51单片机程序串口通信
51单片机的串口通信程序(C语言)
51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。
本文将介绍使用C语言编写51单片机的串口通信程序。
1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。
首先,我们需要一块51单片机开发板,内置了串口通信功能。
另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。
2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。
在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。
同时,我们还需要引入头文件来定义串口通信的相关寄存器。
3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。
这些参数的配置需要根据实际需要进行调整。
在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。
4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。
初始化串口的过程包括打开串口、设置中断等。
5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。
阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。
6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。
在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。
7. 中断处理在串口通信中,中断是一种常见的处理方式。
通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。
8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。
```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。
51单片机串口烧写和串口通信冲突
51单片机串口烧写和串口通信冲突51单片机是一款经典的单片机芯片,广泛应用于各种嵌入式系统中,具有体积小、功耗低、成本低等特点。
其中,串口烧写和串口通信是其重要的功能之一。
然而,在使用51单片机进行串口烧写和串口通信时,我们常常会遇到串口烧写和串口通信冲突的问题。
本文将从深度和广度两个方面介绍51单片机串口烧写和串口通信冲突的原因、解决方法以及个人观点和理解。
一、51单片机串口烧写和串口通信冲突的原因1. 引脚冲突:51单片机的串口通信使用了P3口的两个引脚(RXD和TXD),而串口烧写也需要使用这两个引脚。
当两者同时使用时,就会发生引脚冲突,导致串口通信无法正常进行。
2. 中断冲突:51单片机的串口通信和串口烧写都需要使用中断来进行数据的传输和处理。
然而,当两者同时进行时,就会发生中断冲突,导致程序异常或无法正常执行。
二、51单片机串口烧写和串口通信冲突的解决方法1. 引脚复用:通过引脚复用的方式,将串口通信和串口烧写使用的引脚分时复用。
可以在程序中通过控制器或开关来切换引脚的功能。
这样就可以避免引脚冲突,使串口烧写和串口通信能够正常进行。
2. 中断优先级设置:通过设置中断的优先级,可以解决串口通信和串口烧写同时进行时的中断冲突问题。
可以根据实际需求将串口通信和串口烧写的中断优先级进行设置,确保两者能够正确地进行数据传输和处理。
三、个人观点和理解作为一名嵌入式系统工程师,我对51单片机的串口烧写和串口通信冲突问题深有感触。
在实际项目中,我遇到过串口烧写和串口通信冲突导致程序异常的情况。
通过分析和解决这个问题,我更加深入地理解了51单片机的串口烧写和串口通信原理,以及相关的硬件和软件知识。
在解决串口烧写和串口通信冲突问题时,我发现引脚复用和中断优先级设置是较为常用且有效的方法。
通过合理设计引脚和优先级,可以有效解决冲突问题,同时保证系统的稳定性和可靠性。
总结回顾:通过本文的介绍,我们了解了51单片机串口烧写和串口通信冲突的原因及解决方法。
MCS-51单片机串口编程及应用介绍
起 始 位
数
据 位
校 验 位
停 止 位
异步通信的帧格式
二、同步通信传送方式
同步传送:以同步字符 同步传送:以同步字符SYN开始连续发 开始连续发 再以同步字符结束, 送,再以同步字符结束,时钟信号同时发 适用高速、大容量的数据传送。 送。适用高速、大容量的数据传送。
开始 同步字符 同步字符 数据段 同步字符 结束 同步字符
工作原理: 工作原理: 发送:CPU执行 执行MOV SBUF,A,将数据送入SBUF SBUF。 发送:CPU执行MOV SBUF,A,将数据送入SBUF。 发送控制器按波特率发生器(定时器构成) 发送控制器按波特率发生器(定时器构成)提供的时钟速 率将SBUF中的数据一位、一位从TXD输出,发送结束时, SBUF中的数据一位 TXD输出 率将SBUF中的数据一位、一位从TXD输出,发送结束时,置 TI=1。 TI=1。 接收:接收控制器按波特率发生器提供的时钟速率从RXD引 接收:接收控制器按波特率发生器提供的时钟速率从RXD引 RXD 脚一位一位接收数据,当收到一个完整字符时,装入SBUF 脚一位一位接收数据,当收到一个完整字符时,装入SBUF 中,同时置RI=1,通知CPU,CPU执行MOV A,SBUF,将数据读 同时置RI=1,通知CPU,CPU执行MOV A,SBUF, RI=1 CPU 执行 入累加器A 入累加器A。 注意:由于SBUF具有双缓冲作用,它可以在CPU读入之前 注意:由于SBUF具有双缓冲作用,它可以在CPU读入之前 SBUF具有双缓冲作用 CPU 开始接收下一数据, CPU应在下一数据接收完毕前读取 开始接收下一数据, CPU应在下一数据接收完毕前读取 SBUF内容 由于串口的接收、发送各自独立, 内容。 SBUF内容。由于串口的接收、发送各自独立,所以可同时发 送及接收,即可以实现全双工通讯。 送及接收,即可以实现全双工通讯。
51单片机串口通信实例
51单片机串口通信实例一、原理简介51 单片机内部有一个全双工串行接口。
什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。
串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。
其缺点是传输速度较低。
与之前一样,首先我们来了解单片机串口相关的寄存器。
SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。
从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。
串行口控制寄存器SCON(见表1) 。
