《常微分方程》东师大第二版习题答案
《常微分方程》东师大第二版习题答案
![《常微分方程》东师大第二版习题答案](https://img.taocdn.com/s3/m/5b8bdace26fff705cc170acd.png)
dy y y = 2( ) − ( ) 2 dx x x y du 令 u = ,有 u + x = 2u − u 2 x dx
积分,得 ln
整理为 (
1 1 dx − )du = u u −1 x
(u ≠ 0,1)
u = ln c1 x u −1
即u =
c1 x c1 x − 1
代回变量,得通解 x( y − x) = cy, (4) xy ′ − y = x tan
6
积分,得
1+ ω = cξ 4 (1 − ω ) 5
2 2 5 2 2
代回原变量,得原方程的通解为 ( x − y − 1) = c( x + y − 3)
4 1.4 习 题 1.
1 解下列方程. (1)
dy + 2 xy = 4 x dx
2 dy ̃ = Ce − x . + 2 xy = 0 的通解为 y dx
−2
− x = −e − 2 e x y 为所求的解。 y
4.求解方程 x 1 − y dx + y 1 − x dy = 0 解: x = ±1 ( −1 ≤ y ≤ 1), y = ±1 ( −1 ≤ x ≤ 1) 为特解, 当 x ≠ ±1, y ≠ ±1 时,
2
2
x
1− x
2
dx +
y
1− y2
ln sin y cos x = c1 ,
积分,得 ln sin y = − ln cos x + c1 , 即 sin y cos x = ± e
c1
= c, c ≠ 0
2.求下列方程满足给定初值条件的解: (1)
dy = y ( y − 1), y (0) = 1 dx y = 1 为特解,当 y ≠ 0, y −1 = x + c1 , y y ≠ 1 时, (
常微分2课后习题答案
![常微分2课后习题答案](https://img.taocdn.com/s3/m/9a059994185f312b3169a45177232f60ddcce70d.png)
常微分2课后习题答案常微分2课后习题答案在学习常微分2这门课程中,我们不可避免地会遇到一些挑战性的习题。
这些习题旨在帮助我们巩固所学的知识,并提供实践应用的机会。
然而,有时候我们可能会遇到一些难以理解或解答的问题。
在本文中,我将分享一些常微分2课后习题的答案,希望能够帮助大家更好地理解和应用这门课程的内容。
1. 题目:求解方程 dy/dx = 2x + 3解答:这是一个一阶线性常微分方程。
我们可以将它转化为标准形式 dy/dx + P(x)y = Q(x),其中 P(x) = 0,Q(x) = 2x + 3。
根据一阶线性常微分方程的解法,我们可以通过求解齐次方程 dy/dx + P(x)y = 0 的通解和特解来得到原方程的解。
首先,我们求解齐次方程 dy/dx = 0。
显然,它的通解为 y = C,其中 C 是常数。
接下来,我们寻找特解。
由于 P(x) = 0,我们可以猜测特解为 y = Ax + B,其中 A 和 B 是待定常数。
将这个猜测代入原方程,得到 A = 2,B = 3。
因此,原方程的通解为 y = C + 2x + 3,其中 C 是任意常数。
2. 题目:求解方程 d^2y/dx^2 + 4dy/dx + 4y = e^(-2x)解答:这是一个二阶常系数齐次线性常微分方程。
我们可以使用特征方程的方法来求解。
首先,我们假设 y = e^(rx) 是方程的解。
将这个解代入方程,得到特征方程r^2 + 4r + 4 = 0。
解这个二次方程,得到 r = -2。
因此,方程的通解为 y = (C1 + C2x)e^(-2x),其中 C1 和 C2 是任意常数。
接下来,我们寻找特解。
由于右侧是指数函数,我们猜测特解为 y = Ae^(-2x),其中 A 是待定常数。
将这个猜测代入方程,得到 A = 1/9。
因此,原方程的通解为 y = (C1 + C2x)e^(-2x) + 1/9e^(-2x),其中 C1 和 C2是任意常数。
常微分方程课后习题答案.doc
![常微分方程课后习题答案.doc](https://img.taocdn.com/s3/m/4fb1626b011ca300a6c39083.png)
习题2.1 1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+cy=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2ydy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dxdy =yx xy y321++解:原方程为:dx dy =yy 21+31xx +yy 21+dy=31xx +dx两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0 解:原方程为:dxdy =-yx y x +-令xy =u 则dx dy =u+x dxdu 代入有:-112++uu du=x1dxln(u 2+1)x=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy .6. xdxdy -y+22y x -=0解:原方程为:dx dy =xy +x x ||-2)(1xy -则令xy =u dxdy =u+ xdxdu211u- du=sgnx x1dxarcsinxy =sgnx ln|x|+c7. tgydx-ctgxdy=0 解:原方程为:tgydy =ctgxdx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=xc cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +yexy 32+=0解:原方程为:dxdy =yey2e x 32 ex3-3e2y-=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy lnx y令xy =u ,则dxdy =u+ xdxduu+ xdxdu =ulnuln(lnu-1)=-ln|cx| 1+lnxy =cy.10.dxdy =e y x -解:原方程为:dxdy =e x e y -e y =ce x11dxdy =(x+y)2解:令x+y=u,则dxdy =dxdu -1dxdu -1=u 2211u+du=dxarctgu=x+c arctg(x+y)=x+c12.dxdy =2)(1y x +解:令x+y=u,则dxdy =dxdu -1dxdu -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dxdy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14: dxdy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+解:原方程为:dx dy=(x+4y )2+3 令x+4y=u 则dxdy=41dxdu -4141dx du -41=u 2+3dxdu =4 u 2+13u=23tg(6x+c)-1tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1) y(1+x 2y 2)dx=xdy2) y x dxdy =2222x -2 y x 2y+证明: 令xy=u,则x dxdy +y=dxdu则dxdy =x 1dxdu -2xu ,有:u x dxdu =f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程第二版答案第一章
