教师资格证高中数学试讲历年真题

合集下载

高中数学教师资格证面试真题版

高中数学教师资格证面试真题版

高中数学教师资格证面试真题版本节课主要介绍了终边相同的角的概念和相关知识,通过引导学生观察和讨论,让学生理解终边相同的角之间的数量关系,并掌握用集合的方式来表示这些角。

这一知识点在高中数学中属于三角函数的基础内容,对于学生后续研究三角函数和解三角形等知识有很重要的作用和地位。

2.如何用集合的方式表示所有与α角终边相同的角?参考答案】所有与α角终边相同的角可以构成一个集合S={β|β=k·360°+α,k∈Z}。

即任一与角α终边相同的角,都可以表示成α与整数个周角的和。

需要注意的是,k∈Z表示k为整数,终边相同的角不一定相等,它们相差360°的整数倍。

本课是数学必修XXX的第一节三角函数,它是基本初等函数,用于描述周期现象的重要数学模型。

角的概念的推广是初中相关知识的自然延续之一,为进一步研究角的和、差、倍、半关系提供了条件,也为今后研究解析几何、复数等相关知识提供有利的工具。

因此,学生正确理解和掌握角的概念的推广尤为重要。

在本节课的教学过程中,学生的活动过程决定着课堂教学的成败。

教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地归纳出终边相同的角的一般形式。

也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义。

如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会旋转量和方向对角形成的影响,更好地了解任意角的深刻涵义。

在高中数学《函数零点判定定理》中,我们研究了二分法求零点的理论依据和前提。

通过不断地把连续函数f(x)的零点所在的区间一分为二,使区间的端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

因此,函数零点判定定理是二分法求零点的理论依据和前提。

在高中数学《奇函数的性质》中,我们研究了奇函数的含义和性质,并能够利用奇函数的性质解决问题。

教师资格证高中数学试讲历年真题整理

教师资格证高中数学试讲历年真题整理

教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2. 在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系?(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗?板书设计3.并集1. 理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

情感态度与价值观:通过本节课的学习,学生能够体会数学与生活的联系;通过从实例中概括出数学概念,体会到探究成功的喜悦。

教师资格证(高中数学)面试真题

教师资格证(高中数学)面试真题

高中数学教师资格证面试真题——《奇函数》教师资格证最后一环节就是面试,面试采取抽签的方式,抽取题目后进行准备然后试讲。

以下是某同学抽取的题目《奇函数》,包括抽取题目,教案准备,以及试讲环节,答辩环节题目。

无论大家抽取的题目是什么,只要全套思路按照下面的描述来,面试基本上就没问题啦,祝大家好运!考试目标:高中面试科目:高中数学题目名称:《奇函数》详情:1、题目:《奇函数》2、内容观察函数()f x x=和1()f xx=的图像(图1.3-9),并完成下面的两个函数值对应表,你能发现这两个函数有什么共同特征吗?我们看到,两个函数的图像都关于原点对称,函数图像的这个特征,反映在函数解析式上就是:当自变量x取一对相反数时,相应的函数值()f x也是一对相反数。

例如,对于函数()f x x=有:(3)3(3);(2)2(2);(1)1(1).f f f f f f -=-=--=-=--=-=-实际上,对于函数()f x x =定义域R 内任意一个x ,都有()().f x x f x -=-=- 这时我们称函数()f x x =为奇函数。

一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。

3、基本要求:(1)能利用函数图像探究出奇函数的特点;(2)教学中注意师生间的交流互动,有适当的提问环节;(3)请在10分钟内完成试讲内容。

简案:一、课题:《奇函数》二、教学目标1、知识与能力①理解奇函数概念。

②知道奇函数的定义域关于原点对称,并熟练利用定义法判断一个函数为奇函数。

2、过程与方法①通过复习回顾偶函数引入奇函数的定义,培养学生温故而知新、举一反三的能力。

②通过观察图像、交流判断,学习奇函数图像的特征,培养学生类比、观察、归纳、思考与创新能力,体会数学由特殊到一般、具体到抽象的数学思维方法,并从中感受数形结合的巨大魅力。

3、情感态度价值观通过本节课的学习,激发学生学习的信心与参与热情,培养良好的数学素养与学习习惯。

高中数学教资面试考试真题

高中数学教资面试考试真题

高中数学教资面试考试真题一、函数的单调性。

真题:请设计一个教学片段,讲解函数单调性的概念。

解析:1. 导入。

- 展示气温变化图(可以是一天内气温随时间的变化图像),提问学生从图像中能观察到什么规律。

比如气温在某些时间段内是上升的,某些时间段内是下降的。

2. 概念讲解。

- 给出函数y = x^2的图像,在图像上取两个点A(x_1,y_1)和B(x_2,y_2),且x_1。

- 当x∈(-∞,0)时,计算y_1-y_2=x_1^2-x_2^2=(x_1 + x_2)(x_1-x_2),因为x_1,所以x_1+x_2<0,x_1-x_2<0,则y_1-y_2>0,即y_1>y_2,说明在(-∞,0)上,随着x的增大y减小。

