3=56a 1+a 12=1112a 1,S 3=√3a12·a12·512a 1·712a 1=√10524a 12,显然S 3>S 2.19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.6 【答案】C【解析】∵S m-1=-2,S m =0,S m+1=3, ∴a m =S m -S m-1=2,a m+1=S m+1-S m =3. ∴d=a m+1-a m =3-2=1. ∵S m =m (a 1+a m )2=m (a 1+2)2=0, ∴a 1=-2,a m =-2+(m-1)×1=2.∴m=5.20.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5 D.-7【答案】D【解析】∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8. 联立{a 4+a 7=2,a 4a 7=-8可解得{a 4=4,a 7=-2或{a 4=-2,a 7=4,当{a 4=4,a 7=-2时,q 3=-12, 故a 1+a 10=a4q 3+a 7q 3=-7;当{a 4=-2,a 7=4时,q 3=-2,同理,有a 1+a 10=-7. 21.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830【答案】D【解析】∵a n+1+(-1)na n =2n-1, ∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15×(10+234)2=1 830. 二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= . 【答案】100【解析】设等差数列{a n }的公差为d,则{a 3=a 1+2d =5,a 7=a 1+6d =13,解得{a 1=1,d =2. 故S 10=10a 1+10×92d=10×1+10×92×2=100. 2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .【答案】4【解析】设等差数列{a n }的公差为d. ∵a 1≠0,a 2=3a 1, ∴a 1+d=3a 1,即d=2a 1.∴S10S 5=10a 1+10×92d5a 1+5×42d=100a 125a 1=4. 3.(2019·江苏·T 8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 . 【答案】16【解析】∵{a n }为等差数列,设公差为d,a 2a 5+a 8=0,S 9=27,∴{(a 1+d )(a 1+4d )+a 1+7d =0,①9a 1+9×82d =27,②整理②得a 1+4d=3,即a 1=3-4d,③ 把③代入①解得d=2,∴a 1=-5. ∴S 8=8a 1+28d=16.4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 . 【答案】0 -10【解析】等差数列{a n }中,由S 5=5a 3=-10,得a 3=-2,又a 2=-3,公差d=a 3-a 2=1,a 5=a 3+2d=0,由等差数列{a n }的性质得当n ≤5时,a n ≤0,当n ≥6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为-10.5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= . 【答案】58【解析】设等比数列{a n }的公比为q. S 3=a 1+a 1q+a 1q 2=1+q+q 2=34, 即q 2+q+14=0.解得q=-12.故S 4=a 1(1-q 4)=1-(-12)41+12=5.6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.【答案】1213【解析】设等比数列{a n }的公比为q, 则a 4=a 1q 3=13q 3,a 6=a 1q 5=13q 5.∵a 42=a 6,∴19q 6=13q 5.∵q≠0,∴q=3.∴S 5=a 1(1-q 5)1-q=13(1-35)1-3=1213. 7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 【答案】-63【解析】∵S n =2a n +1,① ∴S n-1=2a n-1+1(n ≥2).②①-②,得a n =2a n -2a n-1,即a n =2a n-1(n ≥2).又S 1=2a 1+1,∴a 1=-1.∴{a n }是以-1为首项,2为公比的等比数列,则S 6=-1(1-26)1-2=-63.8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 . 【答案】a n =6n-3【解析】∵{a n }为等差数列,设公差为d, ∴a 2+a 5=2a 1+5d=36.∵a 1=3,∴d=6.∴a n =3+(n-1)×6=6n-3.9.(2018·上海·T 10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S na n+1=12,则q= . 【答案】3【解析】由a n =q n-1,得a n+1=q n.当q=1时,不满足题意;当q≠1时,S n =a 1(1-q n )1-q=1-q n1-q. 若0<|q|<1,则lim n →∞1-q n(1-q )q n 不存在;若|q|>1,则lim n →∞Sn a n+1=lim n →∞1-q n(1-q )q n =lim n →∞1(1-q )·(1q n -1)=-11-q =12,解得q=3.10.(2018·江苏·T 14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 【答案】27【解析】①若a n+1=2k(k ∈N *),则S n =21+22+…+2k-1+1+3+ (2)-1=2k-2+(2k-1)2⇒(2k-1)2+2k-2>12·2k. 令2k=t ⇒14t 2+t-2>12t ⇒t(t-44)>8.∴t ≥64⇒k ≥6.此时,n=k-1+2k-1=37. ②若a n+1=2k+1(k ∈N *),则S n =21+22+ (2)+1+3+…+2k-1(2t<2k+1,t ∈N *), ∴S n =2t+1-2+k 2>12(2k+1)⇒2t+1>-k 2+24k+14. ∴-k 2+24k+14<2t+1<4k+2⇒k(k-20)>12.取k=21,此时772<2t <43(舍),取k=22,29<2t<45,t=5,n=5+22=27. 由①②,得n min =27.11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k=____________.【答案】2nn+1【解析】设等差数列的首项为a 1,公差为d,由题意可知{a 1+2d =3,4a 1+4×32d=10,解得{a 1=1,d =1.所以S n =na 1+n (n -1)2d=n (1+n )2. 所以1S n =2n (n+1)=2(1n -1n+1).所以∑k=1n1S k=2[(1-12)+(12-13)+…+(1n -1n+1)]=2(1-1n+1)=2nn+1. 12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= . 【答案】-8【解析】设{a n }的公比为q,则由题意, 得{a 1(1+q )=-1,a 1(1-q 2)=-3,解得{a 1=1,q =-2,故a 4=a 1q 3=-8. 13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= . 【答案】32【解析】设该等比数列的公比为q,则S 6-S 3=634−74=14,即a 4+a 5+a 6=14.①∵S 3=74,∴a 1+a 2+a 3=74. 由①得(a 1+a 2+a 3)q 3=14,∴q 3=1474=8,即q=2.∴a 1+2a 1+4a 1=7,a 1=1. ∴a 8=a 1·q 7=14×27=32.14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 121【解析】由题意,可得a 1+a 2=4,a 2=2a 1+1, 所以a 1=1,a 2=3.再由a n+1=2S n +1,a n =2S n-1+1(n ≥2), 两式相减得a n+1-a n =2a n ,即a n+1=3a n (n ≥2).又因为a 2=3a 1,所以数列{a n }是以1为首项,3为公比的等比数列.所以S 5=1-351-3=121. 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 【答案】6【解析】∵{a n }是等差数列,∴a 3+a 5=2a 4=0.∴a 4=0. ∴a 4-a 1=3d=-6.∴d=-2. ∴S 6=6a 1+15d=6×6+15×(-2)=6.16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【答案】64【解析】由已知a 1+a 3=10,a 2+a 4=a 1q+a 3q=5,两式相除得a 1+a 3q (a 1+a 3)=105=2,解得q=12,a 1=8, 所以a 1a 2…a n =8n·(1)1+2+…+(n -1)=2-12n 2+7n2,函数f(n)=-1n 2+7n的对称轴为n=-722×(-12)=3.5,又n ∈N *,所以当n=3或4时,a 1a 2…a n 取最大值为2-12×32+7×32=26=64.17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 【答案】6【解析】∵a n+1=2a n ,即an+1a n=2,∴{a n }是以2为公比的等比数列.。
十年高考真题分类汇编(2010-2019) 数学 专题01 集合
十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
理科数学十年高考真题(2010-2019)专项训练-专题六 数列 第十八讲 数列的综合应用答案
2020高考冲刺 提分必备 2010-2019十年高考真题专项训练专题六 数列 第十八讲 数列的综合应用答案部分1.A 【解析】对数列进行分组如图k321∙∙∙,222121,2k 22,21,20,20,20,20则该数列前k 组的项数和为(1)1232k k k ++++⋅⋅⋅+= 由题意可知100N >,即(1)1002k k +>,解得14k ≥,n ∈*N 即N 出现在第13组之后.又第k 组的和为122112kk -=-- 前k 组的和为1(12)(122)k +++⋅⋅⋅+++⋅⋅⋅+12(21)(21)(21)k =-+-+⋅⋅⋅+- 12(222)k k =++⋅⋅⋅+-122k k +=--,设满足条件的的N 在第1k +(k ∈*N ,13k ≥)组,且第N 项为第1k +的第m ()m ∈*N 个数,第1k +组的前m 项和为211222m -+++⋅⋅⋅+21m =-,要使该数列的前N 项和为2的整数幂, 即21m-与2k --互为相反数,即212mk -=+, 所以23mk =-,由14k ≥,所以2314m-≥,则5m ≥,此时52329k =-= 对应满足的最小条件为29(291)54402N +=+=,故选A . 2.C 【解析】由题意可得10a =,81a =,2a ,3a ,…,7a 中有3个0、3个1,且满足对任意k ≤8,都有1a ,2a ,…,k a 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111, 00011011, 00011101,00100111, 00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.3.A 【解析】对命题p :12,,,n a a a L 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立;②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.4.A 【解析】2a ,4a ,8a 成等比数列,∴2428a a a =⋅,即2111(6)(2)(14)a a a +=++,解得12a =,所以(1)n S n n =+.5.B 【解析】∵21)(x x f =在[0,1]上单调递增,可得1110()()0f a f a ->,1211()()0f a f a ->,…,199198()()0f a f a ->,∴111101211199198|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+-1110121119919819910()()+()()()()=()()f a f a f a f a f a f a f a f a --+⋅⋅⋅+--=299-0=199()∵),(2)(22x x x f -=在490]99[,上单调递增,在50[,1]99单调递减 ∴2120()()0f a f a ->,…,249248()()0f a f a ->,250249()()0f a f a -=,251250()()0f a f a -<,…,299298()()0f a f a -<∴221202221299298|()()||()()||()()|I f a f a f a f a f a f a =-+-+⋅⋅⋅+- =24920299250()()[()()]f a f a f a f a ---=250202992()()()f a f a f a --=505098004(1)199999801⨯⨯-=< ∵|2sin |31)(3x x f π=在24[0,]99,5074[,]9999上单调递增,在2549[,]9999,75[,1]99上单调递减,可得33253493742492()2()2(=(2sin sin )39999I f a f a f a ππ=-+-)252(2sin sin )(1312123444ππ>-=-=> 因此312I I I <<.6.27【解析】所有的正奇数和2n (*n ∈N )按照从小到大的顺序排列构成{}n a ,在数列{}n a中,52前面有16个正奇数,即5212a =,6382a =.