![常微分方程第二版答案第一章](https://img.taocdn.com/s3/m/bac2a2f784254b35eefd34f6.png)
常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。
奥鹏东师 《常微分方程》练习题答案.docx
![奥鹏东师 《常微分方程》练习题答案.docx](https://img.taocdn.com/s3/m/ff34ee26d1f34693dbef3e63.png)
《常微分方程》练习题一参考答案练习题第1套参考答案 一. 填空题1、全平面.2、1,1x y =-=-3、3y Cx C =+ 4、线性无关,(或朗斯基行列式不等于零) 5、开二. 单项选择题1.A,2.C,3.B,4.C,5.B三. 简答题1.0y >时对应通解是2(),.4x C y C x +=-≤<∞ 0y <时对应通解是2(),.4x C y x C +=--∞≤<- 2.是.四. 计算题 1、通积分为1x y Ce y -=. 2、通解为411().4y C x x =+ 3、通积分为21.x y C y += 4、通解为121cos sin cos .2x C t C t t t =+- 5、通解为27124151t t x C e C e y -⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦五. 应用题1. 设物体在t 时刻的下落速度为().v v t =在t 时刻物体所受的力,f mg kv =-k 为阻力系数,由牛顿第二运动定律,得方程dv m mg kv dt =- 即 ()dv k mg v dt m k=-- 解得 kt mmg v Ce k -=+ 代入初值条件(0)0v =, 得初值解 ()(1)kt m mg v t e k -=- 令t →+∞,得极限速度1.mg v k=2. 证明:因为0x 在取极值有1020()()0y x y x ''== 此时12(),()y x y x 的朗斯基行列式在0x 点的值为 1020102001020()()()()()0()()0y x y x y x y x W x y x y x ==='' 所以, 12(),()y x y x 不能为基本解组.练习题第2套参考答案 一、填空题1、(,)-∞+∞.2、0y >的右半平面3、,0,1,2,y k k π==±±L4、 22,xx exe -- 5、n二、单项选择题1.B,2.A,3.D,4.C,5.D三、简答题化成等价积分方程,用逐次逼近法求积分方程解。
[整理]《常微分方程》答案习题42.
![[整理]《常微分方程》答案习题42.](https://img.taocdn.com/s3/m/9cfdc096dd3383c4bb4cd2d2.png)
习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++(3)04)5(=''-x x 解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c ec x t t++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ1齐线性方程的通解为x=tt tte c e c ec 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=tttte c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=ttttte c e c te c e c --+++4321取特解行如cBt Atx ++=2~代入原方程解得A=1,B=0,C=1故通解为x=ttttte c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ故齐线性方程的通解为tt t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1故齐线性方程的通解为x=tte c e c 221-+因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=tt ec e c 221-+t t 2sin 562cos 52--(11)te x x =-'''解:特征方程13=-λ有复数根=1λ,231i +-=2λ,231i--13=λ故齐线性方程的通解为tt t e c t e c t ec x 321221123sin 23cos ++=--=λ1是特征方程的根,故tAte x =~代入原方程解得A=31故通解为tt t e c t e c t ec x 321221123sin 23cos ++=--+tte 31 (12)te s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a当a=-1时,齐线性方程的通解为s=ttte c e c 21+,=λ1是特征方程的2重根,故te At x 2~=代入原方程解得A=21 通解为s=22121t te c ec t t++,当a ≠-1时,齐线性方程的通解为s=atatte c e c --+21,=λ1不是特征方程的根,故tAe x =~代入原方程解得A=2)1(1+a故通解为s=atatte c ec --+21+t e a 2)1(1+(13)te x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故tAe x 2~=代入原方程解得A=211故通解为x=tte c ec 521--++te 2211(14)tex x x tcos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x tt2sin 2cos 21+=i ±-1不是特征方程的根, 取特解行如te t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B故通解为te c t e c x t t 2sin 2cos21+=+te t t --)sin 414cos 415( (15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得A=21- B=0 故t t x cos 21~-=tx x 2cos -=+''tB t A x 2sin 2cos ~+=代入原方程解得A=31 B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=tt cos 21-t 2cos 31+。