- 当x∈(0,+∞)时,同样计算y_1-y_2,此时若x_1,y_1-y_2<0,即y_1,说明在(0,+∞)上,随着x的增大y增大。

- 引出函数单调性的概念:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

3. 巩固练习。

- 给出函数y=sin x,x∈[-(π)/(2),(π)/(2)],让学生判断函数的单调性,并说明理由。

4. 课堂小结。

- 回顾函数单调性的概念,强调判断函数单调性的关键是比较函数值的大小关系。

二、等差数列的通项公式。

真题:如何引导学生推导等差数列的通项公式?解析:1. 复习旧知。

- 回顾等差数列的定义,即一个数列从第二项起,每一项与它的前一项的差等于同一个常数d。

- 写出一个简单的等差数列,如1,3,5,7,·s,让学生说出公差d = 2。

2. 推导过程。

- 设等差数列{a_n}的首项为a_1,公差为d。

- 根据等差数列的定义有:a_2=a_1+d,a_3=a_2+d=(a_1+d)+d=a_1+2d,a_4=a_3+d=(a_1+2d)+d=a_1+3d。

下半年教师资格证面试精选真题高中数学

下半年教师资格证面试精选真题高中数学

高中数学《函数的单调性与导数》一、考题回顾1.题目:函数的单调性与导数2 . 内容;观察下面一些函数的图象(图1.3-2),探讨函数的单调性与其导函数正负的关系Y4ymX 工(1) y=r黑O(3) Y y=尼0 1(2) y. y= 工(4)如图1 . 3- 3,导数f(z )表示函数r )在点(%,(x))处的切线的斜奉,在工=1 处,(r)>0,切线是“左下右上”式的。

这时,函数fCr)在r,附近单调递增;在 r=1处,/(x)<0,切线是“左上右下”式的,这时,函数(r)在ri 附近单调通减.@加果在某个区 间内怪有了(x)=6, 那么函数F(z)有什么 特性?图1-3-3一般地,函数的单调性与其导函数的正负有如下关系; 在某个区间(a ,b )内,如果了(r )>0,那么函数 y=f(r)在这个区间内单调递增;如果f(x)<0,那么函数 y=/(r)在这个区间内单调递减0. 3.基本要求:(1)有适当的板书设计; (2)有讨论、提问环节;(3)讲清楚函数的单调性与导数的关系答推题目1怎样利用导数求函数的单调区间,举例说明。

【专业知识类】2.在本节课的教学过程中,你是如何设计探究函数单调性与导数的关系?【教学实施类】offcn二、考题解析高中数学《函数的单调性与导数》主要教学过程及板书设计教学过程Yy=F(0(后 1)C.fu山7O/ 1Y(一)复习导入问题提出:判断y=x²的单调性,如何进行?(分别用图像法,定义法完成)那么如何判断f(x)= sin x-x,x∈(0,π);的单调性呢?引导学生图像法,定义法尝试发觉有困难,引出课题。

)(二)新知探究探究任务一:函数单调性与其导数的关系:观察课件上图(1)~图(4)问题:通过观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?学生讨论汇报;形成初步结论,函数的单调性与导数的关系:在某个区间(a,b)内,如果f(x)>0, 那么函数v=f(x)在这个区间内单调递增;如果f(x)<0,那么函数y=f(x)在这个区间内单调递减.(三)应用新知判断下列函数的单调性,并求出单调区间:(1)f(x)=sinx-x,x ∈(0,n):(2)f(x)=2x³+3x2-24x+1问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)“求解函数y=f(x)单调区间的步骤;(1)确定函数y=f(x)的定义域;(2)求导数y=f(x);(3)解不等式f(x)>0,解集在定义域内的部分为增区间;(4)解不等式f(x)<0,解集在定义域内的部分为减区间.(四)小结作业小结:通过本节课的学习你学到了什么?函数的单调性与导数之间存在什么关系?作业:课件上的练习题1,2. ofFcn板书设计函数的单调性与导数函数的单调性与导数的关系:在某个区间(a,b)内,如果f(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f(x)<0,那么函数y=f(x)在这个区间内单调递减.offcn答辩题目解析1.怎样利用导数求函数的单调区间,举例说明。

数学教师资格证面试真题(精选) (9)

数学教师资格证面试真题(精选) (9)

数学教师资格证面试精选真题高中数学《函数的单调性与导数》
一、考题回顾
二、考题解析
高中数学《函数的单调性与导数》主要教学过程及板书设计教学过程
板书设计
答辩题目解析
1.怎样利用导数求函数的单调区间,举例说明。

【专业知识问题】【参考答案】
2.在本节课的教学过程中,你是如何设计探究函数单调性与导数的关系?【教学实施问题】
【参考答案】
在教学过程中,我根据学生认知的先后顺序,通过提问――观察――讨论――再提问――再观察――再讨论,一环扣一环的教学。