当1n =时,1211224S a =<=,不符合题意;当2n =时,2331236S a =<=,不符合题意;当3n =时,3461248S a =<=,不符合题意;当4n =时,45101260S a =<=,不符合题意;……;当26n =时,52621(141)2(12)212S ⨯+⨯-=+-= 441 +62= 503<2712516a =,不符合题意;当27n =时,52722(143)2(12)212S ⨯+⨯-=+-=484 +62=546>2812a =540,符合题意.故使得112n n S a +>成立的n 的最小值为27.7.5【解析】设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5.8.12【解析】将82a =代入111n n a a +=-,可求得712a =;再将712a =代入111n na a +=-,可求得61a =-;再将61a =-代入111n na a +=-得52a =;由此可知数列{}n a 是一个周期数列,且周期为3,所以1712a a ==. 9.64【解析】由11a =且125,,a a a 成等比数列,得2111(4)()a a d a d +=+,解得2d =,故81878642S a d ⨯=+=. 102a t =,则23112t q t q t q ++≤≤≤≤≤≤,由于1t ≥,所以max{q t ≥,故q.11.4【解析】由题意得1122(4)()(1)(14)()3322(4)()(1)(14)()33k k k k k k k k k k k k -+⎧+>--+⎪⎪⎨⎪+>+++⎪⎩,得22(1)1010k k ⎧-<⎨>⎩,因此*k N ∈,所以4k =.12.【解析】(1)由条件知:(1)n a n d =-,12n n b -=.因为1||n n a b b -≤对n =1,2,3,4均成立, 即1|(1)2|1n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:1(1)n a b n d =+-,11n n b b q -=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|(1)|n b n d b q b -+--≤(n =2,3,···,m +1),即当2,3,,1n m =+L 时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+L 均成立. 因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+L 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+L ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当0x >时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()(0)1f x f <=.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.13.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(Ⅱ)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 14.【解析】(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x => 假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>. 因此0n x >()n ∈*N所以111ln(1)n n n n x x x x +++=++>因此10n n x x +<<()n ∈*N(Ⅱ)由111ln(1)n n n n x x x x +++=++>得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数()f x 在[0,)+∞上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥ 故112(N )2n n n n x x x x n *++-∈≤ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=+++=≤所以112n n x -≥得由1122n n n n x x x x ++-≥得 111112()022n n x x +-->≥ 所以12111111112()2()2222n n n n x x x -----⋅⋅⋅-=≥≥≥ 故212n n x -≤综上,1211(N )22n n n x n *--∈≤≤ .15.【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+两式相减得到21,1n n a qa n ++=?.又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +, 则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N . (Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n nn e e e --++鬃?>. 16.【解析】(Ⅰ)由题意有,1110451002a d a d +=⎧⎨=⎩ ,即1129202a d a d +=⎧⎨=⎩.解得112a d =⎧⎨=⎩ 或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或11(279)929()9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩. (Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++L , ① 2345113579212222222n n n T -=++++++L . ② ①-②可得221111212323222222n n n n n n T --+=++++-=-L ,故nT 12362n n -+=-. 17.【解析】(Ⅰ)2()()212,nn n F x f x x x x =-=+++-L 则(1)10,n F n =->1211111112()1220,12222212n n n n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-L 所以()n F x 在1,12⎛⎫⎪⎝⎭内至少存在一个零点n x . 又1()120n n F x x nx-'=++>L ,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1(,1)2内有且仅有一个零点n x .因为n x 是()n F x 的零点,所以()=0n n F x ,即11201n n n x x +--=-,故111=+22n n n x x +.(Ⅱ)解法一:由题设,()()11().2nnn x g x ++=设()()211()()()1,0.2nn n n n x h x f x g x x x x x ++=-=+++->L当1x =时, ()()n n f x g x = 当1x ≠时, ()111()12.2n n n n x h x x nx--+'=++-L若01x <<,()11111()22n n n n n n h x xx nx x ----+'>++-L()()11110.22n n n n n n x x --++=-=若1x >,()11111()22n n n n n n h x xx nx x ----+'<++-L()()11110.22n n n n n n x x --++=-=所以()h x 在(0,1)上递增,在(1,)+∞上递减, 所以()(1)0h x h <=,即()()n n f x g x <.综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <.解法二 由题设,()()211()1,(),0.2nnn nn x f x x x x g x x ++=+++=>L当1x =时, ()()n n f x g x =;当1x ≠时, 用数学归纳法可以证明()()n n f x g x <. 当2n =时, 2221()()(1)0,2f xg x x -=--<所以22()()f x g x <成立. 假设(2)n k k =≥时,不等式成立,即()()k k f x g x <. 那么,当+1n k =时,()()111k+1k 11()()()2kk k k k k x f x f x x g x x x+++++=+<+=+()12112k k x k x k +++++=.又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(x 0)k k k h x kxk x +=-++>,则()()11()(k 1)11(x 1)kk k k h x k x k k xk k x --'=+-+=+-.所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减; 当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>.故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,1,2,...,1k n =+.则111a b ==,11nn n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤ 令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =. 当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--, 而2k n ≤≤,所以10k ->,11n k -+≥. 若01x <<, 11n k x -+<,()0k m x '<,当1x >,11n k x-+>,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x <18.【解析】(Ⅰ)由21=0=22()n n n a a a n N λμ++-=∈,,有.若存在某个0,n N +∈使得0,no a =则由上述递推公式易得10,no a -=重复上述过程可得10a =,此与13a =矛盾,所以对任意,0n n N a +∈≠.从而12(),n n a a n N ++=∈即{}n a 是一个公比2q =的等比数列.故11132n n n a a q --==⋅.(Ⅱ)由01,1k λμ==-,数列{}n a 的递推关系式变为211010n n n n a a a a k +++-=, 变形为2101()().n n n a a a n N k +++=∈由上式及130a =>, 归纳可得12130n n a a a a +=>>⋅⋅⋅>>>⋅⋅⋅>.因为22220010001111111n nn n n n n a a k k a a k k a a a k k +-+===-?+++, 所以对01,2,,n k =⋅⋅⋅求和得01010121()()k k k a a a a a a ++=+-+⋅⋅⋅+-010000102011111 =()111k a k k k k a k a k a -⋅+⋅++⋅⋅⋅++++0000011111>2+( )231313131k k k k k k ⋅++⋅⋅⋅+=+++++1444442444443. 另一方面,由上已证的不等式知001212k k a a a a +>>⋅⋅⋅>>>,得00110000102011111()111k k a a k k k k a k a k a +=-⋅+⋅++⋅⋅⋅++++0000011111<2+()221212121k k k k k k ⋅++⋅⋅⋅+=+++++1444442444443. 综上,0100112+23121k a k k +<<+++.19.【解析】(Ⅰ),64,2,,2141211d a S d a S a S d +=+===4122421,,S S S S S S =∴成等比Θ解得12,11-=∴=n a a n(Ⅱ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n ,当n 为偶数时11111(1)()()33557n T =+-+++-L L1111()()23212121n n n n ++-+---+ 1221211+=+-=∴n nn T n 11111(1)()()33557n n T =+-+++--L L 当为奇数时, 1111()()23212121n n n n +++---+12221211++=++=∴n n n T n ⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,122. 20.【解析】(Ⅰ)由题意,()()*∈=N n a a a nb n 221Λ,326b b-=,知3238b b a -==,又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项公式为2()n n a n N *=∈,所以()()1121232n n n n n a a a a ++==L ,故数列{}n b 的通项公式为,()1()n b n n n N *=+∈; (Ⅱ)(i )由(Ⅰ)知,11111()21n n n n c n N a b n n *⎛⎫=-=--∈ ⎪+⎝⎭, 所以11()12n n S n N n *=-∈+; (ii )因为12340,0,0,0c c c c =>>>; 当5n ≥时,()()11112n n n n c n n +⎡⎤=-⎢⎥+⎣⎦, 而()()()()()11112120222n n n n n n n n n ++++++--=>,得()()51551122n n n ++≤<, 所以当5n ≥时,0n c <,综上对任意n N *∈恒有4n S S ≥,故4k =.21.【解析】(I )因为{}n a 是递增数列,所以11n n n n n a a a a p ++-=-=.而11a =,因此又123,2,3a a a 成等差数列,所以21343a a a =+,因而230p p -=, 解得1,03p p == 当0p =时,1n n a a +=,这与{}n a 是递增数列矛盾。