常微分方程第二版答案第6章6-
![常微分方程第二版答案第6章6-](https://img.taocdn.com/s3/m/90d39279240c844768eaee64.png)
习 题 6-11. 求出齐次线性微分方程组 y t A dtdy )(=的通解,其中A (t )分别为: (1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫ ⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
(1)方程组的分量形式为:211y y dt dy += ,22y dtdy = 从后一式容易求出2y 的通解为 t ke y =2 ,其中K 为任意常数,可分别取02=y 和 t e y =2,代入前一式得到两个相应的特解,t e y =1和 t te y =2这样就求得方程组的一个解矩阵为()0tt t e te t e ⎛⎫Φ= ⎪⎝⎭又 2det ()0t t e Φ=≠ 。
因此,)(t Φ是方程组的一个基解矩阵,根据定理6.1 ,方程的通解为⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛t t t e te c e c y y 21210(2)方程的分量形式为 ⎪⎩⎪⎨⎧-==1221y dtdy y dt dy 由①、②可和 21120d y y dt += 由观察法知,t y cos 1=,t y sin 1=为此方程的两个特解,将其代入②式可得两个相应的特解,将其代入②式可得两个相应的特解:2sin y t =-,2cos y t =。
这样就求得方程组的一个解矩阵为 cos int ()int cos t s t s t ⎛⎫Φ= ⎪-⎝⎭又 []01)(det ≠=Φ=t ,因此)(t Φ中方程组的一个基解矩阵。
故方程组的通解为1122cos int int cos y t s c c y s t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ ① ②(3)程组的分量形式为:⎪⎩⎪⎨⎧='='='132231y y y y y y 解 ①+③得3131)(y y y y dtd +=+ 解 ①-③得 1313()d y y y y dt -=- 解之得 131132 t t y y ke y y k e --+=-=由④、⑤可得 ()()⎪⎩⎪⎨⎧-=-=+=+=----tt t t t t t t e c e c e k e k y e c e c e k e k y 312.133******** 又由②得 t e c y 22=由此可求得方程组的一个解矩阵⎪⎪⎪⎭⎫ ⎝⎛-=Φ--t t t t te e e e e t 0000)( 显然,[]0)(det ≠-=Φt ze t ,因此)(t Φ是方程组的一个基解矩阵,故方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--t t t e t e e c e c e e c y y y 00003213213.试证向量函数组 ⎪⎪⎪⎭⎫ ⎝⎛001 ,⎪⎪⎪⎭⎫ ⎝⎛00x ,⎪⎪⎪⎭⎫ ⎝⎛002x 在任意区间 b x a <<上线性相关,则存在不全为零的三个常数 321,,c c c 使得,000000012321=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛x c x c c 即 b x a x c x c c <<=++02321①而①式之左端是一个不高于二次的多项式,它最多只可能有二个零点,同此这与①式在b x a <<上恒等于零矛盾,从而得证。
常微分方程第2章习题答案
![常微分方程第2章习题答案](https://img.taocdn.com/s3/m/d7e1a249561252d380eb6e2e.png)
习题2-41.求解下列微分方程:(1)yx xy y --='22;解:令ux y =,则原方程化为uu u dx du x --=+212,即x dxdu u u =--122,积分得:c x u u u +=--+-ln 1ln 2111ln2 还原变量并化简得:3)()(y x c x y +=-(2)4252--+-='y x x y y ;解:由⎩⎨⎧=--=+-042052y x x y 得 ⎩⎨⎧-==21y x令2,1+=-=y v x u , 则有vu u v du dv --=22,由第一题的结果知此方程解为3)()(v u c u v +=-, 还原变量并化简得:.)1(33++=+-y x c x y(3)14212-+++='y x y x y ;解:令y x v 2+=, 则1212121-++=+=v v dx dy dx dv , 即1214-+=v v dx dv ,此方程为变量分离方程, 分离变量并积分得:c x v v +=+-14ln 8321,还原变量并化简得:c y x x y =++--184ln 348. (4)xy y x y -='33.解:①当0≠y 时,方程两边同时乘以32--y ,则233222--+-='-xy x y y , 令2-=y z , 则322x xz dxdz-=, 此方程为一阶线性方程,由公式得:122++=x ce z x还原变量得:122)1(2-++=x ce y x . ②0=y 也是方程的解.2. 利用适当的变换,求解下列方程: (1))cos(y x y -=';解:令y x u -=,则u dx dy dx du cos 11-=-=, ①当1cos ≠u 时,有dx udu =-cos 1, 即 dx u du=2sin 22,两边积分得:c x uctg +=221还原变量化简得:2sin 2sin 22cos yx c y x x y x -+-=-. ②当1cos =u 时,即πk x y 2+=)(Z k ∈也是方程的解. (2)0)()3(22=+++dv uv u du v uv ; 解:方程两边同时乘以u 则原方程化为:0)()3(2322=+++dv v u u du uv v u ,即 0)()3(2232=+++vdv u du uv dv u vdu u 此方程为全微分方程,则原方程的解为:c v u v u =+22321. (3))2(2)3(222yx y x dx dy y x -=++;解:原方程即为324222222++-=y x x y xdx ydy ,令u y v x ==22,,则324++-=v u vu dv du ,由⎩⎨⎧=++=-03024v u v u 得⎩⎨⎧-=-=21v u , 令⎩⎨⎧+=+=21v n u m ,则有n m n m dn dm +-=24令z n m=,则zn m =, 124+-=+=z z z n dn dz dn dm , 则有1)2)(1(+--=z z z n dn dz ,此方程为变量分离方程, 分离变量并积分得:n c zz ln 2)1(ln32+=--,还原变量并化简得:322222)32()1(-+-=+-y x c y x .