让学生分组讨论,充分参与,自己建立函数单调性与导数的关系,深刻的体验使学生感受到获得新知的乐趣,从而达到本节课的教学目标。

教师资格考试《高中数学专业面试》真题汇编

教师资格考试《高中数学专业面试》真题汇编

教师资格考试《高中数学专业面试》真题汇编1 [简答题](江南博哥)二项式定理1.题目:选修2-3《二项式定理》片段教学2.内容:3.基本要求:(1)试讲时间约10分钟;(2)讲解条理清楚、重点突出;(3)需要适当板书;(4)渗透数学思想方法。

参考解析:一、温故复习,悬疑导入物复习已学习的完全平方、立方公式:结果:的展开式又该如何表示呢?引出课题——二项式定理。

二、尝试探究,理解掌握1.引导探究、初步认识(1)找规律2.深入研究、引出公式(1)观察,得出猜想观察展开式中的项数、指数变化以及系数变化,你发现了什么?由此猜想的展开式中项数,指数变化及系数变化又如何呢?并试着写出他们的展开式。

回答:(2)得出公式和概念(3)细节介绍观察二项展开式中的项数、指数以及系数有何特点,谁最具代表性?三、解释应用,巩固新知大屏幕的两道题,巩固一下所学知识。

四、总结体会,反思提升通过本节课的学习,你有哪些收获?鼓励学生畅所欲言,各抒己见。

学生总结为主,引导学生从知识、方法、数学思想等方面小结本节课所学内容。

老师辅助补充。

五、课后作业,拓展延伸。

1.基础作业:课后习题1-2;2.开放性思考题:探索对于(1+2x)5的展开式,思考1:展开式的第2项的系数是多少?思考2:展开式的第2项的二项式系数是多少?。

板书设计:略2 [简答题]交集与并集1.题目: 必修1《交集与并集》片段教学2.内容:3.基本要求:(1)试讲时间约10分钟;(2)讲解条理清楚、重点突出;(3)需要适当板书;(4)渗透数学思想方法。

参考解析:一、创设情境,悬疑导入1.情境:数学老师整理了中考数学成绩在90分以上的学生,化学老师整理”了中考化学成绩在90分以上的学生,两个成绩都在90分以,上的学生顺利成为科学兴趣小组的成员。

2.结合上述情境复习集合与元素的关系的知识。

3.引出新问题: :若数学老师整理的学生名单为集合A,化学老师整理的学生名单为集合。

B,则科学兴趣小组的成员组成的集合是什么?该如何表示呢?引出课题。

教师资格证高中数学试讲历年真题完整版

教师资格证高中数学试讲历年真题完整版

教师资格证高中数学试讲历年真题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2. 在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗板书设计3.并集1. 理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

(完整版)教师资格证高中数学试讲历年真题整理

(完整版)教师资格证高中数学试讲历年真题整理

教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2. 在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系?(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗?板书设计3.并集1. 理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

情感态度与价值观:通过本节课的学习,学生能够体会数学与生活的联系;通过从实例中概括出数学概念,体会到探究成功的喜悦。

高中数学教师资格证专业面试试讲真题三十题

高中数学教师资格证专业面试试讲真题三十题

高中数学教师资格证面试试讲真题30题注:题目均选自历年真题,试题纸教材选择自2019版新人教A版教材。

试题编辑顺序为2019年新教材的必修一到选择性必修三。

熟读教村,读熟教村,教村熟读。

《列举法表示集合》《并集》《基本不等式》《单调性》《奇偶性》《函数零点的判定定理》《幂函数》《指数函数》《对数函数》《正弦函数图像》《三角函数的周期性》《两角差的余弦公式》《向量的减法运算》《平面向量的基本定理》《余弦定理》《平面与平面平行的性质应用》《平面与平面垂直的判定》《分层抽样》《古典概型》《倾斜角与斜率》《圆的标准方程》《椭圆的标准方程》《双曲线的标准方程》《抛物线例4应用》《等差数列》《等差数列的前n项和》《等比数列》《等比数列前n项和》《导数的概念》《基本初等函数的求导公式》《复合函数求导》《二项式定理》第一题:《列举法表示集合》题目来源2019年1月4日上午面试真题试讲题目1、题目:《列举法表示集合》2、内容:3、基本要求:(1)试讲时间10分钟以内(2)讲解目的明确,条理清晰,重点突出。

(3)根据讲解需搭配适当的板书(4)讲清楚列举法如何表示集合答辩题目 1.你这个导入的优点是什么?2.集合都有哪些表示方法第二题:《补集》题目来源2020年下半年、2019年1月4日上午面试真题试讲题目1、题目:《补集》2、内容:3、基本要求:(1)试讲时间10分钟以内(2)讲解目的明确,条理清晰,重点突出。