表1 SCON寄存器表中各位(从左至右为从高位到低位)含义如下。
SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。
经验分享:学习单片机重要的是实践,所以开发板是很重要,给大家推荐些淘宝上信誉良好并且软硬件及小零件等、售前售后服务良好的皇冠级金钻店铺给大家,在硬件购买上少走弯路。
按住Ctrl键单击即可:慧净电子单片机(一皇冠)【天津商盟】天津锐志(电子)单片机经营部(两皇冠)金沙滩工作室(5钻)深圳育松电子元件,模块,传感器,批发部:淘宝最全最平价(5皇冠)志宏电子(4钻)表2 串行口工作方式控制位其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。
SM2 :多机通信控制位。
该仅用于方式2 和方式3 的多机通信。
其中发送机SM2 = 1(需要程序控制设置)。
接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。
当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。
51单片机串口通信程序。。含详细例子
4.//////////////// /////////////////////////////////////////////////////////
pw.fpReadSign(); SendData();//通知上位机,送出读出器件特征字 }
void Erase()//擦除器件 {
pw.fpErase(); SendData();//通知上位机,擦除了器件 }
void Write()//写器件 {
BYTE n; pw.fpInitPro();//编程前的准备工作 SendData();//回应上位机表示进入写器件状态,
{
unsigned char c;
TMOD = 0x20; // 定时器 1 工作于 8 位自动重载模式, 用于产生波特率
TH1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate)));
TL1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate))); SCON = 0x50; PCON = 0x00; TR1 = 1; IE = 0x00; // 禁止任何中断 while(1) {
///////////////////////////////////////////////////////////////////////////////// //所支持的 FID,请在这里继续添加
///////////////////////////////////////////////////////////////////////////// extern void PreparePro00();//FID=00:AT89C51 编程器 extern void PreparePro01();//FID=01:AT89C2051 编程器 extern void PreparePro02();//FID=02:AT89S51 编程器
51单片机串口通信(相关例程)
51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。
串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。
本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。
二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。
在51单片机中,常用的串口通信标准包括RS232、RS485等。
其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。
2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。
波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。
数据位表示每个数据字节中的位数,一般为8位。
停止位表示停止数据传输的时间,常用的停止位有1位和2位。
校验位用于数据传输的错误检测和纠正。
三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。
51单片机串口通信
一、串口通信原理串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。
由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。
串口通信的工作原理请同学们参看教科书。
以下对串口通信中一些需要同学们注意的地方作一点说明:1、波特率选择波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。
MSC-51串行端口在四种工作模式下有不同的波特率计算方法。
其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。
在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。
在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1))其中,SMOD——寄存器PCON的第7位,称为波特率倍增位;TH1——定时器的重载值。
在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。
这要根据系统的运作特点,确定通信的频率范围。
然后考虑通信时钟误差。
使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。
为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。
下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。
则TH1=256-62500/波特率根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。
列计数器重载值,通信误差如下表:因此,在通信中,最好选用波特率为1200,2400,4800中的一个。
2、通信协议的使用通信协议是通信设备在通信前的约定。
单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。
假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。
51单片机串口通信程序。。含详细例子
{ P3_4=0; P3_3=1;
} void RstPro()//编程器复位 {
pw.fpProOver();//直接编程结束 SendData();//通知上位机,表示编程器就绪,可以直接用此函数因为协议号(ComBuf[0])还没被修改,下同 }