(4)yy y x xxy x dx dy 8237323223-+-+=. 解:原方程即为823732222222-+-+=y x y x xdx ydy ,令22,x v y u ==,则823732-+-+=u v u v dv du ,由⎩⎨⎧=++=-+08230732u v u v ⎩⎨⎧==⇒21v u , 令⎩⎨⎧-=-=21v n u m , 则m n m n dn dm 2332++=,令z n m=,可将方程化为变量分离形方程, n dn dz zz =-+)2223(2,两边积分得:c n z z z +=---+ln 1ln 2111ln 432, 还原变量并化简得:)3()1(22522-+=--y x c y x .3. 求解下列微分方程: (1).2241xy y --='; 解:令xy z =, 则原方程可化为:)41(12-+-=z z x dx dz , ①当21≠z 时,即21≠xy 时方程为x dxdz z =--2)21(1 ,此方程为变量分离方程, 两边积分得:c x z +=-ln 211还原变量并化简得:cxx x x y ++=ln 121; ②当21=z 时,xy 21=是方程的特解. (2).1222++='xy y x y x ; 解:原方程即为:221x x y y y ++=', 令xy z =,则2)1(1+=z xdx dz ,此方程为变量分离方程, 分离变量积分得:c x z +=+-ln 11, 还原变量并化简得:cxx x x y +--=ln 11. 4. 试把二阶微分方程0)()(=+'+''y x q y x p y 化为一个黎卡提方程. 解:令⎰=udxe y , 则⎰='udxue y ,+⎰=''udxe u y 2⎰'udxe u ,代入原方程可得:=+'+''y x q y x p y )()(+⎰udxe u 2⎰'udxe u +)()(x q ue x p udx+⎰⎰udxe =0,即有:0)()(2=++'+x q u x p u u ,此方程为一个黎卡提方程.5. 求一曲线,使得过这一曲线上任一点的切线与该点向径的夹角等于45.解:设此曲线为)(x y y =,由题意得:1451==+-tg xy dx dy x y dx dy ,化简得:y x y x dx dy -+=, 此方程为齐次方程,解之得:c y x x y arctg =+-)ln(2122.6. 探照灯的反光镜(旋转面)应具有何种形状,才能使点光源发射的光束反射成平行线束?解:取点光源所在处为坐标原点,而x 轴平行于光的反射方向,建立三维坐标系.设所求曲面由曲线⎩⎨⎧==0)(z x f y 绕x 轴旋转而成,则求反射镜面问题归结为求 xy 平面上的曲线y=f(x)的问题.由题意及光的反射定律,可得到函数)(x f y =所应满足的微分方程式:22yx x ydx dy ++=,此方程为齐次方程, 解之得:)2(2x c c y +=,(其中c 为任意正常数).)2(2x c c y +=就是所求的平面曲线,它是抛物线,因此反射镜面的形状为旋转抛物面)2(22x c c z y +=+.习题2-51.求解下列微分方程:(1).0)()23(2232=++++dy y x dx y xy y x ;解:方程两边同乘xe33, 则)33()369(233323323=++++dy y e dx y e dy x e xydx e ydx x e x x x x x ,此方程为全微分方程,即 c y e y x e x x =+33233. (2).0)2(2=-+-dy e xy ydx y ;解:方程两边同乘y e y 21, 则 0)12(22=-+dy yxe dx e y y即01)2(22=-+dy ydy xe dx e yy 此方程为全微分方程,即有 c y xe y =-ln 2 .(3).0)3()63(2=+++dy xyy x dx y x ;解:方程两边同乘 xy , 则0)3()63(232=+++dy y x dx x y x即 0)36()3(232=+++dy y xdx dy x ydx x 此方程为全微分方程,即有c x y y x =++2333 .(4).22()0ydx x y x dy -++=; 解:方程两边同乘221y x +, 则 022=-+-dy yx xdyydx , 此方程为全微分方程,即 c y yxarctg=- (5).0)1(2223=-+dy y x dx xy ;解:方程两边同乘21y , 则0)1(222=-+dy y x xydx , 此方程为全微分方程,即c y x y=+21. (6).0)1(=-+xd y dx xy y ;解:方程两边同乘21y , 则0)1(2=-+dy y xdx y xdx , 此方程为全微分方程,即c x y x =+221. (7)0)(2223=-+dy xy x dx y ;解:方程两边同乘y x 21, 则 02)2(22=+-dy y dy x y dx x y , 此方程为全微分方程,即 c y xy =+-ln 22(8).0)c o s2(=++dy y y ctgy e dx e xx解:方程两边同乘y sin , 则02sin )cos sin (=++ydy yc ydy e ydx e x x ,此方程为全微分方程,即 11cos cos 2sin 224xe y y y y c -+=. 2. 证明方程(5.1)有形如)),((y x φμμ=的积分因子的充要条件是)),((y x f yP P x Q Q xQy P φ=∂∂-∂∂∂∂-∂∂,并写出这个积分因子。
常微分方程第二版答案第一章
![常微分方程第二版答案第一章](https://img.taocdn.com/s3/m/bac2a2f784254b35eefd34f6.png)
常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。
常微分方程习题答案2章
![常微分方程习题答案2章](https://img.taocdn.com/s3/m/f019cb9be53a580216fcfe1b.png)
u
2
) ln x c 。
2 dy 2 y y x dx y dy du 解:令 u , y ux , u x , 则原方程化为: x dx dx
6: x
du dx
x
2
(1 x
u
2
)
, 分离变量得:
1 1
u
2
du sgn x
1 dx x
两边积分得:
当 y 0时显然也是原方程的解 1 y 。 1 ln 1 x
。当 x 0 , y 1时,代入式子得
3
1 y dy dx xy x3 y
2
解:原式可化为:
dy dx 1 y
y
2
1 x
x
3
显然
1 y
y
2
0 , 故分离变量得 1 ln 1 2
2
y 1
e
y
e e
y x
dy c
e
x
dx
dy dx
e
x y
解:变量分离, 两边积分得: dy dx
e
y
e
y
dy
x
e
e
x
dxΒιβλιοθήκη c11 .
