计量经济学 受约束回归检验 、Eviews6
计量经济学-多元线性回归分析;eviews6操作
E(i ) 0
V(a i)rE (i2)2
C( o i,v j) E (ij) 0
i j i,j 1 ,2 , ,n
假设5,解释变量与随机项不相关
Co(Xvji,i)0
j1,2 ,k
假设6,随机项满足正态分布
i ~N(0,2)
2021/6/4
7
上述假设的矩阵符号表示 式:
假设1,nk矩阵X是非随机的,且X的秩=k,即X满
五、样本容量问题
六、估计实例
2021/6/4
10
一、普通最小二乘估计
对于随机抽取的n组观测值 ( Y i,X j) ii , 1 , 2 , ,n ,j 0 , 1 , 2 , k
如果样本函数的参数估计值已经得到,则有:
Y ˆ i ˆ 1 ˆ 2 X 2 i ˆ 3 X 3 i ˆ k X kii=1,2…n
1、线性性
β ˆ(X X )1X Y CY
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行向量
2021/6/4
18
2、无偏性
E(βˆ) E((XX)1 XY) E((XX)1 X(Xβ μ)) β (XX)1 E(Xμ) β
这里利用了假设: E(X’)=0
3、有效性(最小方差性)
习惯上:把常数项看成为一虚变量的系数,该 虚变量的样本观测值始终取1。这样:
模型中解释变量的数目为(k)
2021/6/4
3
模 型 : Y t 1 2 t X 2 t k X k t u t
也被称为总体回归函数的随机表达形式。它 的
非随机表达式为: E ( Y i | X 2 i , X 3 i , X k ) i 1 2 X 2 i 3 X 3 i k X ki
计量经济学经典eviews 时间序列回归
时间序列回归本章讨论含有ARMA 项的单方程回归方法,这种方法对于分析时间序列数据(检验序列相关性,估计ARMA 模型,使用分布多重滞后,非平稳时间序列的单位根检验)是很重要的。
§13.1序列相关理论 时间序列回归中的一个普遍现象是:残差和它自己的滞后值有关。
这种相关性违背了回归理论的标准假设:干扰项互不相关。
与序列相关相联系的主要问题有:一、一阶自回归模型最简单且最常用的序列相关模型是一阶自回归AR(1)模型定义如下:t t t u x y +'=βt t t u u ερ+=-1参数ρ是一阶序列相关系数,实际上,AR(1)模型是将以前观测值的残差包含到现观测值的回归模型中。
二、高阶自回归模型:更为一般,带有p 阶自回归的回归,AR(p)误差由下式给出:t t t u x y +'=βt p t p t t t u u u u ερρρ++++=--- 2211AR(p)的自回归将渐渐衰减至零,同时高于p 阶的偏自相关也是零。
§13.2 检验序列相关在使用估计方程进行统计推断(如假设检验和预测)之前,一般应检验残差(序列相关的证据),Eviews 提供了几种方法来检验当前序列相关。
1.Dubin-Waston 统计量 D-W 统计量用于检验一阶序列相关。
2.相关图和Q-统计量 计算相关图和Q-统计量的细节见第七章3.序列相关LM 检验 检验的原假设是:至给定阶数,残差不具有序列相关。
§13.3 估计含AR 项的模型随机误差项存在序列相关说明模型定义存在严重问题。
特别的,应注意使用OLS 得出的过分限制的定义。
有时,在回归方程中添加不应被排除的变量会消除序列相关。
1.一阶序列相关在EViews 中估计一AR(1)模型,选择Quick/Estimate Equation 打开一个方程,用列表法输入方程后,最后将AR(1)项加到列表中。
例如:估计一个带有AR(1)误差的简单消费函数t t t u GDP c c CS ++=21t t t u u ερ+=-1应定义方程为: cs c gdp ar(1)2.高阶序列相关估计高阶AR 模型稍稍复杂些,为估计AR(k ),应输入模型的定义和所包括的各阶AR 值。
计量经济学 Chow(邹氏)检验 检验模型是否存在结构性变化 Eviews6
数学与统计学院实验报告院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:实验类型(验证性、演示性、综合性、设计性):验证性实验时间:2017年 3 月15 日一、实验课题Chow检验(邹氏检验)二、实验目的和意义1 建立财政支出模型表1给出了1952-2004年中国财政支出(Fin)的年度数据(以1952年为基期,用消费价格指数进行平减后得数据)。
试根据财政支出随时间变化的特征建立相应的模型。