void ReadSign()//读特征字 {
} void serial () interrupt 4 using 3 //串口接收中断函数 {
if (RI) { RI = 0 ; ch=SBUF; read_flag= 1 ; //就置位取数标志 }
} main()
{ init_serialcom(); //初始化串口 while ( 1 ) { if (read_flag) //如果取数标志已置位,就将读到的数从串口发出 { read_flag= 0 ; //取数标志清 0 send_char_com(ch); } }
while(RI == 0); RI = 0; c = SBUF; // 从缓冲区中把接收的字符放入 c 中 SBUF = c; // 要发送的字符放入缓冲区 while(TI == 0); TI = 0; } }
4.//////////////// /////////////////////////////////////////////////////////
SendData(); } else break;//等待回应失败 } pw.fpProOver();//操作结束设置为运行状态 ComBuf[0]=0;//通知上位机编程器进入就绪状态 SendData(); }
void Lock()//写锁定位
{
pw.fpLock();
SendData();
深入理解51单片机串口通信及通信实例
深入理解51单片机串口通信及通信实例串口通信的原理串口通信(SerialCommunicaTIons)的概念非常简单,串口按位(bit)发送和接收字节。
尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。
它很简单并且能够实现远距离通信。
比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。
典型地,串口用于ASCII码字符的传输。
通信使用3根线完成,分别是地线、发送、接收。
由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。
其他线用于握手,但不是必须的。
串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。
对于两个进行通信的端口,这些参数必须匹配。
a,波特率:这是一个衡量符号传输速率的参数。
指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数,如每秒钟传送240个字符,而每个字符格式包含10位(1个起始位,1个停止位,8个数据位),这时的波特率为240Bd,比特率为10位*240个/秒=2400bps。
一般调制速率大于波特率,比如曼彻斯特编码)。
通常电话线的波特率为14400,28800和36600。
波特率可以远远大于这些值,但是波特率和距离成反比。
高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b,数据位:这是衡量通信中实际数据位的参数。
当计算机发送一个信息包,实际的数据往往不会是8位的,标准的值是6、7和8位。
如何设置取决于你想传送的信息。
比如,标准的ASCII码是0~127(7位)。
扩展的ASCII码是0~255(8位)。
如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。
每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。
由于实际数据位取决于通信协议的选取,术语包指任何通信的情况。
51单片机串口通信原理
51单片机串口通信原理详解1. 引言串口(Serial Port)是一种常用于计算机与外部设备之间进行数据传输的接口,它是一种逐位传输的方式。
51单片机是一种非常常用的单片机,串口通信是其重要的通信方式之一。
本文将详细解释51单片机串口通信的基本原理,包括串口通信的定义、硬件连接示意图、通信协议、数据传输过程以及数据接收处理等方面的内容。
2. 串口通信定义串口通信是一种通过串行通路进行数据传输的通信方式。
它是一种点对点的通信协议,即通信的两端通过共享数据线进行数据交换。
3. 硬件连接示意图完成串口通信,需要将单片机与外部设备进行连接。
下图是一个常见的串口通信连接示意图:___| |TXD <-|---|---> RXD| |RXD <-|---|---> TXD|___|单片机外部设备通常,单片机的TXD引脚连接到外部设备的RXD引脚,而单片机的RXD引脚连接到外部设备的TXD引脚。
4. 串口通信协议串口通信需要明确一种通信协议,以规定数据的传输格式和相关参数。
在51单片机中,常用的串口通信协议有UART(Universal Asynchronous ReceiverTransmitter)和USART(Universal Synchronous Asynchronous Receiver Transmitter)。
UART是指不使用时钟信号而直接利用起始位、数据位和停止位来传输数据的协议,属于异步通信。
USART是指同步和异步传输都能实现的通信协议。
5. 数据传输过程串口通信的数据传输过程可以分为发送和接收两个部分。
5.1 发送数据发送数据的步骤如下:1.配置串口通信参数,包括波特率、数据位、停止位和校验位等。
2.将要发送的数据存放在发送缓冲区中。
3.设置发送开始标志位。
4.如果发送缓冲区为空,则等待直到缓冲区不为空。
5.将发送缓冲区中的数据通过串口发送出去。
6.等待发送完成。
51单片机串口通信程序
51单片机串口通信程序51单片机是我国自主研发的一款微控制器,在国内广泛应用于各种电子设备中。
在很多应用场景中,需要通过串口进行通信,以实现数据传输。
本文将介绍51单片机串口通信程序的编写方法。
一、串口介绍串口是一种通信接口,用于在电子设备之间传输数据。
其主要特点是一条通信线路同时只能传输一位数据,因此称为串口。
串口和并口属于不同的通信接口标准。
串口的优点是具有通信距离远、传输速率快、可靠性高等优点,因此广泛应用于各种场合中。
串口有两种工作模式:同步模式和异步模式。
在实际应用中,异步串口通信更为常见。
二、异步串口通信原理在异步串口通信中,数据的传输是通过发送端和接收端的时钟信号不同步实现的。
在发送数据时,发送端会发出一个起始位,接下来是数据位,最后是一个或多个停止位。
在接收端,当检测到起始位时,开始接收数据。
根据通信协议,在接收完数据位后,接收端会判断是否正确,然后再结束本次通信。
1. 硬件连接在51单片机和电脑之间进行串口通信,需要用到串口转USB线。
将串口转USB线的TxD接口与51单片机的P3.1接口相连,RxD接口与P3.0接口相连。
此外,需要一个5V的电源供给51单片机。
2. 准备工作在编写程序之前,需要进行一些准备工作:(1)将P3口设为外部中断P3口的最低2位是外部中断的2个输入端,需要将它们设为中断输入。