(x y)
2
解:令
x y t,则 dt dx 1
dy dx dt
1
dt dx 1
1
原方程可变为: 变量分离得: 代回变量得:
arcsin
u sgn x ln x c arcsin
y sgn x ln x c x
《常微分方程》练习题库参考答案
![《常微分方程》练习题库参考答案](https://img.taocdn.com/s3/m/584661100640be1e650e52ea551810a6f524c808.png)
《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。
将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。
2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。
如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。
3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。
(2)它是常微分⽅程,理由同上。
(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。
4、微分⽅程求解时,都与⼀定的积分运算相联系。
因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。
微分⽅程的解⼜称为(⼀个)积分。
5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。
注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。
6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。
7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。
m=0则称它为0次齐次函数。
8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。
如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。
3.1 常微分方程 课后答案
![3.1 常微分方程 课后答案](https://img.taocdn.com/s3/m/d4b483cbda38376baf1faed9.png)
习题3.11 求方程dxdy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ϕ 200200121)()(x xdx dx y x y x xx ==++=⎰⎰ϕ 522200210220121])21([])([)(x x dx x x dx x x y x x x +=+=++=⎰⎰ϕϕ dx x x x y x x ])20121([)(252003+++=⎰ϕ = 1185244001160120121x x x x +++2 求方程dx dy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ϕ则 200200121)()(x xdx dx y x y x xx ==-+=⎰⎰ϕ 522200210220121])21([])([)(x x dx x x dx x x y x x x -=-=-+=⎰⎰ϕϕ dx x x x y x x ])20121([)(252003--+=⎰ϕ =1185244001160120121x x x x -+- 3 题 求初值问题:⎪⎩⎪⎨⎧=-=0)1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计;解: 因为 M=max{22y x -}=4 则h=min(a,M b )=41 则解的存在区间为0x x -=)1(--x =1+x ≤41 令 )(0X ψ=0 ;)(1x ψ=y 0+⎰-xx x 0)0(2dx=31x 3+31;)(2x ψ =y 0+])3131([2132⎰-+-xx x dx=31x 3-9x -184x -637x +4211 又 yy x f ∂∂),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤322)12(*h L M +=24114 题 讨论方程:3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解;解:因为yy x f ∂∂),(=3221-y 在y 0≠上存在且连续; 而3123y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23又 因为y(0)=0 所以:y =x 23另外 y=0也是方程的解;故 方程的解为:y =⎪⎩⎪⎨⎧≥00023 x x x或 y=0;6题 证明格朗瓦耳不等式:设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数,且满足不等式:f(t)≤k+⎰tds s g s f α)()(,βα≤≤t则有:f(t)≤kexp(⎰tds s g α)(),βα≤≤t证明:令R (t )=⎰tds s g s f α)()(,则R '(T)=f(t)g(t)R '(T)-R(t)g(t)= f(t)g(t)- R(t)g(t) ≤kg(t)R '(T)- R(t)g(t)≤kg(t);两边同乘以exp(-⎰tds s g α)() 则有:R '(T) exp(-⎰tds s g α)()-R(t)g(t) exp(-⎰t ds s g α)()≤ kg(t) exp(-⎰tds s g α)()两边从α到t 积分:R(t) exp(-⎰t ds s g α)()≤-⎰t ds s kg α)(exp(-⎰tdr r g α)()ds即 R(t) ≤⎰t ds s kg α)( exp(-⎰tsdr r g )()ds又 f(t) ≤1≤k+R(t) ≤k+k ⎰t s g α)(exp(-⎰tsdr r g )()ds≤k(1-1+ exp(-⎰t s dr r g )()=k exp(⎰stdr r g )()即 f(t) ≤k ⎰tdr r g α)(;7题 假设函数f(x,y)于(x 0,y 0)的领域内是y 的 不增函数,试证方程dxdy = f(x,y)满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多只有一个解; 证明:假设满足条件y(x 0)= y 0的解于x ≥ x 0一侧有两个ψ(x),ϕ(x)则满足:ϕ(x)= y 0+⎰xx x x f 0))(,(ϕdxψ(x)= y 0+⎰xx x x f 0))(,(ψdx不妨假设ϕ(x) ψ(x),则ϕ(x)- ψ(x)≥0而ϕ(x)- ψ(x)= ⎰x x x x f 0))(,(ϕdx-⎰xx x x f 0))(,(ψdx=⎰-xx x x f x x f 0))(,())(,([ψϕdx又因为 f(x,y)在(x 0,y 0)的领域内是y 的 增函数,则: f(x, ϕ(x))-f(x, ψ(x))≤0则ϕ(x)- ψ(x)= ⎰-xx x x f x x f 0))(,())(,([ψϕdx ≤0则ϕ(x)- ψ(x)≤0所以 ϕ(x)- ψ(x)=0, 即 ϕ(x)= ψ(x) 则原命题方程满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多 只有一个解;。