2010-2019年高考理科数学试题分类汇编之专题十 排列与组合与二项式
专题十 计数原理第三十讲 排列与组合一、选择题1.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1182.(2017新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种3.(2017山东)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是A .518B .49C .59D .79 4.(2016年全国II)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24B .18C .12D .95.(2016四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A .24B .48C .60D .726.(2015四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有A .144个B .120个C .96个D .72个7.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18 B .38 C .58 D .788.(2014广东)设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60B .90C .120D .1309.(2014安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有A .24对B .30对C .48对D .60对10.(2014福建)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、从5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A .()()()555432111c b a a a a a +++++++ B .()()()554325111c b b b b b a +++++++ C .()()()554325111c b b b b b a +++++++ D .()()()543255111c c c c c b a +++++++ 11.(2013山东)用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为A .243B .252C .261D .27912.(2012新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有A .12种B .10种C .9种D .8种13.(2012浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种14.(2012山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,并且红色卡片至多1张,不同取法的种数是A .232B .252C .472D .48415.(2010天津)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用A.288种B.264种C.240种D.168种16.(2010山东)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有A.36种B.42种C.48种D.54种17.(2010广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
2010年高考数学试题分类汇编排列与组合文档
第十章 计数原理第一节 排列与组合第一部分 六年高考荟萃2010年高考题一、选择题1.(2010全国卷2理)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.2.(2010重庆理)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法3.(2010北京理)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C【答案】A4.(2010四川理)(10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(A )72 (B )96 (C ) 108 (D )144【答案】C解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个5.(2010天津理)(10) 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A )288种 (B )264种 (C )240种 (D )168种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
历年(2010_2019)高考理科数学真题分类汇编及模拟题专题02复数(含解析)
专题02复数历年考题细目表历年高考真题汇编1.【2019年新课标1理科02】设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1 D.x2+(y+1)2=1【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z﹣i=x+(y﹣1)i,∴|z﹣i|,∴x2+(y﹣1)2=1,故选:C.2.【2018年新课标1理科01】设z2i,则|z|=()A.0 B.C.1 D.【解答】解:z2i2i=﹣i+2i=i,则|z|=1.3.【2017年新课标1理科03】设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1;p 4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1,故命题p3为假命题;p 4:若复数z∈R,则z∈R,故命题p4为真命题.故选:B.4.【2016年新课标1理科02】设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|,故选:B.5.【2015年新课标1理科01】设复数z满足i,则|z|=()A.1 B.C.D.2【解答】解:∵复数z满足i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z i,∴|z|=1,6.【2014年新课标1理科02】()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:(1+i)=﹣1﹣i,故选:D.7.【2013年新课标1理科02】若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z i,故z的虚部等于,故选:D.8.【2012年新课标1理科03】下面是关于复数z的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【解答】解:∵z1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.9.【2011年新课标1理科01】复数的共轭复数是()A.B.C.﹣i D.i【解答】解:复数i,它的共轭复数为:﹣i.故选:C.10.【2010年新课标1理科02】已知复数,是z的共轭复数,则()A.B.C.1 D.2【解答】解:由可得.另解:故选:A.考题分析与复习建议本专题考查的知识点为:复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算,与向量结合考查复数及其加法、减法的几何意义等,历年考题主要以选择题题型出现,重点考查的知识点为复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算,重点考查复数的除法运算等,预测明年本考点题目会比较稳定,备考方向以知识点复数的基本概念(复数的实部、虚部、共轭复数、复数的模等),复数相等的充要条件,考查复数的代数形式的四则运算为重点较佳.最新高考模拟试题1.复数52iz=-在复平面上的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】()()()52i 52i 2i 2i 2i z +===+--+,在复平面上的对应点为()2,1,位于第一象限. 故选A. 2.设i z a b =+(a ,b ∈R ,i 是虚数单位),且22i z =-,则有( ) A .1a b +=- B .1a b -=- C .0a b -= D .0a b +=【答案】D 【解析】因为2222()()22z a bi a b abi i =+=-+=-,所以220a b -=,22ab =-,解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,所以0a b +=,故选D.3.若复数1i1ia z +=+为纯虚数,则实数a 的值为( ) A .1 B .1-C .0D .2【答案】B 【解析】()()()()()11111i 1i 112ai i a a ia z i i +-++-+===++- 故10,10a a +=-≠ ,解1a =- 故选:B4.复数i (1+i )的虚部为( )A B .1C .0D .1-【答案】B 【解析】∵i (1+i )=-1+i , ∴i (1+i )的虚部为1. 故选:B .5.已知复数11z i =-+,复数2z 满足122z z =-,则2z = ( )A .2BCD .10【答案】B 【解析】 由题得222(1)2(1)11(1)(1)2i i z i i i i -------====+-+-+--,所以2z 故选:B6.已知复数312i z i=+,则复数z 的实部为( )A .25-B .25i -C .15-D .15i -【答案】A 【解析】解:∵3(12)2112(12)(12)55i i i z i i i i --===--++-, ∴复数z 的实部为25-. 故选A . 7.复数122ii-=+( ) A .1i - B .i -C .iD .1i +【答案】B 【解析】12(12)(2)2422(2)(2)5i i i i i i i i i ------===-++-. 故选B8.已知i 为虚数单位,复数z 满足:()z 12i i +=-,则在复平面上复数z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 因为2(2)(1)131312222i i i i z i i ----====-+,所以复平面上复数z 对应的点为13(,)22-,位于第四象限, 故选D .9.设复数z a i =+,z 是其共轭复数,若3455z i z =+,则实数a =( ) A .4 B .3C .2D .1【答案】C 【解析】 解:z a i =+z a i ∴=- 343443++2555555z a a i a i i a z ⎛⎫∴=+⇒+=-⇒= ⎪⎝⎭10.已知i 是虚数单位,复数z 满足2(1)1i i z-=+,则z =( )A B .2 C .1D 【答案】A 【解析】22(1)(1)22(1)1(1)111(1)(1)i i i i i i z i i i z i i i i ----⋅-=+⇒====--=--+++⋅-,所以1z i =--==A.11.复数()()21z i i =+-,其中i 为虚数单位,则z 的实部是( ) A .-1 B .1 C .2 D .3【答案】D 【解析】解:∴()()212213z i i i i i =+-=-++=-, ∴z 的实部是3 故选:D .12.已知复数(1)1z i i -=+,则复数z =( ) A .2i +B .2i -C .iD .i -【解析】由题意,复数(1)1z i i -=+,则()()()()11121112i i i iz i i i i +++====--+,故选C. 13.