EA=1;EX0=1;(2)设置波特率串口通信需要设置波特率。
常见的波特率有9600、19200、38400等。
对应的波特率常数为0xFD、0xFA、0xF4等。
TH1=0xFD;//波特率9600(3)使能串口中断在发送和接收数据时,会不断产生中断,需要将中断使能。
ES=1;//允许串口中断3. 编写程序(1)发送数据void SendData(unsigned char SendBuff[],unsigned int ULength){unsigned int i;for(i=0;i<ULength;i++){SBUF=SendBuff[i];//发送数据while(TI==0); //等待,直到发送完成TI=0;}}(2)接收数据(3)主函数TMOD|=0x20;//定时器1工作方式2TH1=0xFD;//波特率9600TR1=1;//打开定时器1SCON=0x50;//串口方式1,8位数据,无校验,1停止位EA=1;//开总中断ES=1;//开串口中断while(1){SendData(pSendData,4);//发送数据 RecvData(pRecvData,4);//接收数据if(pRecvData[0]=='K'){P0=0x01;//点亮LED}else{P0=0x00;//关闭LED}}}四、总结。
51单片机串口485通讯程序
/* 以下为单片机串口485通讯程序,从机程序(当然也适用于主机程序),主机发送可以先用串口帮手软件来调试,经过Keil uVision4实际测试,测试效果如结尾图片所示, 大部分来自网络,只是改了两个地方: len = sizeof(dbuf),if(i >=( __ERRLEN+1)) // 帧超长,错误,返回,就可以实现了,其中的原因自已体会吧*/#ifndef __485_C__#define __485_C__#include <reg51.h>#include <string.h>#include <stdio.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int/* 通信命令*/#define __ACTIVE_ 0x01 // 主机询问从机是否存在#define __GETDATA_ 0x02 // 主机发送读设备请求#define __OK_ 0x03 // 从机应答#define __STATUS_ 0x04 // 从机发送设备状态信息#define __MAXSIZE 0x08 // 缓冲区长度#define __ERRLEN 12 // 任何通信帧长度超过12则表示出错//uchar dbuf[__MAXSIZE]; // 该缓冲区用于保存设备状态信息uchar dbuf[__MAXSIZE];//={0,1,2,3,4,5,6,7}; // 该缓冲区用于保存设备状态信息uchar dev; // 该字节用于保存本机设备号sbit M_DE = P1^0; // 驱动器使能,1有效sbit M_RE = P1^1; // 接收器使能,0有效void get_status(); // 调用该函数获得设备状态信息,函数代码未给出void send_data(uchar type, uchar len, uchar *buf); // 发送数据帧bit recv_cmd(uchar *type); // 接收主机命令,主机请求仅包含命令信息void send_byte(uchar da); // 该函数发送一帧数据中的一个字节,由send_data()函数调用void main(){uchar type;uchar len;/* 系统初始化*/P1 = 0xff; // 读取本机设备号//dev = (P1>>2);dev = 0x01;TMOD = 0x20; // 定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0x50; // 工作方式1,波特率9600bps,允许接收ES = 0; // 关闭串口中断//IT0 = 0; // 外部中断0使用电平触发模式//EX0 = 1; // 开启外部中断0EA = 1; // 开启中断/* 主程序流程*/while(1) // 主循环{if(recv_cmd(&type) == 0) // 发生帧错误或帧地址与本机地址不符,丢弃当前帧后返回continue;switch(type){case __ACTIVE_: // 主机询问从机是否存在send_data(__OK_, 0, dbuf); // 发送应答信息,这里buf的内容并未用到break;case __GETDA TA_:// len = strlen(dbuf);//在C51中不能这个函数计算unsigned char型,这个函数只能计算char型len = sizeof(dbuf);// len =0x08;send_data(__STA TUS_, len, dbuf); // 发送设备状态信息break;default:break; // 命令类型错误,丢弃当前帧后返回}}}void READSTATUS() interrupt 0 using 1 // 产生外部中断0时表示设备状态发生改变,该函数使用寄存器组1{get_status(); // 获得设备状态信息,并将其存入dbuf指向的存储区,数据最后一字节置0表示数据结束}/* 该函数接收一帧数据并进行检测,无论该帧是否错误,函数均会返回* 函数参数type保存接收到的命令字* 当接收到数据帧错误或其地址位不为0时(非主机发送帧),函数返回0,反之返回1*/bit recv_cmd(uchar *type){bit db = 0; // 当接收到的上一个字节为0xdb时,该位置位bit c0 = 0; // 当接收到的上一个字节为0xc0时,该位置位uchar data_buf[__ERRLEN]; // 保存接收到的帧__ERRLEN=12;uchar tmp;uchar ecc = 0;uchar i;M_DE = 0; // 置发送禁止,接收允许M_RE = 0;/* 接收一帧数据*/i = 0;while(!c0) // 循环直至帧接收完毕{RI = 0;while(!RI);tmp = SBUF;RI = 0;if(db == 1) // 接收到的上一个字节为0xdb{switch(tmp){case 0xdd:data_buf[i] = 0xdb; // 0xdbdd表示0xdbecc = ecc^0xdb;db = 0;break;case 0xdc:data_buf[i] = 0xc0; // 0xdbdc表示0xc0ecc = ecc^0xc0;db = 0;break;default:return 0; // 帧错误,返回}i++;}switch(tmp) // 正常情况{case 0xc0: // 帧结束c0 = 1;break;case 0xdb: // 检测到转义字符db = 1;break;default: // 普通数据data_buf[i] = tmp; // 保存数据ecc = ecc^tmp; // 计算校验字节i++;}//if(i == __ERRLEN) // 帧超长,错误,返回if(i >=( __ERRLEN+1)) // 帧超长,错误,返回return 0;}/* 判断帧是否错误*/if(i<4) // 帧过短,错误,返回return 0;if(ecc != 0) // 校验错误,返回return 0;if(data_buf[0] != dev) // 非访问本机命令,错误,返回return 0;*type = data_buf[1]; // 获得命令字return 1; // 函数成功返回}/* 该函数发送一帧数据帧,参数type为命令字、len为数据长度、buf为要发送的数据内容*/void send_data(uchar type, uchar len, uchar *buf){uchar i;uchar ecc = 0; // 该字节用于保存校验字节M_DE = 1; // 置发送允许,接收禁止M_RE = 1;send_byte(dev); // 发送本机地址ecc = dev;send_byte(type); // 发送命令字ecc = ecc^type;send_byte(len); // 发送长度ecc = ecc^len;for(i=0; i<len; i++) // 发送数据{send_byte(*buf);ecc = ecc^(*buf);buf++;}send_byte(ecc); // 发送校验字节TI = 0; // 发送帧结束标志SBUF = 0xc0;while(!TI);TI = 0;}/* 该函数发送一个数据字节,若该字节为0xdb,则发送0xdbdd,若该字节为0xc0则,发送0xdbdc */void send_byte(uchar da){switch(da){case 0xdb: // 字节为0xdb,发送0xdbdd TI = 0;SBUF = 0xdb;while(!TI);TI = 0;SBUF = 0xdd;while(!TI)TI = 0;break;case 0xc0: // 字节为0xc0,发送0xdbdcTI = 0;SBUF = 0xdb;while(!TI);TI = 0;SBUF = 0xdc;while(!TI)TI = 0;break;default: // 普通数据则直接发送TI = 0;SBUF = da;while(!TI);TI = 0;}}#endif/* 调试结果*/。
51单片机的串口通信程序(C语言)
#include <reg52.h>#include<intrins.h>#include <stdio.h>#include <math.h>#define uchar unsigned char#define uint unsigned intsbit Key1 = P2^3;sbit Key2 = P2^2;sbit Key3 = P2^1;sbit Key4 = P2^0;sbit BELL = P3^6;sbit CONNECT = P3^7;unsigned int Key1_flag = 0;unsigned int Key2_flag = 0;unsigned int Key3_flag = 0;unsigned int Key4_flag = 0;unsigned char b;unsigned char code Num[21]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00, 0x10,0x89};unsigned char code Disdigit[4] = {0x7F,0xBF,0xDF,0xEF};unsigned char Disbuf[4];void delayms(uint t){uint i;while(t--){/* 对于11.0592M时钟,约延时1ms */for (i=0;i<125;i++){}}}//-----------------------------------------------------void SendData(uchar Dat){uchar i=0;SBUF = Dat;while (1){if(TI){TI=0;break;}}}void ScanKey(){if(Key1 == 0){delayms(100); if(Key1 == 0){Key1_flag = 1; Key2_flag = 0; Key3_flag = 0;Key4_flag = 0;Key1 = 1;}else;}if(Key2 == 0){delayms(100);if(Key2 == 0){Key2_flag = 1; Key1_flag = 0; Key3_flag = 0;Key4_flag = 0;Key2 = 1;}else;}if(Key3 == 0){delayms(50);if(Key3 == 0){Key3_flag = 1; Key1_flag = 0; Key2_flag = 0;Key4_flag = 0;Key3 = 1;}else;}if(Key4 == 0){delayms(50);if(Key4 == 0){Key4_flag = 1;Key1_flag = 0;Key2_flag = 0;Key3_flag = 0;Key4 = 1;}else;}else;}void KeyProc(){if(Key1_flag){TR1 = 1;SendData(0x55);Key1_flag = 0; }else if(Key2_flag){TR1 = 1;SendData(0x11); Key2_flag = 0;}else if(Key3_flag) {P1=0xff;BELL = 0;CONNECT = 1;Key3_flag = 0;}else if(Key4_flag){CONNECT = 0;BELL = 1;Key4_flag = 0;}else;}void Initdisplay(void){Disbuf[0] = 1;Disbuf[1] = 2;Disbuf[2] = 3;Disbuf[3] = 4;}void Display() //显示{unsigned int i = 0;unsigned int temp,count;temp = Disdigit[count]; P2 =temp;temp = Disbuf[count];temp = Num[temp];P0 =temp;count++;if (count==4)count=0;}void time0() interrupt 1 using 2 {Display();TH0 = (65535 - 2000)/256;TL0 = (65535 - 2000)%256;}void main(){Initdisplay();TMOD = 0x21;TH0 = (65535 - 2000)/256;TL0 = (65535 - 2000)%256;TR0 = 1;ET0 = 1;TH1 = 0xFD; //11.0592MTL1 = 0xFD;PCON&=0x80;TR1 = 1;ET1 = 1;SCON = 0x40; //串口方式REN = 1;PT1 = 0;PT0 = 1;EA = 1;while(1){ScanKey();KeyProc();if(RI){Disbuf[0] = 0;Disbuf[1] = 20;Disbuf[2] = SBUF>>4;Disbuf[3] = SBUF&0x0f;RI = 0;}else;}}51单片机串口通信C语言程序2**************************************************************; 平凡单片机工作室;ckss.asm;功能:反复向主机送AA和55两个数;主机使用一个串口调试软件设置19200,n,8,1***************************************************************/#include "reg51.h"#define uchar unsigned char#define uint unsigned int//延时程序//////////////////由Delay参数确定延迟时间*/void mDelay(unsigned int Delay){ unsigned int i;for(;Delay>0;Delay--){ for(i=0;i<124;i++){;}}}//////////////////// 主程序////////////////////void main(){ uchar OutDat; //定义输出变量TMOD=0x20; //TMOD=0TH1=0xf3; //12MHZ ,BPS:4800,N,8,1TL1=0xf3;PCON=0x80; //方式一TR1=1; //?????????????????????????????SCON=0x40; //串口通信控制寄存器模式一OutDat=0xaa; //向串口发送固定数据值for(;;) //循环程序{SBUF=OutDat;//发送数据for(;;){ if(TI) //发送中断位当发送停止位时置1,表示发送完成break;}mDelay(500);TI=0; //清零中断位OutDat=~OutDat; //显示内容按位取反}}。
51单片机串口通信及波特率设置
51单片机串口通信及波特率设置MCS-51单片机具有一个全双工的串行通信接口,能同时进行发送和接收。
它可以作为UART(通用异步接收和发送器)使用,也可以作为同步的移位寄存器使用。
1. 数据缓冲寄存器SBUFSBUF是可以直接寻址的专用寄存器。
物理上,它对应着两个寄存器,即一个发送寄存器一个接收寄存器,CPU写SBUF就是修改发送寄存器;读SBUF就是读接收寄存器。
接收器是双缓冲的,以避免在接收下一帧数据之前,CPU未能及时的响应接收器的中断,没有把上一帧的数据读走而产生两帧数据重叠的问题。
对于发送器,为了保持最大的传输速率,一般不需要双缓冲,因为发送时CPU是主动的,不会产生重叠问题。
2. 状态控制寄存器SCONSCON是一个逐位定义的8位寄存器,用于控制串行通信的方式选择、接收和发送,指示串口的状态,SCON即可以字节寻址也可以位寻址,字节地址98H,地址位为98H~9FH。
它的各个位定义如下:MSB LSBSM0 SM1 SM2 REN TB8 RB8 TI RI SM0和SM1是串口的工作方式选择位,2个选择位对应4种工作方式,如下表,其中Fosc是振荡器的频率。
SM0 SM1 工作方式功能波特率0 0 0 8位同步移位寄存器Fosc/120 1 1 10位UART 可变1 02 11位UART Fosc/64或Fosc/321 1 3 11位UART 可变SM2在工作方式2和3中是多机通信的使能位。
在工作方式0中,SM2必须为0。
在工作方式1中,若SM2=1且没有接收到有效的停止位,则接收中断标志位RI不会被激活。
在工作方式2和3中若SM2=1且接收到的第9位数据(RB8)为0,则接收中断标志RB8不会被激活,若接收到的第9位数据(RB8)为1,则RI置位。
此功能可用于多处理机通信。
REN为允许串行接收位,由软件置位或清除。
置位时允许串行接收,清除时禁止串行接收。
TB8是工作方式2和3要发送的第9位数据。
51单片机多机通信程序
51单片机多机通信程序(主机部分) /* multi_m.c *//* 多机通信的主机部分*/#ifndef __MULTI_M_C__#define __MULTI_M_C__#include <AT89X51.H>#include <STRING.H>#define __MAX_LEN_ 64 // 数据最大长度#define _MHZ_ 11 // 设置单片机使用的晶振频率(11.0592MHz) /* 以下为程序协议中使用的握手信号*/#define __SUCC_ 0x0f // 数据传送成功#define __ERR_ 0xf0 // 数据传送错误void init_serial(); // 串口初始化void send_data(unsigned char *buf); // 发送数据void delay10ms(unsigned int count); // 延时子程序(10ms) void main(){char buf[__MAX_LEN_];unsigned char i = 0;unsigned char tmp;unsigned char addr; // 该字节用于保存要通信的从机地址/* 为缓冲区赋初值*/P0 = 0xff;while(P1 != 0) // 每隔100ms从P0口读取,若读取到0则表明数据采集结束{*(buf+i) = P0;delay10ms(10); // 延时100msP0 = 0xff;i++;}*(buf+i) = 0; // 缓冲区最后一个字节为0表示数据结束/* 读要访问的分机地址*/P0 = 0xff;addr = P0;/* 串口初始化*/init_serial(); // 初始化串口EA = 0; // 关闭所有中断/* 发送地址帧并接收应答信息,如果接收的信号与发送的地址信息不同,则重新发送地址帧*/tmp = addr-1;while(tmp != addr){/* 发送从机地址*/TB8 = 1; // 发送地址帧SBUF = addr;while(!TI);TI = 0;/* 接收从机应答*/RI = 0;while(!RI);tmp = SBUF;RI = 0;}/* 发送数据并接收校验信息,如果接收的信号为0FH,表示从机接收成功,否则将重新发送该组数据*/tmp = __ERR_;while(tmp != __SUCC_){send_data(buf); // 发送数据RI = 0;while(!RI);tmp = SBUF;RI = 0;}while(1); // 程序结束,进入死循环}/* 初始化串口*/void init_serial(){TMOD = 0x20; //定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0xd0; //工作方式3,9位数据位,波特率9600bps,允许接收}/* 发送数据*/void send_data(unsigned