常微分方程习题及答案
![常微分方程习题及答案](https://img.taocdn.com/s3/m/0c14810af111f18583d05aef.png)
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( )2.微分方程的通解中包含了它所有的解。
( )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( )4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数)。
() 6.y y sin ='是一阶线性微分方程。
( )7.xy y x y +='33不是一阶线性微分方程。
( )8.052=+'-''y y y 的特征方程为0522=+-r r 。
( )9.221xy y x dx dy+++=是可分离变量的微分方程。
( )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是 。
②()()022=-++dy y x y dx x xy 是 。
③x yy dx dyx ln ⋅=是 。
④x x y y x sin 2+='是 。
⑤02=-'+''y y y 是 。
2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。
3.x e y 2-=''的通解是 。
4.x x y cos 2sin -=''的通解是 。
5.124322+=+'+'''x y x y x y x 是 阶微分方程。
6.微分方程()06='-''⋅y y y 是 阶微分方程。
7.xy 1=所满足的微分方程是 。
8.x y y 2='的通解为 。
9.0=+xdy y dx 的通解为 。
10.()25112+=+-x x y dx dy ,其对应的齐次方程的通解为 。
常微分方程第二版答案第三章
![常微分方程第二版答案第三章](https://img.taocdn.com/s3/m/d285fe337f1922791788e88c.png)
习题3—11. 判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='.解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=xy x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则⎪⎪⎩⎪⎪⎨⎧<-->=∂∂,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ∂∂),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题⎪⎩⎪⎨⎧=--=,0)1(,22y y x dxdy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设22),(y x y x f -=,则4),(m ax),(==∈y x f M Ry x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ϕ是方程的解,)(2x ϕ是第二次近似解,则0)1()(0=-=y x ϕ,3131)0(0)(3121-=-+=⎰-x dx x x xϕ,4211931863])3131([0)(34712322+-+--=--+=⎰-x x x x dx x x x xϕ.在区间411≤+x 上,)(2x ϕ与)(x ϕ的误差为 322)!12()()(h ML x x +≤-ϕϕ.取22),(max max),(),(=-=∂∂=∈∈y y y x f L Ry x Ry x ,故241)41()!12(24)()(322=+⨯≤-x x ϕϕ.3. 讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解 设3123),(y y x f =,则3221-=∂∂y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ∂∂),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x .所以通过点)0,0(O 的一切解为0=y 及,,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧-=.,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧--=如图. 4. 试求初值问题1++=y x dxdy,0)0(=y , 的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为0)(0=x y ,一次近似为2121)10()(x x ds s x y x+=++=⎰, 二次近似为 3220261]1)21([)(x x x ds s s s x y x++=+++=⎰, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x+++=++++=⎰, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+⨯+++=,五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--⎥⎦⎤⎢⎣⎡++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--⎥⎦⎤⎢⎣⎡+++++++=++n x x n x x x x x n n , 所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5. 设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy=,00)(y x y =的右侧解是唯一的. 证 设)(1x y ϕ=,)(2x y ϕ=是初值问题的两个解,令)()()(21x x x ϕϕϕ-=,则有0)(000=-=y y x ϕ.下面要证明的是当0x x ≥时,有0)(≡x ϕ.用反证法.假设当0x x ≥时,)(x ϕ不恒等于0,即存在01x x ≥,使得0)(1≠x ϕ,不妨设0)(1>x ϕ,由)(x ϕ的连续性及0)(0=x ϕ,必有100x x x <≤,使得0)(0=x ϕ,0)(>x ϕ,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==ϕϕ,⎰+=xx dx x x f y x 0)](,[)(101ϕϕ,⎰+=xx dx x x f y x 0)](,[)(202ϕϕ,则有)()()(21x x x ϕϕϕ-=⎰-=xx dx x x f x x f 0)]}(,[)](,[{21ϕϕ,10x x x ≤<.由0)()()(21>-=x x x ϕϕϕ(10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ϕ.从而证明方程的右侧解是唯一的.习题3—31. 利用定理5证明:线性微分方程)()(x b y x a dxdy+= (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2. 