表1obs Fin obs Fin obs Fin1952 173.94 1970 563.59 1988 1122.881953 206.23 1971 638.01 1989 1077.921954 231.7 1972 658.23 1990 1163.191955 233.21 1973 691 1991 1212.511956 262.14 1974 664.81 1992 1272.681957 279.45 1975 691.32 1993 1403.621958 349.03 1976 656.25 1994 1383.741959 443.85 1977 724.18 1995 1442.191960 419.06 1978 931.47 1996 1613.191961 270.8 1979 924.71 1997 1868.981962 229.72 1980 882.78 1998 2190.31963 266.46 1981 874.02 1999 2616.461964 322.98 1982 884.14 2000 3109.611965 393.14 1983 982.17 2001 3834.161966 465.45 1984 1147.95 2002 4481.41967 351.99 1985 1287.41 2003 5153.41968 302.98 1986 1285.16 2004 6092.991969 446.83 1987 1241.86步骤提示:(1)做变量fin的散点图,观察规律,看在不同时期是否有结构性变化。
计量经济学chow(邹氏)检验检验模型是否存在结构性变化eviews6
数学与统计学院实验报告院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:实验类型(验证性、演示性、综合性、设计性):验证性实验时间:2017年 3 月 15 日一、实验课题Chow检验(邹氏检验)二、实验目的和意义1 建立财政支出模型表1给出了1952-2004年中国财政支出(Fin)的年度数据(以1952年为基期,用消费价格指数进行平减后得数据)。
试根据财政支出随时间变化的特征建立相应的模型。
表1obs Fin obs Fin obs Fin19521970198819531971198919541972199019551973691199119561974199219571975199319581976199419591977199519601978199619611979199719621980199819631981199919641982200019651983200119661984200219671985200319681986200419691987步骤提示:(1)做变量fin的散点图,观察规律,看在不同时期是否有结构性变化。
(2)建立时间变量t=1,2,…,做Fin关于t的线性回归模型,并对其做参数结构稳定性检验(Chow检验或Chow预测检验)(建立变量t的方法是:t=@trend()+1)三、解题思路(1)Eviews6---建立fin的连续序列(object--series)---画散点图(view—graph—dot plot)(2)建立t的时间变量(quick—generate series—t=@trend()+1)---建立fin、t的方程(quick--estimate equation—fin c t)---chow检验(view—stability test—chow breakpoint test—断点为1996)---建立三个方程(一个受约束方程,两个不受约束方程)---比较1996年属于不受约束方程那个方程四、实验过程记录与结果(1)、散点图通过散点图可以发现,1996年存在结构性变化(针对斜率96年前后突然变大)(2)chow检验受约束模型:由该方程发现,残差存在明显的相关性,即存在自相关性,进行以1996年为断点分阶段检验不受约束模型(1)、1952-1996(2)1997-2004根据受约束模型相比,各统计量明显有转好的趋势。
Eviews6.0线性回归
R2 k1
F1R2Tk
在原假设为误差正态分布下,统计量服从 F(k – 1 , T – k) 分布。
25
F统计量下的P值,即Prob(F-statistic), 是F检验的边际显 著性水平。如果P值小于所检验的边际显著水平,比如说 0.05,则拒绝所有系数都为零的原假设。注意F检验是一个 联合检验,即使所有的t统计量都是不显著的,F统计量也可 能是高度显著的。
变量名下;如果是使用公式法来说明方程,EViews会列出实际 系数 c(1), c(2), c(3) 等等。
对于所考虑的简单线性模型,系数是在其他变量保持不变
的情况下自变量对因变量的边际收益。系数 c 是回归中的常数 或者截距---它是当其他所有自变量都为零时预测的基本水平。 其他系数可以理解为假设所有其它变量都不变,相应的自变量
ARCH方法。 EViews计算R2 的公式为:
R21 uˆuˆ
, uˆyXb
(yy)(yy)
其中,uˆ是残差,y 是因变量的均值。
19
(2) R2 调整 使用R2 作为衡量工具存在的一个问题,即在增加新的自变 量时R2 不会减少。在极端的情况下,如果把样本观测值都作R 2为 自变量,总能得到R2 为1。
s uˆuˆ/(Tk)
(4)残差平方和 残差平方和可以用于很多统计计算中,为了方便,现在将 它单独列出:
T
uˆuˆ (yt Xtb)2 t1 21
(5) 对数似然函数值 EViews可以作出根据系数的估计值得到的对数似然函数 值(假设误差为正态分布)。似然比检验可通过观察方程严 格形式和不严格形式的对数似然值之间的差异来进行。 对数似然计算如下:
基于eviews6的面板数据计量分析1