已知i 为虚数单位,若1(,)1a bi a b R i=+∈-,则b a =( ) A .1 BC2D .2【答案】C 【解析】 i 为虚数单位,若1(,)1a bi a b R i =+∈-,1112i a bi i +==+- 根据复数相等得到1212a b ⎧=⎪⎪⎨⎪=⎪⎩.121()22b a ==故答案为:C.14.已知复数z 满足2(1i)(3i)z +=+,则||z =( ) ABC.D .8【答案】C 【解析】∵2(1)(3)z i i +=+,∴2(3)86(86)(1)(43)(1)711(1)(1)i i i i z i i i i i i i +++-====+-=-+++-,∴||z === 故选C .15.已知i 是虚数单位,则复数11i i -+在复平面上所对应的点的坐标为( ) A .()0,1B .()1,0-C .()1,0D .()0,1-【解析】 ∵()()()()111111i i i i i i i ---==++-,∴该复数在复平面上对应的点的坐标为()0,1. 故选A.16.若复数z 满足(1i)|1|z +=+,则在复平面内z 的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 由题得22(1)1(1)(1)(1i)i z i i i -===-++-, 所以1z i =+,所以在复平面内z 的共轭复数对应的点为(1,1),在第一象限. 故选:A17.已知复数z 满足12iz i =+,则z 的虚部是( ) A .1- B .i -C .2D .2i【答案】A 【解析】 因为12iz i =+所以221222i i i z i i i++===-所以虚部为1- 所以选A 18.已知31iz i-=-(其中i 为虚数单位),则z 的虚部为( ) A .i - B .1-C .1D .2【答案】B 【解析】因为3(3)(1)4221(1)(1)2i i i iz i i i i --++====+--+, 所以2z i =-,故z 的虚部为1-,故选B.19.复数2(1)41i z i -+=+的虚部为( )A .1-B .3-C .1D .2【答案】B 【解析】()()2421(1)44213112i i i i z i i i ---+-====-++ 所以z 的虚部为3- 故选B 项.20.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C 【解析】∵()12112z ai a R z i =+∈=+,,∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选:C . 21.设复数z 满足2ii z+=,则z =( ) A .1BC .3D .5【答案】B【解析】 2ii z +=,221iz i i +∴==+22112ii i =+=-,z ∴== B.22.已知复数1iz i =-,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】∵ ()()()11111122i i iz i i i i +===-+--+,∴ 12z i =+,∴z 在复平面内对应的点的坐标为12⎫⎪⎪⎝⎭,位于第一象限. 故选:A .23.复数z 满足(1)2z i i -=,则复数z =( )A .1i -B .12i +C .1i +D .1i -- 【答案】D【解析】 由题意得:()()()2121111i i iz i i i i +===-+--+ 1z i ∴=--本题正确选项:D24.若复数2(1)z m m m i =+++是纯虚数,其中m 是实数,则1z =( )A .iB .i -C .2iD .2i -【答案】B【解析】复数z =m (m +1)+(m +1)i 是纯虚数,故m (m +1)=0且(m +1)≠0,解得m =0,故z =i ,故111iz i i i ⋅===-⋅i .故选:B .25.设i 为虚数单位,则复数22iz i -=+的共扼复数z =( )A .3455i + B .3455i -C .3455i -+ D .3455i --【答案】A【解析】 解:22i(2i)34i 2i (2i)(2i)55z --===-++-,3455z i ∴=+故选:A . 26.已知复数1z 、2z 在复平面内对应的点关于虚轴对称,11z =,则12z z =( )A .2B CD .1【答案】D【解析】由题意,复数1z 、2z 在复平面内对应的点关于虚轴对称,11z =,则21z =-,所以12212z z ====,故选D.27.已知复数z 1=1+2i ,z 2=l ﹣i ,则12z z =( )A .13i 22--B .13i 22-+ C .13i 22- D .13i 22+ 【答案】B 【解析】∵1212,1z i z i =+=-,∴1212(12)(1)131(1)(1)22z i i i i z i i i +++===-+--+.故选:B .28.在复平面内,复数(2i)z -对应的点位于第二象限,则复数z 可取( )A .2B .-1C .iD .2i + 【答案】B【解析】不妨设(),z a bi a b R =+∈,则()()()()()2222i z i a bi a b b a i -=-+=++-,结合题意可知:20,20a b b a +<->,逐一考查所给的选项:对于选项A :24,22a b b a +=-=-,不合题意;对于选项B :22,21a b b a +=--=,符合题意;对于选项C :21,22a b b a +=-=,不合题意;对于选项D :25,20a b b a +=-=,不合题意;故选:B .29.已知i 为虚数单位,则复数3(1)i z i i +=-的虚部为( ) A .1B .2C .1-D .2- 【答案】C【解析】 因为3(3)(1)122(1)2i i i i i i i i i++++===--,所以z 的虚部为1-. 30.已知复数(i)(1i)z a =+-(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为( )A .0B .1-C .1D .13- 【答案】D【解析】因为(i)(1i)1(1)z a a a i =+-=++-,对应的点为(1,1)a a +-,因为点在直线2y x =上,所以12(1)a a -=+,解得13a =-. 故选D.。
2010-2019高考真题分类训练理数专题六 数列 第十八讲 数列的综合应用
专题六 数列 第十八讲 数列的综合应用2019年1.(2019浙江10)设a ,b ∈R ,数列{a n }中a n =a ,a n +1=a n 2+b ,n *∈N ,则 A .当b =12时,a 10>10 B .当b =14时,a 10>10C .当b =-2时,a 10>10D .当b =-4时,a 10>102.(2019浙江20)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L 3.(2019江苏20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.4.(2019北京理20)已知数列{}n a ,从中选取第 1i 项、第2i 项、…、第m i 项()12m i i i <<⋯<,若12mi i i a a a <<<L ,则称新数列12mi i i a a a ⋅⋅⋅L 为{}n a 的长度为m 的递增子列。
规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列。
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为P 的递增子列的末项的最小值为o m a ,长度为q 的递增子列的末项的最小值为on a ,若p <q ,求证:o o m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等,若{}n a 的长度为s 的递增子列末项的最小值为2s -1,且长度为s 末项为2s -1的递增子列恰有12s -个(s =1,2,…),求数列{}n a 的通项公式.2010-2018年一、选择题1.(2017新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .1102.(2016年全国Ⅲ)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个3.(2015湖北)设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :222121()n a a a -+++⨯L 22222312231()()n n n a a a a a a a a a -+++=+++L L ,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件4.(2014新课标2)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n项和n S =A .()1n n +B .()1n n -C .()12n n + D .()12n n -5.(2014浙江)设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99i ia =, 0,1,2,,99i =⋅⋅⋅,记10|()()|k k k I f a f a =-+21|()()|k k f a f a -+⋅⋅⋅+ 9998|()()|k k f a f a -,.3,2,1=k 则A .321I I I <<B . 312I I I <<C . 231I I I <<D . 123I I I << 二、填空题6.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .7.(2015陕西)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 .8.(2014新课标2)数列{}n a 满足111n na a +=-,2a =2,则1a =_________. 9.(2013重庆)已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =.10.(2011江苏)设7211a a a ≤≤≤≤Λ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________.11.(2011浙江)若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______________. 三、解答题12.(2018江苏)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示).13.(2017天津)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .14.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时 (Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x --≤≤.15.(2016年四川高考)已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(I )若2322,,2a a a + 成等差数列,求n a 的通项公式;(Ⅱ)设双曲线2221ny x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --++⋅⋅⋅+>.16.(2015湖北)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 17.(2015陕西)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,n x 的各项和,其中0x >,n ∈N ,2n ≥.(Ⅰ)证明:函数()()2n n F x f x =-在1(,1)2内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x 与()n g x 的大小,并加以证明.18.(2015重庆)在数列{}n a 中,13a =,2110n n n n a a a a λμ++++=()n N +∈.(Ⅰ)若0,2λμ==-,求数列{}n a 的通项公式; (Ⅱ)若0001(,2)k N k k λ+=∈≥,1μ=-,证明:010011223121k a k k ++<<+++.19.(2014山东)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 20.(2014浙江)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b b a +== (Ⅰ)求n a 与n b ; (Ⅱ)设()*∈-=N n b a c nn n 11.记数列{}n c 的前n 项和为n S . (ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*∈N n ,均有n k S S ≥. 21.(2014湖南)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈(Ⅰ)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (Ⅱ)若12p =,且{21n a -}是递增数列,{2n a }是递减数列,求数列{n a }的通项公式. 