(3)根据讲解需搭配适当的板书(4)讲清楚什么是补集以及如何计算补集。

答辩题目 1.补集的性质是什么?2.你认为本节课,哪里对学生比较难?你是如何理解的?第三题:《基本不等式》题目来源2020年下半年、2019年上半年午面试真题试讲题目1、题目:《基本不等式》2、内容:3、基本要求:(1)试讲时间10分钟以内(2)教学注意师生间的交流互动,有适当的提问环节。

(3)根据讲解需搭配适当的板书(4)引导学生理解、证明基本不等式。

高中数学教资历年试讲真题

高中数学教资历年试讲真题

高中数学教师资格证面试——试讲真题题库2018年1月1.交集2.函数的单调性3.两直线平行的判定4.直线与平面平行的判定5.曲线与方程6.椭圆的标准方程7.圆的标准方程8.等差数列9.等差数列的通项公式10.几何概型11.充分与必要条件2018年5月1.并集2.直线的两点式方程3.三角函数的周期性4.基本不等式5.函数与映射6.弧度与角度的转化7.空间向量8.古典概型9.圆的一般方程10.奇函数11.平面向量的基本定理12.偶函数2019年1月1.复合函数求导2.集合的定义3.等比数列前n项和4.二项式定理5.函数的极值6.双曲线的标准方程7.直线与平面垂直的判定8.等比数列2019年5月1.余弦定理2.平面与平面的位置关系3.抛物线(例题课)4.正弦定理的应用5.对数的运算6.一元二次不等式的解法7.概率的基本性质8.导数的几何意义9.事件的关系与运算10.线性规划问题11.向量的几何表示12.反证法(例题课)2020年1月1.余弦定理的应用(例题课,答辩:给出三个坐标如何判断三角形的形状、已知三角形的三边长求面积、什么是解三角形)2.正弦定理的应用3.三角函数的诱导公式4.三角函数的周期性5.函数单调区间的的求法和依据6.利用导数求极值例题7.奇函数的性质8.函数的单调性(用定义法证明)9.综合法(例题讲解)10.平面向量的数量积11.函数单调性与导数的正负关系12.向量共线条件/平面向量共线的坐标表示13.函数最值(函数单调性与导数的关系)14.不等式性质三的推导与推论15.类比推理——由平面三角形类比推理空间四面体的性质16.复合函数求导17.正弦定理的应用例题18.抛物线计算19.等差数列的求和公式应用例题20.等差数列的前n项和公式应用——答辩:等差数列的前n项和公式是不是一元二次函数21.空间向量方法22.等差数列的通项公式23.等比数列的通项公式应用例题24.二面角25.等差数列前n项求和26.等比数列的概念27.等比数列求和公式推导28.不等式的性质1:a大于b等价于b小于a29.不等式的性质330.基本不等式就是均值不等式(算术平均值和几何平均值)31.均值不等式应用—例1:面积为100的矩形菜地长和宽为多少时周长最小?32.用等比数列的前n项和证明式子33.向量的几何表示34.导数的概念35.导数的几何意义36.面面垂直的判定定理37.事件的关系与运算38.二元一次不等式的区域表示39.如何判断两条直线是异面直线,怎么求异面直线的夹角(异面直线的定义)40.轨迹方程41.三垂线定理42.抛物线例443.事件(根据实际生活中的例子,引导学生理解确定事件和随机事件;讲清确定事件和随机事件的区别)44.古典概型(论述清楚古典概型与几何概型的异同点)45.三棱锥的体积例题46.棱锥表面积-247.多面体的表面积例题课—四面体的表面积48.用空间向量证明直线与平面垂直49.等差数列的前n项和公式50.等差数列前n项和的应用S n-S n-1的方法51.多面体的表面积(例题课,求四面体的表面积)2021年1月1.余弦定理(要求联系三角形全等和勾股定理、推导过程)2.直线与平面平行的性质定理(要求讲明证明过程与成立条件)3.指数函数的概念4.指数函数的概念与性质5.有理数指数幂的运算6.指数函数模型的应用(例8、答辩:体现了何种数学思想)7.指数函数单调性的应用(例题)8.平均变化率数学表达式与几何意义9.平均速度(要求根据例题说明计算平均速度的公式)10.余弦定理应用(例题课)11.余弦定理推论12.对数的概念+常用对数+对数与指数的关系13.对数的运算性质(积化和、差化商)14.证明立体几何直线与平面所成角15.平面与平面平行的性质与应用(例6)16.直线与平面平行的性质定理应用(例3、锯木)17.多面体的表面积(例题课)18.向量数量积应用证明线面垂直19.直线与平面所成角20.随机试验结果分布21.基本初等函数导数公式y=c与y=x及物理意义22.直线与平面的位置关系(要求有三视图的展开与讲解)23.均值不等式24.空间向量(例题,要求计算异面直线的余弦值)25.直线与平面垂直的判定定理与应用(例题课、4.9图片)26.等比数列前n项求和公式推导27.正分数指数幂(1.9、1.10均考查、根式里被开平方数能被指数整除就可以写成正分数指数幂、有例题、有定义)28.双曲线例题(例5)29.椭圆(例4)30.等差数列概念的应用(用作差证明等差数列)31.抛物线的应用(例题、直线BD平行于抛物线对称轴)32.复数的加法与减法法则33.用定义求基本初等函数的导数34.抛物线的定义与标准方程35.逆否命题36.平面与平面平行的性质与应用(例2、)37.空间几何体的三视图2021年5月1. 弧度制与角度制的转化2. 平面向量的交换律和结合律3. 事件的关系及运算(相等包含关系)4. 三角函数的周期性5. 任意角例题6. 简单逻辑且或非7. 三角函数的图像8. 向量的几何表示9. 平面向量减法的应用10. 求三角函数的值11. 任意角三角函数概念12. 终边相同的角13. 向量的加减和几何意义,三角函数的周期性14. 弧度制证明扇形的弧长与面积15. 事件的交与并。