基于EViews 6的面板数据计量分析 对于面板数据,EViews 6 提供的估计方法有如下三种,最小二乘估计——LS - Least Squares (and AR)二阶段最小二乘估计——TSLS - Two-Stage Least Squares (and AR)动态面板数据模型的广义矩估计——GMM / DPD - Generalized Method ofMoments/Dynamic Panel Data第1节“LS - Least Squares (LS and AR)”估计如果选择最小二乘方法估计面板数据模型,在“Equation Estimation”窗口中,须依次设置“Specification”、“Panel Options”和“Options”页面。
1.1“Specification”页面在“Specification”页面中,完成模型设定和估计样本时间范围的选择。
1 在“Equation specification”编辑区,指定模型的被解释变量、截距项和解释变量;2 在“Sample”编辑区,指定估计样本时间的范围。
1.2“Panel Options”页面设置模型中不可观测的双(单)因素效应,即面板数据回归模型的选择。
点击“Panel Options”该页面包含三方面内容。
1 效应设置在“Effects specification”选择区,设定面板数据模型的个体效应和时间效应,可选择的选项有“None”、“Fixed”和“Random”,分别表示“无效应”、“固定效应”和“随机效应”。
如果选择了“Fixed”或“Random”,EViews在输出结果中自动添加一个共同常数,即截距项,以保证效应之和为零。
否则,截距项必要时,须在“Specification”页面的“Equation specification”编辑区设定模型截距项。
2 GLS加权设置“GLS Weights”可以在下拉框中选择如下选项之一。
计量经济学软件Eviews6.0基本操作
计量经济学软件EVIEWS6.0基本操作一、什么是EVIEWSEVIEWS (ECONOMETRIC VIEWS)软件是QMS(QUANTITATIVE MICRO SOFTWARE)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EVIEWS软件主要应用在经济学领域,可用于回归分析与预测(REGRESSION AND FORECASTING)、时间序列(TIME SERIES)以及横截面数据(CROSS-SECTIONAL DATA )分析。
与其他统计软件(如EXCEL、SAS、SPSS、stata、R)相比,EVIEWS功能优势是菜单操作简单明了,使用方法,非常适用计量经济学初级学员。
本手册对EVIEWS软件6.0版本进行简单介绍,目的是让初级学员通过本章介绍,能够对学过的计量经济理论和方法进行简单应用,以便完成本书所述的相关实验项目。
二、EVIEWS安装EVIEWS6.0文件安装包大小约190MB,可在网上下载①。
下载完毕后,按照包中安装文件所述安装方法安装该软件。
安装完毕后,将快捷键发送的桌面,电脑桌面显示有EVIEWS6.0图标,整个安装过程就结束了。
双击EVIEWS按钮即可启动该软件(图1),图1所示界面称为EVIEWS软件主窗口,主窗口中的菜单,如File菜单称为EVIEWS主菜单。
图1三、Eviews工作特点初次使EVIEWS6.0计量经济学软件,必须了解其工作过程。
如,想要完成一个校准一元线性回归模型的参数估计,必须要完成两大步工作。
第一大步工作就是在建立一个工作文档(即EVIEWS6.0中的Workfile文档)、建立变量、导入数据;第二大步工作是在第一大步工作的基础上,根据模型特征,选用适当的参数估计方法,完成参数估计及相关检验。
四、具体示例在这里,我们通过一个简单的标准一元线性回归模型的估计过程来说明Eviews软件完成回归分析的基本过程。
基于EVIEWS软件的计量经济学建模检验案例解读
基于EVIEWS软件的计量经济学建模检验案例解读计量经济学是经济学领域的一个重要分支,它运用数理统计方法对经济学模型进行定量分析和预测。
而EVIEWS软件则是计量经济学常用的数据分析与建模工具。
本文将通过一个实例案例,解读基于EVIEWS软件的计量经济学建模检验的方法和过程。
首先,我们需要了解案例的背景和研究问题。
假设我们想研究某国家的经济增长与就业率之间的关系。
我们提出了一个假设:经济增长对就业率有积极的影响。
第一步是数据收集和准备。
我们需要收集与经济增长和就业率相关的数据。
以中国为例,我们可以从国家统计局等官方机构获取国内生产总值(GDP)和就业率的数据。
这些数据应该是时间序列数据,通常包括一定的时间跨度和频率(例如月度或年度数据)。
第二步是数据预处理。
我们需要对收集到的数据进行清洗和处理,以确保数据的质量。
具体来说,我们需要检查数据是否存在缺失值、异常值等,确保数据的连续性和一致性。
第三步是建立计量经济学模型。
在本案例中,我们使用一个简单的线性回归模型来研究经济增长对就业率的影响。
假设就业率(Y)是经济增长(X)的线性函数,即Y = β0 +β1X + ε,其中β0和β1是回归系数,ε是误差项。
第四步是模型检验。
在EVIEWS软件中,我们可以利用OLS(Ordinary Least Squares)方法进行模型的估计和检验。
OLS方法是最小二乘法的一种形式,用于估计回归系数的值。
此外,我们还可以通过检验模型的显著性和拟合优度来评估模型的质量。
具体来说,我们可以通过检验回归系数的t值和p值来判断是否存在统计显著性。