22.(2014四川)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(*n N ∈).(Ⅰ)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (Ⅱ)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}nna b 的前n 项和n T . 23.(2014江苏)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (Ⅰ)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(Ⅱ)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(Ⅲ)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.24.(2013安徽)设数列{}n a 满足12a =,248a a +=,且对任意*n N ∈,函数1212()()cos -sin n n n n n f x a a a x a x a x ++++=-++⋅⋅,满足'()02f π=(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若122nn n a b a =+(),求数列{}n b 的前n 项和n S . 25.(2013广东)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441n n S a n +=--,*n N ∈,且2514,,a a a 构成等比数列.(Ⅰ)证明:2a =(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<L . 26.(2013湖北)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.27.(2013江苏)设{}n a 是首项为a ,公差为d 的等差数列()0d ≠,n S 是其前n 项和.记2nn nS b n c=+,N n *∈,其中c 为实数.(Ⅰ) 若0c =,且1b ,2b ,4b 成等比数列,证明:()2N nk k S n S k,n *=∈;(Ⅱ) 若{}n b 是等差数列,证明:0c =.28. (2012山东)已知等差数列{}n a 的前5项和为105,且1052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m项和m S .29.(2012湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (Ⅰ)用d 表示12,a a ,并写出1n a +与n a 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).30.(2012浙江)已知数列{}n a 的前n 项和为n S ,且n S =22n n +,n ∈N ﹡,数列{}n b 满足24log 3n n a b =+,*n N ∈. (Ⅰ)求,n n a b ;(Ⅱ)求数列{}n n a b ⋅的前n 项和n T .31.(2012山东)在等差数列{}n a 中,84543=++a a a ,973a =(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意的*N m ∈,将数列{}n a 中落入区间()29,9m m 内的项的个数为m b ,求数列{}m b 的前m 项和m S .32.(2012江苏)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+=∈N .(Ⅰ)设11n n nb b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(Ⅱ)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 33.(2011天津)已知数列{}{}n n a b 与满足11(2)1nn n n n b a b a +++=-+,1*13(1),,22n n b n N a -+-=∈=且.(Ⅰ)求23,a a 的值;(Ⅱ)设*2121,n n n c a a n N +-=-∈,证明{}n c 是等比数列;(Ⅲ)设n S 为{}n a 的前n 项和,证明*21212122121().3n n n n S S S S n n N a a a a --++++≤-∈L 34.(2011天津)已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==,*n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;(Ⅲ)设*242,,k k S a a a k N =++⋅⋅⋅+∈证明:4*17()6nk k kS n N a =<∈∑. 35.(2010新课标)设数列{}n a 满足21112,32n n n a a a -+=-=g(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令n n b na =,求数列的前n 项和n S .36.(2010湖南)给出下面的数表序列:124 4 8表1 表2 表3 ∙∙∙1 1 3 1 3 5其中表n (n =1,2,3 L )有n 行,第1行的n 个数是1,3,5,L 2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(Ⅰ)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(Ⅱ)每个数列中最后一行都只有一个数,它们构成数列1,4,12L ,记此数列为{}n b 求和:32412231n n n bb b b bb b b b ++++L *()n N ∈ .。
十年高考真题分类汇编(2010-2019) 数学 专题13 排列组合与二项式定理 含解析
十年高考真题分类汇编(2010—2019)数学专题13 排列组合与二项式定理一、选择题1.(2019·全国3·理T4)(1+2x2)(1+x)4的展开式中x3的系数为( )A.12B.16C.20D.24【答案】A【解析】(1+2x2)(1+x)4的展开式中x3的系数为+2=4+8=12.故选A.2.(2018·全国3·理T5) 的展开式中x4的系数为( )A.10B.20C.40D.80【答案】C【解析】由展开式知T r+1=(x2)5-r(2x-1)r=2r x10-3r.当r=2时,x4的系数为22=40.3.(2017·全国1·理T6)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【答案】C【解析】(1+x)6的二项展开式通项为T r+1=x r,(1+x)6的展开式中含x2的项的来源有两部分,一部分是1×x2=15x2,另一部分是x4=15x2,故(1+x)6的展开式中含x2的项为15x2+15x2=30x2,其系数是30.4.(2017·全国3·理T4)(x+y)(2x-y)5的展开式中x3y3的系数为()A.-80B.-40C.40D.80【答案】C【解析】(2x-y)5的展开式的通项公式T r+1=(2x)5-r(-y)r.当r=3时,x(2x-y)5的展开式中x3y3的系数为×22×(-1)3=-40;当r=2时,y(2x-y)5的展开式中x3y3的系数为×23×(-1)2=80.故展开式中x3y3的系数为80-40=40.5.(2017·全国2·理T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【答案】D【解析】先把4项工作分成3份有种情况,再把3名志愿者排列有种情况,故不同的安排方式共有=36种,故选D.6.(2016·四川·理T2)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4B.15x4C.-20i x4D.20i x4【答案】A【解析】二项式(x+i)6展开的通项T r+1=x6-r i r,则其展开式中含x4是当6-r=4,即r=2,则展开式中含x4的项为x4i2=-15x4,故选A.7.(2016·全国2·理T5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9【答案】B【解析】由题意知,小明从街道的E处出发到F处的最短路径有6条,再从F处到G处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B.8.(2016·全国3·理T12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【答案】C【解析】由题意知a1=0,a8=1,则满足题意的a1,a2,…,a8的可能取值如下:综上可知,不同的“规范01数列”共有14个.9.(2016·四川·理T4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72【答案】D【解析】要组成没有重复数字的五位奇数,则个位数应该为1,3,5中的一个,其他位置共有种排法,所以其中奇数的个数为3=72,故选D.10.(2015·四川·理T6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个【答案】B【解析】当首位数字为4,个位数字为0或2时,满足条件的五位数有个;当首位数字为5,个位数字为0或2或4时,满足条件的五位数有个.故满足条件的五位数共有=(2+3)=5×4×3×2×1=120个.故选B.11.(2015·全国1·理T10)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【答案】C【解析】(x2+x+y)5=[(x2+x)+y]5的展开式通项为T r+1=(x2+x)5-r y r(r=0,1,2,…,5).由题意,y的幂指数为2,故r=2.对应的项为(x2+x)3y2=10(x2+x)3y2.记(x2+x)3的展开式通项为T s+1=(x2)3-s x s=x6-s(s=0,1,2,3),由题意令6-s=5,得s=1.故所求项的系数为10=30.12.(2015·陕西·理T4)二项式(x+1)n(n∈N*)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4【答案】B【解析】(x+1)n的展开式通项为T r+1=x n-r.令n-r=2,即r=n-2.则x2的系数为=15,解得n=6,故选B.13.(2015·湖北·理T3)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.212B.211C.210D.29【答案】D【解析】由条件知,∴n=10.∴(1+x)10中二项式系数和为210,其中奇数项的二项式系数和为210-1=29.14.(2014·大纲全国·理T5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【答案】C【解析】从6名男医生中选出2名有种选法,从5名女医生中选出1名有种选法,故共有×5=75种选法,选C.15.(2014·辽宁·理T6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24【答案】D【解析】插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为=24.故选D.16.(2014·四川·理T6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【答案】B【解析】(1)当最左端排甲的时候,排法的种数为;(2)当最左端排乙的时候,排法种数为.因此不同的排法的种数为=120+96=216.17.(2014·重庆·理T9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【答案】B【解析】第1步,先排歌舞类节目,有=6种排法,排好后有4个空位.第2步,排另3个节目,因为3个歌舞节目不相邻,则中间2个空位必须安排2个节目.分两类情况:①中间两个空位安排1个小品类节目和1个相声节目,有=4种排法,最后一个小品类节目排两端,有2种方法.共有6×4×2=48种排法.②中间两个空位安排2个小品类节目,有=2种排法,排好后有6个空位,选1个将相声类节目排上,有6种排法.共有6×2×6=72种排法.所以一共有48+72=120种排法.18.(2014·四川·理T2)在x(1+x)6的展开式中,含x3项的系数为( )A.30B.20C.15D.10【答案】C【解析】含x3的项是由(1+x)6展开式中含x2的项与x相乘得到,又(1+x)6展开式中含x2的项的系数为=15, 故含x3项的系数是15.19.(2014·湖南·理T4) 的展开式中x2y3的系数是( )A.-20B.-5C.5D.20【答案】A【解析】由已知,得T r+1=(-2y)r=(-2)r x5-r y r(0≤r≤5,r∈Z),令r=3,得T4=(-2)3x2y3=-20x2y3.20.(2014·浙江·理T5)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45B.60C.120D.210【答案】C【解析】∵(1+x)6展开式的通项公式为T r+1=x r,(1+y)4展开式的通项公式为T h+1=y h,∴(1+x)6(1+y)4展开式的通项可以为x r y h.∴f(m,n)=.∴f(3,0)+f(2,1)+f(1,2)+f(0,3)==20+60+36+4=120.