高中数学教师面试:13篇试讲练习题本

高中数学教师面试:13篇试讲练习题本

高中数学教师面试:13篇试讲练习题本1)介绍空间直角坐标系的概念和基本要素;2)演示如何在空间直角坐标系中表示点、直线和平面;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

8篇目八1.题目:《求曲线的方程例3》2.内容:3.基本要求:1)介绍求曲线方程的基本思路和方法;2)演示如何通过已知条件求解曲线方程;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

9篇目九1.题目:《抛物线例4》2.内容:3.基本要求:1)介绍抛物线的基本概念和性质;2)演示如何通过已知条件求解抛物线方程;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

10篇目十1.题目:《向量的几何表示》2.内容:3.基本要求:1)介绍向量的基本概念和性质;2)演示如何用向量表示线段、向量加减、向量的数量积和向量的夹角;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

11篇目十一1.题目:《概率的基本性质》2.内容:3.基本要求:1)介绍概率的基本概念和性质;2)演示如何计算简单事件的概率;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

12篇目十二1.题目:《余弦定理》2.内容:3.基本要求:1)介绍余弦定理的基本概念和应用;2)演示如何通过余弦定理求解三角形的边长和角度;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

13篇目十三1.题目:《判断函数的奇偶性》2.内容:3.基本要求:1)介绍函数的奇偶性概念和判断方法;2)演示如何通过函数图像判断函数的奇偶性;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

14篇目十四1.题目:《复合函数求导例题》2.内容:3.基本要求:1)介绍复合函数的概念和求导法则;2)演示如何通过链式法则求解复合函数的导数;3)教学中注意师生间的交流互动,应有适当的提问环节;4)恰当板书,试讲时间不超过十分钟。

教师资格面试中学数学试讲真题

教师资格面试中学数学试讲真题

教师资格面试中学数学试讲真题
一、试讲题一
1.课题:古典概型
2.内容:(1)同时抛三枚硬币,三枚硬币同时正面朝上的概率是多少。

(2)甲袋中有1只白球、2只红球、3只黑球;乙袋中有2只白球、3只红球、1只黑球。

现从两袋中各取一球,求两球颜色相同的概率。

3.基本要求:(1)讲解概率的统计方法;(2)须体现过程性评价。

二、试讲题二
1.课题:勾股定理
2.内容:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

如果设直角三角形的两条直角边长度分别是a 和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²。

3.基本要求:(1)教会学生掌握勾股定理的证明方法;(2)条理清晰,重点突出,适当板书;(3)十分钟内完成试讲。

试讲-数学-真题5道-高中

试讲-数学-真题5道-高中

中小学教师资格证面试备课纸
准考证号:姓名:所在考场:
1.题目:数列的通项公式
2.内容:
3.要求
〔1〕要有板书设计
〔2〕试讲十分钟左右
〔3〕条理清晰,重难点突出
〔4〕讲明通项公式的求法
中小学教师资格证面试备课纸
准考证号:姓名:所在考场:
1.题目:二面角公式
2.内容:
3.要求
〔1〕请在10分钟内完成试讲内容
〔2〕要求讲清楚二面角的相关概念,能够正确画出二面角
〔3〕讲出角AOB的大小与直线L上O的位置关系
〔4〕要求配合教学内容有适当的板书设计
中小学教师资格证面试备课纸
准考证号:姓名:所在考场:
1.题目:列举法表示集合
2.内容:
3.要求
〔1〕要有板书设计
〔2〕试讲十分钟
〔3〕条理清晰,重难点突出
〔4〕讲明列举法的局限性
中小学教师资格证面试备课纸
准考证号:姓名:所在考场:
1.题目:对数的概念
2.内容:
3.要求
〔1〕请在10分钟内完成试讲内容
〔2〕注意板书
〔3〕条理清晰
中小学教师资格证面试备课纸
准考证号:姓名:所在考场:
1.题目:几何概型
2.内容:
3.要求
〔1〕请在10分钟内完成试讲内容
〔2〕注意师生互动
〔3〕要求配合教学内容有适当的板书设计。