如果t值的绝对值较大且p值小于设定的显著性水平(通常是0.05),则可以认为回归系数是显著的,即具有统计意义。
此外,我们还可以计算回归方程的R-squared值来评估模型的拟合优度,R-squared值越接近1,说明模型的解释能力越强。
最后,我们需要进行模型诊断。
模型诊断用于检验回归模型的假设是否成立,以及模型是否满足统计方法的要求。
计量经济学软件EViews的使用简介
SHOW(打开对象窗口) (打开对象窗口) 格式: 格式: SHOW 对象名 CLOSE (关闭对象窗口) 关闭对象窗口) 格式: 格式: CLOSE 对象名
(4)估计方法命令
• LS普通最小二乘法 LS普通最小二乘法 格式: 格式: LS 被解释变量 • TSLS二阶段最小二乘法 TSLS二阶段最小二乘法
(2)工作文件(Workfile) )工作文件( )
在启动软件包以后,必须在内存RAM中建立工作文件,工作方作中 中建立工作文件, 在启动软件包以后,必须在内存 中建立工作文件 可以包括的对象有序列、 方程、图形、系统、模型及系数向量等。 可以包括的对象有序列、组、方程、图形、系统、模型及系数向量等。
计量经济学软件EViews的使用简介 的使用简介 计量经济学软件
• 一、EViews的基本概念 的基本概念
• 二、 EViews的使用简介 的使用简介
1、创建工作文件 、 2、输入与编辑数据 、 3、图形分析 、 4、用OLS估计模型中的求知参数 、 估计模型中的求知参数 5、模型检验 、 6、预测 、
格式: 格式: GENR
数据序列对象表达式 SERIES(创建数据序列对象)。 SERIES不需要赋值。 不需要赋值。 (创建数据序列对象)。 不需要赋值 格式: 格式: SERIES 数据序列名
EQUATION(创建估计式对象) (创建估计式对象) 格式: 格式: EQUATION 估计式对象
EQUATION 估计式对象 及估计表达式
(6)剪切板 ) 先使用主菜单上的Edit Copy,再使用 先使用主菜单上的 ,再使用Edit Paste 将保存在剪切板上的内容粘贴到其他地方。 将保存在剪切板上的内容粘贴到其他地方。 (7)窗口间切换 ) (8)数据文件(Data bank) )数据文件( ) 2、方程、指数平滑、标签、程序、残差、t统计量 、方程、指数平滑、标签、程序、残差、 统计量 (1)方程 方程(Equation) 方程 新建方程方法一: 新建方程方法一:New Object Equation后打开一个对 后打开一个对 话框,然后列出包含在方程里的变量名, 话框,然后列出包含在方程里的变量名,因变量之后排 列回归解释变量。例如,设定一个y关于 关于x和截距进行归 列回归解释变量。例如,设定一个 关于 和截距进行归 的线性消费的例子如下: 的线性消费的例子如下:y c x 新建方程方法二:例如:道格拉斯生产函数: 新建方程方法二:例如:道格拉斯生产函数: Y=c(1)*(L^c(2))*(k^c(3))
计量经济学chow(邹氏)检验检验模型是否存在结构性变化eviews6
数学与统计学院实验报告院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:实验类型(验证性、演示性、综合性、设计性):验证性实验时间:2017年 3 月15 日一、实验课题Chow检验(邹氏检验)二、实验目的和意义1 建立财政支出模型表1给出了1952-2004年中国财政支出(Fin)的年度数据(以1952年为基期,用消费价格指数进行平减后得数据)。
试根据财政支出随时间变化的特征建立相应的模型。
表1obs Fin obs Fin obs Fin19521970198819531971198919541972199019551973691199119561974199219571975199319581976199419591977199519601978199619611979199719621980199819631981199919641982200019651983200119661984200219671985200319681986200419691987步骤提示:(1)做变量fin的散点图,观察规律,看在不同时期是否有结构性变化。
(2)建立时间变量t=1,2,…,做Fin关于t的线性回归模型,并对其做参数结构稳定性检验(Chow检验或Chow预测检验)(建立变量t的方法是:t=@trend()+1)三、解题思路(1)Eviews6---建立fin的连续序列(object--series)---画散点图(view—graph—dot plot)(2)建立t的时间变量(quick—generate series—t=@trend()+1)---建立fin、t的方程(quick--estimate equation—fin c t)---chow检验(view—stability test—chow breakpoint test—断点为1996)---建立三个方程(一个受约束方程,两个不受约束方程)---比较1996年属于不受约束方程那个方程四、实验过程记录与结果(1)、散点图通过散点图可以发现,1996年存在结构性变化(针对斜率96年前后突然变大)(2)chow检验受约束模型:由该方程发现,残差存在明显的相关性,即存在自相关性,进行以1996年为断点分阶段检验不受约束模型(1)、1952-1996(2)1997-2004根据受约束模型相比,各统计量明显有转好的趋势。