讨论下列微分方程解的存在区间: 1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为xCe y -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<y x f ,则方程满足00)(y x y =的解)(x y ϕ=递减,当-∞→x 时,以1=y 为渐近线,当+∞→x 时,以0=y 为渐近线.ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C .3.设初值问题)(E :2)(2)32(y x e y y dxdy+--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明 因2)(2)32(),(y x ey y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<y ,则利用)(E 的右行解的延伸定理,得出)(E 的解Γ可以延伸到2R 的边界.另一方面,直线1-=y 的下方,积分曲线Γ是单调上升的,并且它在向右延伸时不可能从直线1-=y 穿越到上方.因此它必可向右延伸到区间+∞<<x a .故至少+∞=b 成立.类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4. 设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdyx -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明 因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x -=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡x x e x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ϕ=,在平面内延伸)(x y ϕ=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ϕβ.下证后一种情形不可能出现. 事实上,若不然,则必存在β<x ,使βϕe x >)(.不妨设βϕe x >)(.于是必存在),(00βx x ∈,使0()x x e ϕ=,x e x <)(ϕ(00x x x <≤).此时必有0)(00'>=≥x x xx e dxde x ϕ,但0),())(,()(00000'===x x e x F x x F x ϕϕ,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ϕ=(00)(y x y =)必可延拓到+∞<≤x x 0.常微分方程练习题班级: 学号: 姓名:第一二章一.填空题1. 称为一阶线性方程,它有积分因子 ,其通解为 。
常微分习题解答
![常微分习题解答](https://img.taocdn.com/s3/m/135d08bf0066f5335b812110.png)
《常微分方程》习题解答东北师范大学微分方程教研室(第二版)高等教育出版社习题1 求下列可分离变量微分方程的通解: (1) xdx ydy = 解:积分,得 1222121c x y += 即 c y x =-22 (2)y y dxdyln = 解: 1,0==y y 为特解,当1,0≠≠y y 时,dx yy dy=ln , 积分,得0ln ,ln ln 11≠=±=+=c ce e e y c x y x x c ,即xce e y =(3)y x e dxdy-= 解: 变形得 dx e dy e xy=积分,得c e e xy =-(4) 0cot tan =-xdy ydx解:变形得xydx dy cot tan =,0=y 为特解,当0≠y 时,dx x x dy y y cos sin sin cos =. 积分,得11cos sin ln ,cos ln sin ln c x y c x y =+-=,即0,cos sin 1≠=±=c c ex y c2.求下列方程满足给定初值条件的解: (1)1)0(),1(=-=y y y dxdy解: 1,0==y y 为特解,当1,0≠≠y y 时,dx dy yy =--)111(, 积分,得 0,1,1ln11≠=±=-+=-c ce e e yy c x y y x x c 将1)0(=y 代入,得 0=c ,即1=y 为所求的解。
(2) 1)0(,02)1(22==+'-y xy y x解: 0,1222=--=y x xy dx dy 为特解,当0≠y 时,dx x xy dy 1222--=, 积分,得 c x y+--=-1ln 12将1)0(=y 代入,得 1-=c ,即11ln 12+-=x y 为所求的解。
(3) 0)2(,332=='y y y 解: 0=y 为特解,当0≠y 时,dx ydy =323,积分,得 331)(,c x y c x y +=+=将0)2(=y 代入,得 2-=c ,即3)2(-=x y 和0=y 均为所求的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) y′ = 2( y − 2 )2 x + y −1
解:令 u = x + 1, v = y − 2 则原方程变为 dv = 2( v )2 du u + v
再令 z = v ,则方程化为 z + u dz = 2( z )2
u
du 1 + z
分离变量 (1 + z)2 dz = − du (z ≠ 0)
ζ
dζ 1 + u
整理为
u + 1 du = − dζ (u ≠ 1,2)
(u −1)(u − 2)
ζ
积分,得 (u − 2)(u − 2)2 ζ = c u −1
5
代回变量,得通解 ( y − 2x)3 = c( y − x −1)2 , y = x + 1也是方程的解
(2) (2x + y + 1)dx − (4x + 2 y − 3)dy = 0
积分,得 ln ln y = x + c1, ln y = ±ec1 e x = ce x c ≠ 0 ,即 y = ecex (3) dy = e x−y
dx 解: 变形得 e y dy = e x dx 积分,得 e y − e x = c
(4) tan ydx − cot xdy = 0
解:变形得 dy = tan y , y = 0 为特解,当 y ≠ 0 时, cos y dy = sin x dx .
dy 2x + y + 1
解:方程改写为
=
dx 4x + 2y − 3
令
u = 2x + y ,有
du 5u − 5 =
dx 2u − 3
积分,得 2u − ln u −1 = 5x + c1
分离变量 2u − 3 du = 5dx (u ≠ 1) u −1
代回变量,得通解 2x + y −1 = ce2y−x
解:方程改写为
dy 4 y − 2x − 6 =
dx x + y − 3
⎧− 2α + 4β = 0 令 ⎩⎨α + β − 3 = 0 ,解得 α = 1, β = 2
作变换 x = ζ + 1,
y =η +2
有
dη 4η − 2ζ =
dζ η + ζ
再令 u = η 上方程可化为 u + ζ du = 4u − 2
+ 3ρ
= 0 的通解为 ρ̃
= Ce−3θ
.
dθ
由常数变易法得原方程的一个特解为 ρ = 2 . 3
则原方程的通解为 ρ = Ce−3θ + 2 , 或者 3ρ = Ce−3θ + 2 . 3
2 求曲线,使其切线在纵轴上的截距等于切点的横坐标.
解:设所求曲线为 y = y(x) ,则它在曲线上任一点的斜率 k = y ' .