故选C.21.(2013·全国1·理T9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( )A.5B.6C.7D.8【答案】B【解析】由题意可知,a=,b=,∵13a=7b,∴13·=7·,即,解得m=6.故选B.22.(2013·山东·理T10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279【答案】B【解析】构成所有的三位数的个数为=900,而无重复数字的三位数的个数为=648,故所求个数为900-648=252,应选B.23.(2013·全国2·理T5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-1【答案】D【解析】因为(1+x)5的二项展开式的通项为x r(0≤r≤5,r∈Z),则含x2的项为x2+ax·x=(10+5a)x2,所以10+5a=5,a=-1.24.(2013·辽宁·理T7)使 (n∈N*)的展开式中含有常数项的最小的n为( )A.4B.5C.6D.7【答案】B【解析】展开式中的第r+1项为(3x)n-r3n-r,若展开式中含常数项,则存在n∈N*,r∈N,使n-r=0,故最小的n值为5,故选B.25.(2013·大纲全国·理T7)(1+x)8(1+y)4的展开式中x2y2的系数是( )A.56B.84C.112D.168【答案】D【解析】因为(1+x)8的展开式中x2的系数为,(1+y)4的展开式中y2的系数为,所以x2y2的系数为=168.故选D.26.(2012·湖北·理T5)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=( )A.0B.1C.11D.12【答案】D【解析】∵512 012可化为(52-1)2 012,其二项式系数为T r+1=522 012-r·(-1)r.故(52-1)2 012被13除余数为·(-1)2 012=1,则当a=12时,512 012+12被13整除.27.(2012·安徽·理T7)(x2+2) 的展开式的常数项是( )A.-3B.-2C.2D.3【答案】D【解析】通项为T r+1=(-1)r=(-1)r.令10-2r=2或0,此时r=4或5.故(x2+2)的展开式的常数项是(-1)4×+2×(-1)5×=3.28.(2012·全国·理T2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【答案】A【解析】将4名学生均分为2个小组共有=3种分法,将2个小组的同学分给两名教师带有=2种分法,最后将2个小组的人员分配到甲、乙两地有=2种分法,故不同的安排方案共有3×2×2=12种.29.(2012·辽宁·理T5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9!【答案】C【解析】完成这件事可以分为两步,第一步排列三个家庭的相对位置,有种排法;第二步排列每个家庭中的三个成员,共有种排法.由乘法原理可得不同的坐法种数有,故选C.30.(2012·安徽·理T10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3B.1或4C.2或3D.2或4【答案】D【解析】6人之间互相交换,总共有=15种,而实际只交换了13次,故有2次未交换.不妨设为甲与乙、丙与丁之间未交换或甲与乙、甲与丙之间未交换,当甲与乙、丙与丁之间未交换时,甲、乙、丙、丁4人都收到4份礼物;当甲与乙、甲与丙之间未交换时,只有乙、丙两人收到4份礼物,故选D.31.(2011·全国·理T8) 的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.40【答案】D【解析】令x=1得(1+a)(2-1)5=2,∴a=1.原式=x·,故常数项为x·(2x)2(2x)3=-40+80=40.32.(2010·山东·理T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种【答案】B【解析】若乙排在第二位,则有种方案;若乙不排在第二位,则乙只能排在第三、四、五位,此时共有种方案,故共有=42(种).二、填空题1.(2019·天津·理T10)(2x-8的展开式中的常数项为【答案】28【解析】T r+1=(2x)8-r(r=·28-r·(-r·x8-4r.需8-4r=0,r=2.常数项为26(-2=26=28.2.(2018·天津·理T10)在的展开式中,x2的系数为.【答案】【解析】展开式的通项为T r+1=x5-r.令5-=2,可得r=2.所以的展开式中的x2的系数为.3.(2018·浙江·T14)二项式的展开式的常数项是.【答案】7【解析】通项为T r+1=,当r=2时,=0.故展开式的常数项为=7.4.(2018·上海·T3)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).【答案】21【解析】由(1+x)7的二项展开式的通项,得(1+x)7的二项展开式的x2项的系数为=21.5.(2018·全国1·理T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【答案】16【解析】方法一:①恰有1位女生时,有=12种选法.②恰有2位女生时,有=4种选法.故不同的选法共有12+4=16种.方法二:6人中选3人共有种选法,3人全是男生时有种选法,所以至少有1位女生入选时有=16种选法.6.(2018·浙江·T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分两类:第一类:从0,2,4,6中取到0,则没有重复数字的四位数有=540;第二类:从0,2,4,6中不取0,则没有重复数字的四位数有=720.所以没有重复数字的四位数共有540+720=1260种.7.(2017·山东·理T11)已知(1+3x)n的展开式中含有x2项的系数是54,则n= .【答案】4【解析】二项展开式的通项T r+1=(3x)r=3r··x r,令r=2,得32·=54,解得n=4.8.(2017·浙江·T13)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .【答案】16 4【解析】由二项式展开式可得通项公式为x3-r x2-m2m,分别取r=3,m=1和r=2,m=2可得a4=4+12=16,令x=0可得a5=13×22=4.9.(2017·天津·理T14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答)【答案】1080【解析】①没有一个数字是偶数的四位数有=120个;②有且只有一个数字是偶数的四位数有=960个.所以至多有一个数字是偶数的四位数有120+960=1 080个.10.(2017·浙江·T16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)【答案】660【解析】由题意可得,总的选择方法为种方法,其中不满足题意的选法有种方法,则满足题意的选法有=660种.11.(2016·全国1·理T14)(2x+)5的展开式中,x3的系数是.(用数字填写答案)【答案】10【解析】二项式的通项公式T r+1=(2x)5-r25-r,令5-=3,解得r=4,故x3的系数为×25-4=10.12.(2016·天津·理T10) 的展开式中x7的系数为.(用数字作答)【答案】-56【解析】展开式通项为T r+1=(x2)8-r=(-1)r x16-3r,令16-3r=7,得r=3,所以展开式中x7的系数为(-1)3=-56.13.(2015·广东·理T12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)【答案】1560【解析】共有=40×39=1 560条毕业留言.14.(2015·天津·理T12)在的展开式中,x2的系数为.【答案】【解析】由题意知T r+1=x6-r··x6-2r·.令6-2r=2,可得r=2.故所求x2的系数为.15.(2015·重庆·理T12)的展开式中x8的系数是(用数字作答).【答案】【解析】展开式的通项公式T r+1=·(x3)5-r··2-r·(r=0,1,2,…,5).令15-r=8,得r=2,于是展开式中x8项的系数是·2-2=.16.(2015·全国2·理T15)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= .【答案】3【解析】∵(1+x)4=x4+x3+x2+x+x0=x4+4x3+6x2+4x+1,∴(a+x)(1+x)4的奇数次幂项的系数为4a+4a+1+6+1=32,∴a=3.17.(2014·安徽·理T13)设a≠0,n是大于1的自然数, 的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a= .【答案】3【解析】由题意得a1==3,∴n=3a;a2==4,∴n2-n=8a2.将n=3a代入n2-n=8a2得9a2-3a=8a2,即a2-3a=0,解得a=3或a=0(舍去).∴a=3.18.(2014·北京·理T13)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.【答案】36【解析】产品A,B相邻时,不同的摆法有=48种.而A,B相邻,A,C也相邻时的摆法为A在中间,C,B在A的两侧,不同的摆法共有=12(种).故产品A与产品B相邻,且产品A与产品C不相邻的不同摆法有48-12=36(种).19.(2014·全国1·理T13)(x-y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)【答案】-20【解析】(x+y)8的通项公式为T r+1=x8-r y r(r=0,1,…,8,r∈Z).当r=7时,T8=xy7=8xy7,当r=6时,T7=x2y6=28x2y6,所以(x-y)(x+y)8的展开式中含x2y7的项为x·8xy7-y·28x2y6=-20x2y7,故系数为-20.20.(2014·全国2·理T13)(x+a)10的展开式中,x7的系数为15,则a= .(用数字填写答案)【答案】【解析】设展开式的通项为T r+1=x10-r a r,令r=3,得T4=x7a3,即a3=15,得a=.21.(2013·浙江·理T11)设二项式的展开式中常数项为A,则A= .【答案】-10【解析】T r+1=)5-r··(-1)r·=(-1)r=(-1)r.令15-5r=0,得r=3,所以A=(-1)3=-=-10.22.(2013·北京·理T12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.【答案】96【解析】分给同一人的2张参观券连号的情况共有12,23,34,45四种情况,从4人中选一人得到连号参观券,有4种方法.其余3张分给3人可以全排列,有种方法,所以不同的分法有4=96种.23.(2013·大纲全国·理T14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)【答案】480【解析】先排除甲、乙外的4人,方法有种,再将甲、乙插入这4人形成的5个间隔中,有种排法,因此甲、乙不相邻的不同排法有=480(种).24.(2013·浙江·理T14)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).【答案】480【解析】按C的位置分三类情况:①当C在第一或第六位时,有=120种排法;②当C在第二或第五位时,有=72种排法;③当C在第三或第四位时,有=48种排法.所以共有2×(120+72+48)=480种排法.25.(2012·福建·理T11)(a+x)4的展开式中x3的系数等于8,则实数a= .【答案】2【解析】∵T r+1=a r x4-r,∴当4-r=3,即r=1时,T2=·a·x3=4ax3=8x3.故a=2.26.(2012·浙江·理T14)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3= .【答案】10【解析】由x5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5可得,可解得27.(2012·大纲·理T15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.【答案】56【解析】∵,∴n=8.T r+1=x8-r x8-2r,当8-2r=-2时,r=5.∴系数为=56.28.(2011·北京·理T12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)【答案】14【解析】可用排除法,这个四位数每一位上的数字只能是2或3,则共有24个,而这其中要求数字2或3至少出现一次,所以全是2和全是3不满足,即满足要求的四位数有24-2=14个.。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版): 复数
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
1
42.(2014·全国 1·文 T3)设 z=1+ +i,则|z|=( )
1
√2
√3
A.2
B. 2
C. 2
D.2
43.(2013·全国 1·理 T2)若复数 z 满足(3-4i)z=|4+3i|,则 z 的虚部为( )
A.-4
4
B.-5
4
C.4
D.√2
1+2i
8.(2018·全国 2·理 T1) =( )
1-2i
4
A.-5
−
3
5i
4
B.-5
+
3
5i
3
C.-5
−
4
5i
3
D.-5
+