计量经济学EViews自相关检验及修正实验报告
自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。
(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。
3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。
【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。
2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。
3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。
4.根据估计出的一阶自相关系数,利用广义差分法估计模型。
5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。
6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。
7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。
8.根据估计出的高阶自相关系数,利用广义差分法估计模型。
9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。
10.对在同样数据基础上得到的不同模型进行比较分析。
以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。
计量经济学实验操作指导(完整版)--李子奈
计量经济学试验 (完整版)——李子奈目录实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。
二实验要求:应用教材P61第12题做一元线性回归分析并做预测。
三实验原理:普通最小二乘法。
四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内生产总值GDP 的统计资料。
单位:亿元安徽401.9 7364.2 甘肃142.1 2702.4 福建594.0 9249.1 青海43.3 783.6 江西281.9 5500.3 宁夏58.8 889.2 山东1308.4 25965.9 新疆220.6 3523.2 河南625.0 15012.5(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。
六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。
(2)双击桌面快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在Workfile Create对话框左侧Workfile structuretype栏中选择Unstructured/Undated选项,在右侧DataRange中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。
图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。
计量经济学实验一 计量经济学软件EViews
实验一计量经济学软件EViews一、计量经济学软件EViews的使用实验目的:熟悉EViews软件的基本使用功能。
实验要求:快速熟悉描述统计和线性回归分析。
实验原理:软件使用。
实验数据:1978-2005年广东省消费和国内生产总值统计数据。
实验步骤:(一)启动EViews软件进入Windows以后,双击桌面EViews6图标启动EViews,进入EViews窗口。
EViews的四种工作方式:(1)鼠标图形导向方式;(2)简单命令方式;(3)命令参数方式(1与2相结合);(4)程序(采用EViews命令编制程序)运行方式。
(二)创建工作文件假定我们要研究广东省消费水平与国内生产总值(支出法)之间的关系,收集了1978—2005年28年的样本资料(表1-1),消费额记作XF(亿元),国内生产总值记作GDP(亿元)。
根据资料建立消费函数。
进入EViews后的第一件工作,通常应由创建工作文件开始。
只有建立(新建或调入原有)工作文件,EViews才允许用户输入,开始进行数据处理。
建立工作文件的方法是点击File/New/Workfile。
选择新建对象的类型为工作文件。
选择数据类型和起止日期,并在对话框中提供必要的信息:适当的时间频率(年、季度、月度、周、日);最早日期和最晚日期。
开始日期是项目中计划的最早的日期;结束日期是项目计划的最晚日期,以后还可以对这些设置进行修改。
非时间序列提供最大观察个数。
建立工作文件对话框如图1-2所示,按OK确认,得新建工作文件窗口(图1-3)。
表1-1图1-2工作文件窗口是EViews的子窗口。
它也有标题栏、控制栏、控制按钮。
标题栏指明窗口的类型是Workfile、工作文件名和存储路径。