1 )du = dx
(u ≠ 0,1)
u u −1
x
u
积分,得
ln u −1
= ln c1x
即 u = c1x c1x −1
代回变量,得通解 x( y − x) = cy, y = 0 也是方程的解
(4) xy′ − y = x tan y x
dy y
y
解:方程改写为
− = tan
dx x
x
令
u=
y
,有
x du = tan u = sin u
x
dx
cos u
积分,得 sin u = cx
代回变量,得通解 sin y = cx x
) xy′ − y = (x + y) ln x + y x
解:方程改写为 dy − y = (1 + y ) ln x + y
=
0 为特解,当
y
≠
0 时,
dy y2
=
−
2x dx , x2 −1
积分,得 − 1 = − ln x 2 −1 + c y
2
将 y(0) = 1代入,得 c = −1 ,即 y =
1
为所求的解。
ln x2 −1 + 1
(3) y′ = 33 y 2 , y(2) = 0
dy 解: y = 0 为特解,当 y ≠ 0 时, = dx ,
dx
xx
令 u = y ,有 x du = 1 − u 2
x
dx
分离变量
du dx = (−1 < u < 1)
1−u2 x
积分,得 arcsin u = ln cx 代回变量,得通解 arcsin y = ln cx,
x
2 解下列方程:
y = ±x 也是方程的解
(1) (2x − 4 y + 6)dx + (x + y − 3)dy = 0
dx cot x
sin y cos x
积分,得 ln sin y = − ln cos x + c1, ln sin y cos x = c1 ,
即 sin y cos x = ±ec1 = c, c ≠ 0
2.求下列方程满足给定初值条件的解:
dy (1) = y( y −1), y(0) = 1
dx 解: y = 0, y = 1 为特解,当 y ≠ 0, y ≠ 1时, ( 1 − 1 )dy = dx ,
《常微分方程》习题解答
东北师范大学微分方程教研室 (第二版)
高等教育出版社
1
习 题 1.2
1 求下列可分离变量微分方程的通解:
(1) ydy = xdx
解:积分,得
1 2
y2
=
1 2
x2
+
c1
(2) dy = y ln y dx
即 x2 − y2 = c
解: y = 0, y = 1 为特解,当 y ≠ 0, y ≠ 1时, dy = dx , y ln y
2
3y 3
1
积分,得 y 3 = x + c,
y = (x + c)3
将 y(2) = 0 代入,得 c = −2 ,即 y = (x − 2)3 和 y = 0 均为所求的解。
(4) ( y 2 + xy 2 )dx − (x 2 + yx 2 )dy = 0, y(1) = −1
1+ x 1+ y
习 题 1.4
1 解下列方程.
(1) dy + 2xy = 4x dx
解:原方程对应的齐次方程 dy + 2xy = 0 的通解为 ỹ = Ce−x2 . dx
由常数变易法得原方程的一个特解为 y = 2 .
则原方程的通解为$y=Ce^{-x^2}+2$.
(2) y '− 1 y = 2(x − 2)2 x−2
3 解下列伯努利方程
7
(2) y '+ 2xy + xy4 = 0
解:原方程可化为 y−4 y '+ 2xy−3 = −x .令$z=y^{-3}$, 则有 dz − 6xz = 3x . dx
它对应的齐次线性方程为 dz = 6xz . dx
当 z = 0 时,有 y−3 = 0 ,得 y = 0 ;
过点 (x, y) 的方程为 Y − y = y '(Z − x) .
依题意得 y − xy ' = x , 即 y ' = y −1. x
它对应的齐次方程 y ' = y 的通解为 ỹ = Cx . x
它的一个特解为 y = x ln | x | .
因此,所求曲线为 y = x ln | x | +Cx .
dx x
xx
令
u=
y
,有
x du = (1 + u) ln(1 + u)
x
dx
当 u ≠ 0, u ≠ −1 时
du
dx
=
(1 + u) ln(1 + u) x
积分,得 ln(1 + u) = cx 代回变量,得通解 ln(1 + y ) = cx
x (6) xy′ = x 2 − y 2 + y
解:方程改写为 dy = 1 − ( y )2 + y
作变换
u = ξ + 2, v = η + 1,则方程化为
dη 2ξ + 3η =
dξ 3ξ + 2η
再作变换
ω = η ,则方程化为 ξ
3 + 2ω 2(1 − ω 2 )
dω
=
dξ ξ
(ω ≠ ±1)
6
积分,得
1+ω (1 − ω )5
= cξ 4
代回原变量,得原方程的通解为 (x 2 − y 2 − 1)5 = c(x 2 + y 2 − 3)
=
11 −
−e−2e x y
为所求的解。
y
4.求解方程 x 1 − y 2 dx + y 1 − x 2 dy = 0
解: x = ±1 (−1 ≤ y ≤ 1), y = ±1(−1 ≤ x ≤ 1) 为特解,
当 x ≠ ±1, y ≠ ±1时, x dx + y dy = 0
1− x2
1− y2
(2) 如果在 3 小时时的细菌数为得104 个,在 5 小时时的细菌数为得 4 ×104 个,那么
在开始时有多少个细菌?
解:设 t 时刻的细菌数为 q (t) , 由题意建立微分方程 dq = kq k > 0 dt