4
5i
9.(2018·全国 2·文 T1)i(2+3i)=( )
A.3-2i
B.3+2i
1
C.-3-2i
D.-3+2i
10.(2018·全国 3·理 T2 文 T2)(1+i)(2-i)=( )
A.√3
B.√5
C.3
D.5
4.(2019·全国 2·文 T2)设 z=i(2+i),则 =( )
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
5.(2019·全国 1·理 T2)设复数 z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( )
A.(x+1)2+y2=1
B.(x-1)2+y2=1
(2010-2019)十年高考数学真题分类汇编:排列组合与二项式定理(含解析)
(2010-2019)十年高考数学真题分类汇编:排列组合与二项式定理(含解析)一、选择题1.(2019·全国3·理T4)(1+2x 2)(1+x)4的展开式中x 3的系数为( ) A.12B.16C.20D.24【答案】A【解析】(1+2x 2)(1+x)4的展开式中x 3的系数为C 43+2C 41=4+8=12.故选A.2.(2018·全国3·理T5) (x 2+2x )5的展开式中x 4的系数为( ) A.10B.20C.40D.80【答案】C【解析】由展开式知T r+1=C 5r (x 2)5-r (2x -1)r =C 5r 2r x 10-3r .当r=2时,x 4的系数为C 5222=40.3.(2017·全国1·理T6)(1+1x 2)(1+x)6展开式中x 2的系数为( ) A.15B.20C.30D.35【答案】C【解析】(1+x )6的二项展开式通项为T r+1=C 6r x r ,(1+1x 2)(1+x )6的展开式中含x 2的项的来源有两部分,一部分是1×C 62x 2=15x 2,另一部分是1x ×C 64x 4=15x 2,故(1+1x )(1+x )6的展开式中含x 2的项为15x 2+15x 2=30x 2,其系数是30.4.(2017·全国3·理T4)(x+y)(2x-y)5的展开式中x 3y 3的系数为( ) A.-80 B.-40 C.40 D.80【答案】C【解析】(2x-y )5的展开式的通项公式T r+1=C 5r (2x )5-r (-y )r . 当r=3时,x (2x-y )5的展开式中x 3y 3的系数为C 53×22×(-1)3=-40; 当r=2时,y (2x-y )5的展开式中x 3y 3的系数为C 52×23×(-1)2=80.故展开式中x 3y 3的系数为80-40=40.5.(2017·全国2·理T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】先把4项工作分成3份有C 42C 21C 11A 22种情况,再把3名志愿者排列有A 33种情况,故不同的安排方式共有C 42C 21C 11A 22·A 33=36种,故选D .6.(2016·四川·理T2)设i 为虚数单位,则(x+i)6的展开式中含x 4的项为( ) A.-15x 4 B.15x 4 C.-20i x 4 D.20i x 4【答案】A【解析】二项式(x+i)6展开的通项T r+1=C 6r x 6-r i r ,则其展开式中含x 4是当6-r=4,即r=2,则展开式中含x 4的项为C 62x 4i 2=-15x 4,故选A .7.(2016·全国2·理T5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9【答案】B【解析】由题意知,小明从街道的E 处出发到F 处的最短路径有6条,再从F 处到G 处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B .8.(2016·全国3·理T12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个 【答案】C【解析】由题意知a 1=0,a 8=1,则满足题意的a 1,a 2,…,a 8的可能取值如下:。
(2010-2019)高考数学真题分类汇编 集合 理(含解析)
历年高考真题汇编1.【2019年新课标1理科01】已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.【2018年新课标1理科02】已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2} 【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.4.【2016年新课标1理科01】设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={x|x2﹣2x>0},B={x|x},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x或x<0},A∪B=R,故选:B.7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.8.【2010年新课标1理科01】已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =( )A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<<【答案】A 【解析】解:{}{}333||B x x x x =<=-<<, 则{}|32A B x x ⋂=-<<, 故选:A .2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤,{}23A x x ∴=≤≤, 又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C. 3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则A B =( )A .{3,2,1,0}---B .{}1,0,1,2,3-C .{}3,2--D .{}3,2,1,0,1,2,3---【答案】B 【解析】因为{}2|450B x x x =∈--≤R {|15}x x =-≤≤,{3,2,1,0,1,2,3}A =---∴{}1,0,1,2,3A B ⋂=-. 故选B .4.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =( )A .(1,2)B .(]1,2 C .(1,3)D .(,2]-∞【答案】B 【解析】由24x >可得2x >, (1)(3)0x x --<可得13x <<,所以集合(2,),(1,3)A B =+∞=,(,2]UA =-∞,所以()U A B =(]1,2,故选B.5.已知集合{}(,)|1,A x y y x x R ==+∈,集合{}2(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2yx 有2个交点,故A B ⋂的子集有4个.6.已知集合{}2log (1)2M x x =+<,{1,0,1,2,3}N =-,则()R M N ⋂=( ) A .{-1,0,1,2,3} B .{-1,0,1,2} C .{-1,0,1}D .{-1,3}【答案】D 【解析】由题意,集合{}2log (1)2{|13}M x x x x =+<=-<<,则{|1RM x x =≤-或3}x ≥又由{1,0,1,2,3}N =-,所以(){1,3}R M N ⋂=-,故选D.7.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则()R A B =( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】因为{}{}lg(1)1A x y x x x ==-=>,所以{}1R C A x x =≤, 又{}1,0,1,2,3B =-,所以{}()1,0,1R C A B =-.故选B8.已知R 是实数集,集合{}1,0,1A =-,{}210B x x =-≥,则()A B =R( ) A .{}1,0- B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】1|2B x x1|2R C Bx x即(){1,0}R A C B故选A 。
2010-2019年十年高考数学真题分类汇编.docx
A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5
理
3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )
十年高考真题分类汇编(2010—2019)数学(20210417120444)
十年高考真题分类汇编(2010—2019)数学专题空间向量1. (2014 •全国2 •理T11)直三棱柱ABC-A6C 、中,N%4R00 ,MN 分别是A £, A6的中 点,则6y 与4V 所成角的余弦值为() r 同 u.— 102. (2013 •北京•文T8)如图,在正方体被〃中,尸为对角线做的三等分点,尸到各顶点的距离的不同取值有()3. (2012 •陕西•理T5)如图,在空间直角坐标系中有直三棱柱板。
1二8与纸则直线与直线必夹角的余弦值为(4. (2010 •大纲全国•文T6)直三棱柱ABC-ABQ 中,若NBAC =90° ,AB=AC=AA1,则异面直线BA : 与AQ 所成的角等于()A. 30°B. 45°C. 60°D. 90°5. (2019 •天津•理 T17)如图,AE,平面 ABCD, CF 〃AE , AD 〃BC, AD_LAB, AB=AD=1, AE=BC 二2.(1)求证:BF 〃平面ADE;B -l B. 4个C 5个 D.6个A.3个 C.这⑵求直线CE与平面BDE所成角的正弦值;⑶若二面角E-BD-F的余弦值为京求线段CF的长.EB6.(2019 •浙江• T 19)如图,已知三棱柱ABC-A&C,平面 4月平面ABC, ZABC^0° , Z 区灰>30° ,4月引。
泡尸分别是〃;43的中点.(1)证明:年J_6C;⑵求直线房与平面46。
所成角的余弦值.7.(2019 •全国1•理T18)如图,直四棱柱极〃的底面是菱形,例=1,止2, N 员切40° ,EM,V分别是比破,4。
的中点.⑴证明:/V〃平面C、DE;(2)求二面角力T4M的正弦值.8.(2019 •全国2 •理T17)如图,长方体力用a-4£4〃的底面月颜是正方形,点£在棱前[上,龙LEG.⑴证明:麻山平面微a;⑵若AE=A^求二面角B-EC-C的正弦值.9.(2019 •全国3 •理T19)图1是由矩形ADEB,Rt^ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, ZFBC=60° .将其沿AB, BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A, C, G, D四点共面,且平面ABC_L平面BCGE;(2)求图2中的二面角B-CG-A的大小.10.(2018 •浙江• T 8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为01,SE与平面ABCD所成的角为82,二面角S-AB-C的平面角为83,则()A.01<02<03B.03<02<61C.01<O3<02D.92<03<0111.(2018 •全国3 •理T19)如图,边长为2的正方形4加9所在的平面与半圆弧曲所在平面垂直,"是曲上异于的点.(1)证明:平面AMD_L平面BMC;⑵当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.12.(2018 •北京•理T16)如图,在三棱柱ABC-A瓜&中,CC_L平面ABCM & F, G分别为44:, AQ 4Q 能的中点,AB二BC二遍,AC=AA尸2.⑴求证:AC_L平面BEF;(2)求二面角B-CD-G的余弦值;16.(2018 •浙江• T9)如图,已知多面体ABCA瓜心, 44 £5 均垂直于平面ABC, Z板=120° , A.A^ GC=1, AB=BC=B-.B=^.(1)证明:四_L平面4A4;⑵求直线月a与平面月期所成的角的正弦值.17.(2018 •上海,T17)已知圆锥的顶点为P,底面圆心为0,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设P0=4, 0A, 0B是底面半径,且NA0B=90° , M为线段AB的中点,如图,求异面直线PM与0B 所成的角的大小.18.(2017 •北京•理T16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD,平面ABCD, 点M在线段PB上,PD〃平面MAC, PA=PD二遍,AB=4.⑴求证:M为PB的中点;(2)求二面角B-PD-A的大小;⑶求直线MC与平面BDP所成角的正弦值.19.(2017 •全国 1 •理 T18)如图,在四棱锥 P-ABCD 中,AB〃CD,且NBAP=NCDP=90。
理科数学2010-2019高考真题分类训练排列与组合答案