教师资格证高中数学试讲历年真题整理

教师资格证高中数学试讲历年真题整理

教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2. 在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系?(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗?板书设计3.并集1. 理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

情感态度与价值观:通过本节课的学习,学生能够体会数学与生活的联系;通过从实例中概括出数学概念,体会到探究成功的喜悦。

2024年教师资格考试高中面试数学试题及解答参考

2024年教师资格考试高中面试数学试题及解答参考

2024年教师资格考试高中数学面试复习试题(答案在后面)一、结构化面试题(10题)第一题题目:请简述高中数学教育对于学生综合素养的重要性。

第二题情境:某高中数学教师在课堂上讲解二次函数图像,有个学生提出了这样一个问题:“老师,如果二次函数的系数组成的向量(a, b, c)满足一定的条件,是否有办法直接知道该二次函数的图像像不像一个“钟形”?或者更精确地说,什么时候二次函数图像“顶点朝上”?什么时候“顶点朝下”?“任务:请你用简洁易懂的语言,回答该学生的问题,并结合实际情况进行阐释。

第三题题目:谈谈你对教学目标的认识,并举例说明如何在高中数学教学中设定清晰的教学目标。

第四题情境描述:在课堂上,老师讲解函数的定义,并给了学生一个例子:y=2x+3,这是一个一次函数。

学生张三表示自己理解了函数,但认为只有像直线这样上下移动的图象才叫函数,其他的图象比如圆或者抛物线就不是函数。

问题:请你请你结合张三的情况,分析高中生在理解函数概念时可能存在的困惑,并提出有效的教学策略帮助学生更好地理解函数的概念。

第五题题目:如果一位学生在课堂上对您提出的问题回答错误,您应当如何处理?分析:这个问题本质上考察了面试者的课堂管理技巧,对学生错误的处理能力,以及如何创造一个支持性的学习环境。

第六题题目:在高中数学教学中,如何有效地激发学生的学习兴趣并提高他们的数学成绩?答案及解析:第七题有一支高中数学教学团队,全体教师积极参与了新课程改革,形成了丰富的教学经验。

现该团队需要根据学生的学习状况、迁移能力和评价体系的调整,对该学年中学生学习数学的“理解与运用能力”进行深入研究。

请结合实际教学经验,谈谈您对高中数学 alunos “理解与运用能力”培养的理解和方法。

第八题请谈谈你对“数形结合”思想在高中数学教学中的应用的理解,并结合实际案例说明其在解题中的应用。

第九题题目:在高中数学教学中,如何有效地激发学生的学习兴趣并提高他们的数学成绩?答案及解析:第十题题目:一个学生平时成绩平平,但在某次期末考试中,他的数学成绩突然提高了很多。

教师资格证高中数学试讲历年真题整理

教师资格证高中数学试讲历年真题整理

教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2.在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系?(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗?板书设计3.并集1.理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

情感态度与价值观:通过本节课的学习,学生能够体会数学与生活的联系;通过从实例中概括出数学概念,体会到探究成功的喜悦。

教师资格证高中数学试讲历年真题整理

教师资格证高中数学试讲历年真题整理

教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2. 在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系?(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗?板书设计3.并集1. 理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