char *buf){unsigned char len; // 保存数据长度unsigned char ecc; // 保存校验字节len = strlen(buf); // 计算要发送数据的长度ecc = len; // 开始进行校验字节计算/* 发送数据长度*/TB8 = 0; // 发送数据帧SBUF = len; // 发送长度while(!TI);TI = 0;/* 发送数据*/for(i=0; i<len; i++){ecc = ecc^(*buf); // 计算校验字节TB8 = 0; // 发送数据帧SBUF = *buf; // 发送数据buf++;while(!TI);TI = 0;}/* 发送校验字节*/TB8 = 0; // 发送数据帧SBUF = ecc; // 发送校验字节while(!TI);TI = 0;}/* 延时10ms,精度较低,参数count为延时时间*/ void delay10ms(unsigned int count){unsigned int i, k;unsigned char j;unsigned int tmp;tmp = (int)((100*_MHZ_)/12);for(i=0; i<count; i++)for(j=0; j<100; j++)for(k=0; k<tmp; k++);}#endif51单片机多机通信程序(从机部分)/* multi_s.c *//* 多机通信的从机部分*/#ifndef __MULTI_S_C__#define __MULTI_S_C__#include <AT89X51.H>#include <STRING.H>#define __MAX_LEN_ 64 // 数据最大长度#define _MHZ_ 11 // 设置单片机使用的晶振频率(11.0592MHz)/* 以下为程序协议中使用的握手信号*/#define __SUCC_ 0x0f // 数据传送成功#define __ERR_ 0xf0 // 数据传送错误void init_serial(); // 串口初始化unsigned char recv_data(unsigned char *buf); // 接收数据void Beep_ok(); // 蜂鸣表示数据接收ok,该函数代码未给出void main() {char buf[__MAX_LEN_];unsigned char i = 0;unsigned char tmp = 0xff;unsigned char addr; // 保存本机地址/* 从P1口读取本机地址*/P1 = 0xff;addr = P1;/* 串口初始化*/init_serial(); // 初始化串口EA = 0; // 关闭所有中断/* 进入设备应答阶段*/while(1){SM2 = 1; // 只接收地址帧/* 如果接收到的地址帧不是本机地址,则继续等待*/ tmp = addr-1;while(tmp != addr){RI = 0;while(!RI);tmp = SBUF;RI = 0;}/* 发送应答信号,并做好接收数据的准备*/TI = 0;TB8 = 0; // 主机不检测该位SBUF = addr;while(!TI);TI = 0;SM2 = 0; // 允许接收数据信息/* 数据接收*/tmp = 0xff;while(tmp == 0xff) // 如果数据校验失败则重新接收数据{tmp = recv_data(buf); // 校验失败返回0xff,检测到地址帧则返回0xfe,接收成功则返回0}if(tmp == 0xfe) // 在数据接收过程中,如果发现地址帧,则重新开始整个接收过程continue;Beep_ok(); // 蜂鸣表示数据接收成功}}/* 初始化串口*/void init_serial(){TMOD = 0x20; //定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0xd0; //工作方式3,9位数据位,波特率9600bps,允许接收}/* 接收数据,注意该函数使用buf指向的缓冲区保存数据,在数据末尾使用’\0’表示数据结束* 返回值为0,数据校验成功,返回值为0xfe,接受过程中接收到地址帧,返回值为0xff,数据校验失败*/unsigned char recv_data(unsigned char *buf){unsigned char len; // 该字节用于保存数据长度unsigned char ecc; // 该字节用于保存校验字节unsigned char i,tmp;/* 接收数据长度*/RI = 0;while(!RI);if(RB8 == 1) // 若当前接收为地址帧则返回0xfereturn 0xfe;len = SBUF;RI = 0;/* 使用len的值为校验字节ecc赋初值*/ecc = len;/* 接收数据*/for(i=0; i<len; i++){while(!RI);if(RB8 == 1) // 若当前接收为地址帧则返回0xfe return 0xfe; *buf = SBUF; // 接收数据ecc = ecc^(*buf); // 进行字节校验RI = 0;buf++;}*buf = 0; // 表示数据结束/* 接收校验字节*/while(!RI);if(RB8 == 1) // 若当前接收为地址帧则返回0xfe return 0xfe; tmp = SBUF;RI = 0;/* 进行数据校验*/ecc = tmp^ecc;if(ecc != 0) // 校验失败{*(buf-len) = 0; // 清空数据缓冲区TI = 0; // 发送校验失败信号TB8 = 0;SBUF = __ERR_;while(!TI);TI = 0;return 0xff; // 返回0xff表示校验错误} TI = 0; // 校验成功TB8 = 0;SBUF = __SUCC_;while(!TI);TI = 0;return 0; // 校验成功,返回0}#endif。
51单片机串口通信连续发送接收字节
51单片机串口通信连续发送接收字节当使用单片机串口通信,连续发送字节时,如何处理呢?使用串口中断接收发送字节,中断内的程序尽可能简单,因为考虑到占用时间。