专题十 计数原理第三十讲 排列与组合答案部分1.C 【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有210C 种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率21031C 15==P ,故选C . 2.D 【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .3.C 【解析】不放回的抽取2次有1198C C 9872=⨯=,如图 21,3,4,5,6,7,8,923,4,5,6,7,8,91可知(1,2)与(2,1)是不同,所以抽到的2张卡片上的数奇偶性不同有11542C C =40,所求概率为405728=. 4.B 【解析】由题意可知E F →有6种走法,F G →有3种走法,由乘法计数原理知,共有6318⨯= 种走法,故选B .5.D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中任选一个,有13A 种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有44A 种方法,所以其中奇数的个数为1434A A 72=,故选D . 6.B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个,选B . 7.D 【解析】4422728P -==. 8.D 【解析】易知12345||||||||||x x x x x ++++=1或2或3,下面分三种情况讨论.其一:12345||||||||||x x x x x ++++=1,此时,从12345,,,,x x x x x 中任取一个让其等于1或-1,其余等于0,于是有115210C C =种情况;其二:12345||||||||||x x x x x ++++=2,此时,从12345,,,,x x x x x 中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有221552240C C C +=种情况;其三:12345||||||||||x x x x x ++++=3,此时,从12345,,,,x x x x x 中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有3313255353280C C C C C ++=种情况.由于104080130++=.9.C 【解析】直接法:如图,在上底面中选11B D ,四个侧面中的面对角线都与它成60︒,共8对,同样11A C 对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对,所以全部共有48对.间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60︒,所以成角为60︒的共有21212648C --=. 10.A 【解析】分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有2345(1)a a a a a +++++种不同的取法;第二步,5个无区别的篮球都取出或都不取出,则有5(1)b +种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个,…,5个,有5(1)c +种不同的取法,所以所求的取法种数为2345(1)a a a a a +++++5(1)b +5(1)c +.11.B 【解析】能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8 =648.故能够组成有重复数字的三位数的个数为900648252-=.12.A 【解析】先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有122412C C =种. 13.D 【解析】和为偶数,则4个数都是偶数,都是奇数或者两个奇数两个偶数,则有44224545156066C C C C ++⋅=++=种取法.14.C 【解析】若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有14C ⨯14C ⨯14C =64,若2张同色,则有21213244144C C C C ⨯⨯⨯=,若红色1张,其余21张不同色,则有12114344192C C C C ⨯⨯⨯=,其余2张同色则有11243472C C C ⨯⨯=,所以共有64+144+192+72=472.另解1:472885607216614151641122434316=-=--⨯⨯=--C C C C ,答案应选C . 另解2:472122642202111241261011123212143431204=-+=⨯⨯+-⨯⨯=+-C C C C C . 15.B 【解析】B ,D ,E ,F 用四种颜色,则有441124A ⨯⨯=种涂色方法;B ,D ,E ,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法;B ,D ,E ,F 用两种颜色,则有242248A ⨯⨯=种涂色方法;所以共有24+192+48=264种不同的涂色方法.16.B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318A A =种,故编排方案共有241842+=种,故选B . 17.C .【解析】共有5!=120个不同的闪烁,每个闪烁要完成5次闪亮需用时间为5秒,共5⨯120=600秒;每两个闪烁之间的间隔为5秒,共5⨯(120—1)=595秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十 计数原理
第三十讲 排列与组合
一、选择题
1.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥
德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A .112
B .114
C .115
D .118
2.(2017新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人
完成,则不同的安排方式共有
A .12种
B .18种
C .24种
D .36种
3.(2017山东)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取
1张.则抽到的2张卡片上的数奇偶性不同的概率是
A .518
B .49
C .59
D .79 4.(2016年全国II)如图,小明从街道的
E 处出发,先到
F 处与小红会合,再一起到位于G
处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
A .24
B .18
C .12
D .9
5.(2016四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为
A .24
B .48
C .60
D .72
6.(2015四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的
偶数共有
A .144个
B .120个
C .96个
D .72个
7.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为
A .
18 B .38 C .58 D .78
8.(2014广东)设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中
满足条件“1234513x x x x x ≤++++≤”的元素个数为
A .60
B .90
C .120
D .130
9.(2014安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共
有
A .24对
B .30对
C .48对
D .60对
10.(2014福建)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1
个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、从5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是
A .()()()5
55432111c b a a a a a +++++++ B .()()()5
54325111c b b b b b a +++++++ C .()()()554325
111c b b b b b a +++++++ D .()()()
543255111c c c c c b a +++++++ 11.(2013山东)用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为
A .243
B .252
C .261
D .279
12.(2012新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会
实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有
A .12种
B .10种
C .9种
D .8种
13.(2012浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,
则不同的取法共有
A .60种
B .63种
C .65种
D .66种
14.(2012山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中
任取3张,要求这3张卡片不能是同一种颜色,并且红色卡片至多1张,不同取法的种数是
A .232
B .252
C .472
D .484
15.(2010天津)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂
一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用
A.288种B.264种C.240种D.168种
16.(2010山东)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有
A.36种B.42种C.48种D.54种
17.(2010广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是
A.1205秒B.1200秒C.1195秒D.1190秒
18.(2010湖北)现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是
A.152 B.126 C.90 D.54
二、填空题
19.(2018全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有___种.(用数字填写答案)
20.(2018浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)
21.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)
22.(2017天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数
字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)
23.(2015广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那
么全班共写了 条毕业留言.(用数字作答)
24(2014浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分
配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).
25.(2014北京)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不
相邻,则不同的摆法有_______种.
26.(2014广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的
概率为 .
27.(2014江西)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品
的概率是________.
28.(2013北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,
如果分给同一人的两张参观券连号,那么不同的分法种数是 .
29.(2012湖北)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,
94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则
(Ⅰ)4位回文数有 个;
(Ⅱ)21()n n ++∈N 位回文数有 个.
30.给n 个自上而下相连的正方形着黑色或白色.当4n ≤时,在所有不同的着色方案中,
黑色正方形互不相邻....
的着色方案如下图所示:
由此推断,当6n =时,黑色正方形互不相邻....
的着色方案共有 种,至少有两个黑色正方形相邻..
的着色方案共有 种,(结果用数值表示) 31.(2013新课标2)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数
之和等于5的概率为114
,则n =________. 32.(2013浙江)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的
排法共有________种(用数字作答).
33.(2010浙江)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、
“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).。