情感态度与价值观:通过本节课的学习,学生能够体会数学与生活的联系;通过从实例中概括出数学概念,体会到探究成功的喜悦。

高中教资试讲试题及答案

高中教资试讲试题及答案

高中教资试讲试题及答案一、试题内容题目:《函数的概念》要求:1. 请在10分钟内完成试讲。

2. 需要解释函数的定义,并给出函数的三种表示方法。

3. 通过实例让学生理解函数的概念。

4. 引导学生理解函数的三要素:定义域、值域和对应法则。

5. 适当板书,条理清晰。

二、试讲答案尊敬的各位评委老师,大家好,我是今天的试讲人,我试讲的题目是《函数的概念》。

(一)导入新课同学们,在我们的日常生活中,有很多事物之间存在着一定的关系。

比如,我们每天的体温和时间之间就有一定的关系,随着时间的变化,体温也会发生相应的变化。

那么,这种变化的规律我们可以用数学的方式来描述,这就是我们今天要学习的函数的概念。

(二)函数的定义函数是数学中一个非常重要的概念,它描述了两个变量之间的一种确定性关系。

我们可以用以下三种方式来表示函数:1. 解释法:用文字来描述两个变量之间的关系。

例如,我们可以说“y是x的平方”,这就是一个函数的定义。

2. 列表法:用表格的形式列出自变量和因变量的对应关系。

例如,我们可以列出一个表格,第一列是x的值,第二列是对应的y 的值。

3. 图像法:在坐标系中画出函数的图像,通过图像来表示两个变量之间的关系。

例如,我们可以画出一个抛物线,表示y是x的平方。

(三)函数的三要素函数有三个要素,分别是定义域、值域和对应法则。

1. 定义域:函数中自变量x的取值范围。

例如,对于函数y=x^2,x可以取任意实数,所以定义域是全体实数。

2. 值域:函数中因变量y的取值范围。

例如,对于函数y=x^2,y的值总是非负的,所以值域是[0, +∞)。

3. 对应法则:描述自变量和因变量之间关系的规则。

例如,对于函数y=x^2,对应法则就是“y等于x的平方”。

(四)实例分析现在我们来看一个具体的例子,帮助大家更好地理解函数的概念。

例:y=2x+31. 解释法:y是x的两倍再加上3。

2. 列表法:我们可以列出一个表格,第一列是x的值,第二列是对应的y的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师资格证高中数学试讲历年真题Revised final draft November 26, 2020教资高中数学试讲历年真题必修一集合与函数概念——集合函数及其表示函数的基本性质·1.列举法表示集合2.子集1.2. 在教学过程是,我是根据学生认知的先后顺序,通过观察――讨论――再观察――再讨论,一环扣一环的教学。

让学生认识子集的概念,进而举出一个特例,让学生发现其中的不同之处,并设计分组讨论,充分参与,自己建立概念,深刻的体验使学生感受到获得新知的乐趣,从而学会子集、真子集的定义。

教学过程(一)创设情境,导入新课思考:实数有相等关系、大小关系,如:5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系(二)探究新知出示例题:观察下面几个例子,你能发现两个集合之间的关系吗板书设计3.并集1. 理解并集的概念,会求两个集合的并集。

在教学的过程中,采用学生独立思考和合作探究的学习方式,得出并集的定义,并理解代表元素用不同字母代替,并不影响它们之间作并集运算。

2.数形结合的思想,在得到并集的定义后,通过维恩图向学生直观的展示并集运算的意义。

4.函数概念要求:有板书;试讲十分钟左右;条理清晰,重点突出;学生掌握函数的概念1.函数与映射的异同点?相同点:(1)函数与映射都是两个非空集合中元素的对应关系;(2)函数与映射的对应都具有方向性;(3)A中元素具有任意性,B中元素具有唯一性。

区别:函数是一种特殊的映射,它必须是满射。

它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。

2.本节课的教学目标是什么?知识与技能:能说出函数的概念、函数的三要素含义及其相互关系,会求简单函数的定义域和值域。

过程与方法:通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,从具体到抽象,从特殊到一般,提高抽象概括能力和逻辑思维能力,建立联系、对应、转化的辩证思想,强化“形”与“数”结合并相互转化的数学思想。

情感态度与价值观:通过本节课的学习,学生能够体会数学与生活的联系;通过从实例中概括出数学概念,体会到探究成功的喜悦。

教学设计5.函数零点判定定理1. 通过不断地把连续函数f(x)的零点所在的区间一分为二,使区间的端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

由此可见,函数零点判定定理是二分法求零点的理论依据和前提。

2.教学过程(一)创设情境、引入课题下面有两组简笔画,哪一组说明人一定过河了?第一组:6.奇函数7.偶函数1.高中函数概念与初中概念相比更具有一般性。

实际上,高中的函数概念与初中的函数概念本质上是一致的。

不同点在于,表述方式不同──高中明确了集合、对应的方法。

初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点。

与初中相比,高中引入了抽象的符号f(x),f(x)指集合B中与x对应的那个数.当x确定时,f(x)也唯一确定。

另外,初中并没有明确函数值域这个概念。

2..知识与技能:理解偶函数概念,知道偶函数的定义域关于原点对称,并能熟练利用定义法判断一个函数是偶函数。

过程与方法:通过探究偶函数的活动,增强类比、观察、归纳、思考与创新能力,体会数学由特殊到一般、具体到抽象的数学思维方法,并从中感受数形结合的巨大魅力。

情感态度与价值观:通过本节课的学习,激发学习信心与参与热情,逐步养成良好的数学素养与学习习惯。

四、板书设计基本初等函数——指数函数对数函数幂函数(函数的应用——函数与方程函数模型及其应用)1.指数函数的图像与性质1.非奇非偶函数,虽然指数函数的定义域关于原点对称但其函数图象既不关于原点对称又不关于y轴对称。

故是非奇非偶函数。

但是当两个指数函数的底互为倒数时,这两个函数的图象关于y轴对称,在讲授过程中可能会有小部分学生对此发生知识混淆。

要强调函数的奇偶性是对函数自身而言。

2. 重点:指数函数图像、性质及其运用。

难点:指数函数图像、性质及其运用。

必修二空间几何体——空间几何体的结构三视图和直观图表面积与体积点、直线、平面之间的位置关系——位置关系直线、平面平行判定及其性质垂直判定及其性质1.两直线平行的判定定理直线与方程——直线的倾斜角与斜率直线方程直线的交点坐标与距离公式1.直线的点斜式方程 (斜率公式利用斜率判断两条直线平行)1.直线的点斜式方程由直线上一点及其斜率。