标题栏下是工作文件窗口的工具条。
工具条上是一些按钮。
图1-3View —观察按钮;Proc —过程按钮;Save —保存工作文件;Show —显示序列数据;Fetch —读取序列;Store —存储序列;Delete —删除对象;Genr —生成新的序列;Sample —设置观察值的样本区间。
计量经济学经典eviews定义和诊断检验
计量经济学经典eviews定义和诊断检验2929计量经济学经典eviews 定义和诊断检验本章描述的每一检验过程包括假设检验的原假设定义。
检验指令输出包括一个或多个检验统计量样本值和它们的联合概率值(p 值)。
p 值说明在原假设为真的情况下,样本统计量绝对值的检验统计量大于或等于临界值的概率。
这样,低的p 值就拒绝原假设。
对每一检验都有不同假设和分布结果。
方程对象菜单的View 中给出三种检验类型选择来检验方程定义。
包括系数检验、残差检验和稳定性检验。
其他检验,如单位根检验(13章)、Granger 因果检验(8章)和Johansen 协整检验(19章)。
§15.1 系数检验一、Wald 检验——系数约束条件检验Wald 检验没有把原假设定义的系数限制加入回归,通过估计这一无限制回归来计算检验统计量。
Wald 统计量计算无约束估计量如何满足原假设下的约束。
如果约束为真,无约束估计量应接近于满足约束条件。
考虑一个线性回归模型:εβ+=X y 和一个线性约束:0:0=-r R H β,R 是一个已知的k q ?阶矩阵,r 是q 维向量。
Wald 统计量在0H 下服从渐近分布)(2q χ,可简写为: )())(()(112r Rb R X X R s r Rb W -'''-=--进一步假设误差ε独立同时服从正态分布,我们就有一确定的、有限的样本F-统计量q W k T u u q u u u u F /)/(/)~~(=-''-'= u~是约束回归的残差向量。
F 统计量比较有约束和没有约束计算出的残差平方和。
如果约束有效,这两个残差平方和差异很小,F 统计量值也应很小。
EViews 显示2χ和F 统计量以及相应的p 值。
假设Cobb-Douglas 生产函数估计形式如下:εβα+++=K L A Q log log log (1)Q 为产出增加量,K 为资本投入,L 为劳动力投入。
计量经济学Chow(邹氏)检验检验模型是否存在结构性变化Eviews6
计量经济学Chow(邹⽒)检验检验模型是否存在结构性变化Eviews6数学与统计学院实验报告院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:实验类型(验证性、演⽰性、综合性、设计性):验证性实验时间:2017年 3 ⽉15 ⽇⼀、实验课题Chow检验(邹⽒检验)⼆、实验⽬的和意义1 建⽴财政⽀出模型表1给出了1952-2004年中国财政⽀出(Fin)的年度数据(以1952年为基期,⽤消费价格指数进⾏平减后得数据)。
试根据财政⽀出随时间变化的特征建⽴相应的模型。
表1obs Fin obs Fin obs Fin1952 173.94 1970 563.59 1988 1122.881953 206.23 1971 638.01 1989 1077.921954 231.7 1972 658.23 1990 1163.191955 233.21 1973 691 1991 1212.511956 262.14 1974 664.81 1992 1272.681957 279.45 1975 691.32 1993 1403.621958 349.03 1976 656.25 1994 1383.741959 443.85 1977 724.18 1995 1442.191960 419.06 1978 931.47 1996 1613.191961 270.8 1979 924.71 1997 1868.981962 229.72 1980 882.78 1998 2190.31963 266.46 1981 874.02 1999 2616.461964 322.98 1982 884.14 2000 3109.611965 393.14 1983 982.17 2001 3834.161966 465.45 1984 1147.95 2002 4481.41967 351.99 1985 1287.41 2003 5153.41968 302.98 1986 1285.16 2004 6092.991969 446.83 1987 1241.86步骤提⽰:(1)做变量fin的散点图,观察规律,看在不同时期是否有结构性变化。
计量经济学-受约束回归检验-、Eviews6
数学与统计学院实验报告院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:实验类型(验证性、演示性、综合性、设计性):综合性实验时间:2017年3月22日一、实验课题受约束回归检验二、实验目的和意义1. 表6.1.2是英国1946~1963年居民储蓄与收入数据,单位是百万英镑。
表6.1.2(1)试建立储蓄关于收入的回归模型,并检验。
(2)试分析(1)中建立的模型的参数稳定性。
a. 构造约束回归的F统计量进行检验;b. 构造LR统计量进行检验;c. 构造WD统计量进行检验;d. 构造LM统计量进行检验;e. 用Chow检验法或Chow预测检验法检验。