不是任意一条直线的方程都能写成点斜式方程,因为斜率不存在的直线,显然不能写成点斜式。

2. 知识与技能:掌握由一点和斜率导出直线方程的方法,会求直线的点斜式方程,理解直线方程的点斜式特点和适用范围。

过程与方法:通过直线这一结论探讨确定一条直线的条件,利用探讨出的条件求出直线方程,进一步形成严谨的科学态度。

情感态度与价值观:通过学习直线的点斜式方程的特征和适用范围,渗透数学中普遍存在相互联系、相互转化等观点。

2.直线的两点式圆与方程——圆的方程直线与圆的位置关系空间直角坐标系1.圆的标准方程2.圆的一般方程3.直线与圆的位置关系必修三(算法初步——算法与程序框图基本算法语句算法案例)统计——随机抽样用样本估计总体变量之间的相关关系概率——随机事件的概率古典概型几何概型1.分层抽样法2.古典概型3,几何概型必修四三角函数——任意角和弧度制任意角的三角函数三角函数诱导公式图像与性质y=yyyy(yy+)的图像与性质1.终边相同的角1.本课是数学必修四三角函数中第一节的内容。

三角函数是基本初等函数,它是描述周期现象的重要数学模型.角的概念的推广正是这一思想的体现之一,是初中相关知识的自然延续。

为进一步研究角的和、差、倍、半关系提供了条件,也为今后学习解析几何、复数等相关知识提供有利的工具,所以学生正确的理解和掌握角的概念的推广尤为重要。

2.学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式。

也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义。

如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义。

教学设计(一)导入新课出示例题:在直角坐标系中,以原点为定点,X正半轴为始边,画出210°,-45°以及-150°,三个角。

并判断是第几象限角?提出问题:这三个角的终边有什么特点?追问:按照之前学的方法,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?(二)生成新知提出问题:在直角坐标系中标出210°,-150°,328°,-32°,-392°表示的角,观察他们的终边,你有什么发现?预设:210°和-150°的终边相同。

328°,-32°,-392°的终边相同。

追问并进行小组讨论:这两组终边相同的角,它们的之间有什么数量关系终边相同的角又有什么关系经过讨论,学生得到这样的关系:210°-(-150°)=360°,328°-(-32°)=360°,-32°-(-392°)=360°等。

由这两组角可以看出终边相同的角之间相差360°的整数倍。

追问:那么这些角,如何用我们学过的数学语言来表示出来?预设:描述法,集合。

用集合的方式更方便也更加容易理解。

设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0)。

因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同。

所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}。

即任一与角α终边相同的角,都可以表示成α与整数个周角的和。

适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍。

(三)应用新知例1.在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角。

例2.写出终边在y轴上的角的集合。

①写出终边在x轴上的角的集合。

②写出终边在坐标轴上的角的集合。

(四)小结作业小结:通过这节课的学习,你有什么收获你对今天的学习还有什么疑问吗作业:预习下节课新课。

板书设计2.弧度与角度的转化1. 弧度的定义是什么说一说度和弧度的区别——两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段弧。

当这段弧长正好等于圆的半径时,两条射线的夹角大小为1弧度。

度和弧度的区别,仅在于角所对的弧长大小不同,度的是等于圆周长的360分之一,而弧度的是等于半径。

简单的说,弧度的定义是,当角所对的弧长等于半径时,角的大小为1弧度。

2.知识与技能:能正确进行角度与弧度的换算,熟记特殊角的弧度数。

过程与方法:在合作探究的学习过程中,养成合理表述、科学抽象、规范总结的思维习惯,逐步在探索新知过程中锻炼推理的能力和数学知识的运用能力。

情感态度价值观:进一步加强对辩证统一思想的理解,提高归纳概括总结能力,体会数学与生活的紧密联系。

3.请说一说有了角度制为什么还要引入弧度制——在角度制里,三角函数是以角为自变量的函数,对研究三角函数的性质带来不便,引入弧度制后,便能在角的集合与实数集合之间建立一一对应的关系,从而将三角函数的定义域放到实数集或其子集上来。

【教学过程】教学过程(一)导入新课问题1:我们已经知道角的度量单位是度、分、秒,它们的进率是60,角是否可以用其他单位度量呢是否可以采用10进制问题2:角的弧度制是如何引入的为什么要引入弧度制,好处是什么角度制与弧度制的区别与联系(四)小结归纳,布置作业小结:本节课你有哪些收获作业:同桌互相给出角度或者弧度,另一个人进行转化。

板书设计3.三角函数的周期性2. 在这节课中,我在导入环节中,以生活中周而复始的例子引入,让同学们思考在数学中周而复始的例子,吸引同学们的兴趣。

在生成新知的环节,以ppt图片的形式展示正弦函数的图片,让同学们观察思考,以小组讨论的形式逐步引出函数周期以及最小正周期的定义。

相关文档
最新文档