Ps:要求写出详细操作步骤、计算结果及结果的分析。
三、解题思路1、首先画散点图,观察两变量是否存在一定相关关系;再运用spss 进行回归模型检验(输入x、y两变量—quick—estimate equation—yc x)2、通过散点图,明显发现该模型存在结构性变化,断点在1958年;即对数据进行分段参数检验。
并用F、LR、WD、LM检验的理论知识进行验算。
四、实验过程记录与结果1、试建立储蓄关于收入的回归模型,并检验。
●散点图:两变量为正相关,所以存在一定关系。
●有条件约束模型:所以回归模型为:Y=-1.082071+0.117845*X2、试分析(1)中建立的模型的参数稳定性。
无条件约束模型:(以19658年为断点)(1)1946-1957年(2)1958-1963年3、Chow检验:4、Chow forecast test:五、结果的讨论和分析1、通过spss检验,发现该结构具有显著性的结构变化。
(四1)RSS R≈0.572、以1958年为断点,分别得到两个模型。
(四2)RSS U=RSS1+RSS2≈0.23+0.14●F检验:F=*~F(k+1,(n1+n2)-2(k+1),)=*≈3.78~F(2,14)=3.74F>F0.05,即可拒绝原假设,所以该模型存在结构性变化●LR检验LR=n*㏑(1+x)~x2(1) x==18*㏑[1+(0.57-0.37)/0.37] ≈7.78~x2(1)=3.84通过数据,可以发现,LR检验为显著性检验,即模型具有结构性变化●WD检验WD=n*x=9.73> x2(1)通过数据,可以发现,WD检验也为显著性检验,即模型具有结构性变化LM检验LM=n*(x/(1+x))=6.32>x^2(1)通过数据,可以发现,LM检验也为显著性检验,即模型具有结构性变化3、Chow检验法或Chow预测检验法检验(四(3、4))通过chow检验法可以得出用理论知识手算检验与用计算机检验所得的检验统计量是大致相同的,即该模型存在结构性变化六、实验小结通过本次实验,让我对四种检验方法理论有了进一步的了解,掌握了每个检验方法的统计思想。
EViews统计分析在计量经济学中的应用--第6章-时间序列模型
1
在图6.9中,有两个选 择:一是针对何种数 据生成相关图,主要 分为原变量(level)、 一阶差分变量(1st difference)及二阶 差分变量(2st difference),这里 选择level;二是确定 相关图的滞后期 (Lags to include), 这里选择36。
15
自相关、偏自相关图
图6.26 图示对话框
2021/2/4
1
30
自相关函K”按钮, 可得自相关 函数和偏自 相关函数, 如图6.27 所示。
图6.27 对数二阶差分自相关函数
2021/2/4
1
31
自相关函数和偏自相关函数
对数二阶差分序列自相关和偏自相关函数,如图 6.27所示,由两部分组成,左半部分为自相关 (Autocorrelation)与偏自相关(Partial Correlation)分析图,右半部分为自相关系数 (AC)、偏自相关系数(PAC)、Q统计量(QStat)与相伴概率(Prob)。由图6.27可知,自 相关和偏自相关函数的峰值同为滞后1期,自相关 函数1阶截尾,偏自相关函数2阶截尾,可初步判 定p=1,2,q=1,即可能适合的模型有 ARMA(2,1),ARMA(1,1),AR(1),AR(2), MA(1)。
2021/2/4
如图6.15所示,单位根检验选项有四个选择 区域: Test type(检验方法):包括6种检验方法, 主要为ADF检验、DF检验、PP检验、KPSS 检验、ERSPO检验及NP检验,系统默认选择 ADF检验; Test for unit in(所检验的序列),有三种 可供选择: ◆Level:表示对水平序列进行单位根检验; ◆1st difference:表示对序列的一阶差分 序列进行单位根检验; ◆2nd difference:表示对序列的二阶差分 序列进行单位根检验;
计量经济学-3.6受约束回归
(3)计算F统计量的值,与临界值比较:
若F值大于临界值,则拒绝原假设,认为 发生了结构变化,参数是非稳定的。 该检验也被称为邹氏参数稳定性检验 (Chow test for parameter stability)。
2、邹氏预测检验
上述参数稳定性检验要求n2>k。
如果出现n2<k ,则往往进行如下的邹氏预测检 验(Chow test for predictive failure)。 邹氏预测检验的基本思想:
U
( RSS
U
ESS
R
)/q
/( n ( k q 1))
~ F ( q , n ( k q 1))
讨论:
如果约束条件为真,即额外的变量Xk+1, …, Xk+q对Y没有解释能力,则F统计量较小;
否则,约束条件为假,意味着额外的变量对Y 有较强的解释能力,则F统计量较大。
先用前一时间段n1个样本估计原模型,再用 估计出的参数进行后一时间段n2个样本的预测。
如果预测误差较大,则说明参数发生了变化, 否则说明参数是稳定的。
分别以、 表示第一与第二时间段的参数,则
Y 1 X 1β μ1 Y 2 X 2α μ2 X 2β X 2 (α β) μ2 X 2β γ μ2
RSS
RSS
( RSS
R
U
/
2
2
~ ( n k U 1)
2
2
/
~ ( n k R 1)
U
R
RSS
) /
2
~ (kU k R )
2
于是:
F ( RSS
R
RSS
Eviews计量经济学三大检验
作业1我们有1978-2007年我国财政收入,国内生产总值,财政支出和商品零售价格指数的年度数据。
请用Eview 进行回归分析。
(1) 根据回归结果分析模型的经济意义(包含模型的显著性,拟合优度,系数的显著性,系数的经济意义)建立模型,做OLS 估计,得结果图一,列表如下:43283175.57898859.0003271.0558.6399X X X Y ++--=∧)0636.20)(065848.0)(012559.0)(836.2132(SE )882456.2)(65061.13)(260476.0-)(000492.3-(t =997046.02=R 996705.02=R 845.2924=F模型整体显著性较高(F 检验十分显著),可决系数2R 和调整的可决系数较大,即样本回归方程对样本观测值拟合较好。
t 检验显示2X 的系数不显著(p 值>0.05,不能拒绝β=0的原假设),3X 和4X 的系数显著(p 值<0.05,拒绝β=0的原假设)。
从模型的经济意义来看,财政支出、商品零售价格指数与财政收入成正相关,国内生产总值与财政收入成负相关,不符合客观经济规律,可能与模型变量的选取有关。
考虑对模型进行对数变换,结果为图二。
432ln 128427.1ln 631090.0ln 448496.0946444.6ln X X X Y +++-=∧)610249.0)(160929.0)(141418.0)(853146.2(SE)849127.1)(921549.3)(171412.3)(434662.2(t -=987673.02=R 986251.02=R 3969.694=F对数变换后模型整体显著性较高(F 检验十分显著,p 值=0.00<<0.05),可决系数2R 和调整的可决系数略有下降,模型可解释98.63%的因变量变化。
t 检验显示4ln X 的系数不显著(p 值=0.0758>0.05,不能拒绝β=0的原假设),2ln X 和3ln X 的系数显著(p 值<0.05,拒绝β=0的原假设)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与统计学院实验报告
院(系):数学与统计学学院学号:姓名:实验课程:计量经济学指导教师:
实验类型(验证性、演示性、综合性、设计性):综合性实验时间:2017年 3 月22 日
一、实验课题
受约束回归检验
二、实验目的和意义
1. 表6.1.2是英国1946~1963年居民储蓄与收入数据,单位是百万英镑。
表6.1.2
(1)试建立储蓄关于收入的回归模型,并检验。
(2)试分析(1)中建立的模型的参数稳定性。
a. 构造约束回归的F统计量进行检验;
b. 构造LR统计量进行检验;
c. 构造WD统计量进行检验;
d. 构造LM统计量进行检验;
e. 用Chow检验法或Chow预测检验法检验。
Ps:要求写出详细操作步骤、计算结果及结果的分析。
三、解题思路
1、首先画散点图,观察两变量是否存在一定相关关系;再运用spss 进行回归模型检验(输入x、y两变量—quick—estimate equation—y
c x)
2、通过散点图,明显发现该模型存在结构性变化,断点在1958年;即对数据进行分段参数检验。
并用F、LR、WD、LM检验的理论知识进行验算。
四、实验过程记录与结果
1、试建立储蓄关于收入的回归模型,并检验。
●散点图:
两变量为正相关,所以存在一定关系。
●有条件约束模型:
所以回归模型为:Y=-1.082071+ 0.117845*X
2、试分析(1)中建立的模型的参数稳定性。
无条件约束模型:(以19658年为断点)
(1)1946-1957年
(2)1958-1963年
3、Chow检验:
4、Chow forecast test:
五、结果的讨论和分析
1、通过spss检验,发现该结构具有显著性的结构变化。
(四1)RSS R≈0.57
2、以1958年为断点,分别得到两个模型。
(四2)
RSS U=RSS1+RSS2≈0.23+0.14
●F检验:
F=*~F(k+1,(n1+n2)-2(k+1),)
=*≈3.78~F(2,14)=3.74
F>F0.05,即可拒绝原假设,所以该模型存在结构性变化
●LR检验
LR=n*㏑(1+x)~x2(1) x=
=18*㏑[1+(0.57-0.37)/0.37] ≈7.78~x2(1)=3.84
通过数据,可以发现,LR检验为显著性检验,即模型具有结构性变化●WD检验
WD=n*x=9.73> x2(1)
通过数据,可以发现,WD检验也为显著性检验,即模型具有结构性变化
LM检验
LM=n*(x/(1+x))=6.32>x^2(1)
通过数据,可以发现,LM检验也为显著性检验,即模型具有结构性变化
3、Chow检验法或Chow预测检验法检验(四(3、4))
通过chow检验法可以得出用理论知识手算检验与用计算机检验所得的检验统计量是大致相同的,即该模型存在结构性变化
六、实验小结
通过本次实验,让我对四种检验方法理论有了进一步的了解,掌握了每个检验方法的统计思想。
其中,三种检验方法存在一定的联系,即LM<LR<WD.。