本文以连续发送4个字节为例,给出例程如下所示:本例程使用的单片机型号为:IAP15W4K58S//工作频率为11.0592MHz#include "reg51.h"#include "intrins.h"typedef unsigned char BYTE;typedef unsigned int WORD;#define FOSC 11059200L //系统频率//#define BAUD 115200 //#define BAUD 9600 //定义串口波特率#define Num_byte 4 //接收数据4个字节BYTE Data_temp[Num_byte]={0,0,0,0};sfr P0M1 = 0x93;sfr P0M0 = 0x94;sfr P1M1 = 0x91;sfr P1M0 = 0x92;sfr P2M1 = 0x95;sfr P2M0 = 0x96;sfr P3M1 = 0xb1;sfr P3M0 = 0xb2;sfr P4M1 = 0xb3;sfr P4M0 = 0xb4;sfr P5M1 = 0xC9;sfr P5M0 = 0xCA;sfr P6M1 = 0xCB;sfr P6M0 = 0xCC;sfr P7M0 = 0xE2;sfr AUXR = 0x8e; //辅助寄存器sfr T2H = 0xd6; //定时器2高8位sfr T2L = 0xd7; //定时器2低8位sfr P_SW1 = 0xA2; //外设功能切换寄存器1sbit LED1=P1^1;sbit LED2=P1^2;bit busy=0; //定义是否接收完4个字节BYTE num=0; //记录4个字节的数据void SendData(BYTE dat);void SendString(char *s);BYTE read_Byte();void delay();void main(){P0M0 = 0x00;P0M1 = 0x00;P1M0 = 0x00;P1M1 = 0x00;P2M0 = 0x00;P2M1 = 0x00;P3M0 = 0x00;P3M1 = 0x00;P4M0 = 0x00;P4M1 = 0x00;P5M0 = 0x00;P5M1 = 0x00;P6M0 = 0x00;P7M0 = 0x00;P7M1 = 0x00;P_SW1 &= 0x3F; //(P3.0/RxD, P3.1/TxD)SCON = 0x50; //8位可变波特率,允许接收T2L = (65536 - (FOSC/4/BAUD)); //设置波特率重装值T2H = (65536 - (FOSC/4/BAUD))>>8;AUXR = 0x15; //T2为1T模式, 并启动定时器2,选择定时器2为串口1的波特率发生器ES = 1; //使能串口1中断EA = 1;//SendString("STC15F2K60S2\r\nUart Test !\r\n");while(1){if(busy){ES=0;for(num=0;num<Num_byte;num++){SBUF= Data_temp[num]+0x05;while(!TI);TI=0;}num=0;ES=1;busy=0;}//SendData(3);//delay();//delay();;}/*----------------------------UART 中断服务程序-----------------------------*/void Uart() interrupt 4 using 1{ES=0;RI = 0; //清除RI位Data_temp[num++]= SBUF;if(num==Num_byte)busy=1;ES=1;}/*----------------------------发送串口数据----------------------------*/void SendData(BYTE dat){while (busy); //等待前面的数据发送完成SBUF = dat; //写数据到SBUF寄存器busy = 1;}/*----------------------------发送字符串----------------------------*/void SendString(char *s){while (*s) //检测字符串结束标志{SendData(*s); //发送当前字符s++;}//接收1个字节BYTE read_Byte(){ BYTE character;character = SBUF;return character;}void delay(){ BYTE i,j;for(i=220;i--;i>0)for(j=220;j--;j>0); }。
51单片机的2个串口分别通信的方法
51单片机的2个串口资源分别通信的方法当使用51单片机的2个串口资源进行通信时,比如用一个串口与PLC的串口使用RS485协议通信,一个串口通过蓝牙模块和另一个单片机无线通信时,该如何处理呢?传统的51单片机只有1个串口资源,只能采用分时复用的方法。
STC的15系列增强版51单片机具有多个串口资源,本文将描述如何使用IAP15W4K58S单片机用一个串口资源与PLC的RS485有线通信,另一个串口资源与Arduino单片机通过蓝牙模块无线通信,该通讯连接过程中PLC作为主机,IAP15W4K58S作为中间机,Arduino单片机作为最低层级。
工作过程是按下启动按键,PLC发信息给IAP15W4K58S单片机发高速脉冲控制步进电机驱动的机械臂运动取走货物,当货物取走后,IAP15W4K58S单片机通过蓝牙模块通知Arduino单片机控制的小车将新货物运送过来。
连接结构示意图如下图所示。
本例程使用的单片机型号为:IAP15W4K58S,该单片机有4个采用UART 工作方式的全双工异步串行通信接口(分别为串口1、串口2、串口3和串口4),每个串行口由2个数据缓冲器、1个移位寄存器、1个串行控制寄存器和1个波特率发生器等组成。
本项目使用串行口1和串行口2。
串行口1的两个缓冲器共用寄存器SBUF (99H),串行口2的两个缓冲器共用寄存器S2BUF(9BH)。
10位(1起始位,8位数据位,1停止位)可变波特率(9600)。
串口1对应的硬件部分是TxD和RxD,串行口2对应硬件部分是TxD2和RxD2。
串口1选择引脚P3.0(RxD)和P3.1(TxD),串口2选择引脚P1.0(RxD)和P1.1(TxD)。
串口1既可以选择T1作为波特率发生器,也可以选择T2作为波特率发生器。
本文串口1提供2个选择(T1和T2),串口2只能选择T2作波特率发生器。
但是当串口1和串口2的波特率相同时,可以共用T2作为波特率发器,当T2工作在1T模式时,串行口1的波特率=SYSclk/(65536-[RL_TH2,RL_TL2])/4,SYSclk表示系统时钟频率,[RL_TH2,RL_TL2]表示T2H,T2L的定时初值设置值。
proteus仿真51单片机串口双机通讯
51单片机的串口双机通讯一、什么是串口串口是串行发送数据的接口,是相对于并口来说的,是一个广泛的定义。
本期我们说的串口指的是指UART或是RS232。
二、什么是波特率波特率是指串行端口每秒内可以传输的波特位数。
这里所指的波特率,如标准9600不是每秒种可以传送9600个字节,而是指每秒可以传送9600个二进位。
一个字节需要8个二进位,如用串口模式1来传输,那么加上起始位和停止位,每个数据字节就要占用10个二进位。
9600bps用模式1传输时,每秒传输的字节数是9600÷10=960个字节,发送一个字节大概需要1ms时间。
三、51单片机串口相关寄存器1、SCON串口控制寄存器(1)SM0和SM1:方式选择寄存器SM0 SM1 工作方式功能波特率0 0 方式0 8位同步移位寄存器晶振频率/ 120 1 方式1 10位UART 可变1 0 方式2 11位UART 晶振频率/32或晶振频率/64 1 1 方式3 11位UART 可变多机通信是工作在方式2和方式3的,所以SM2主要用于方式2和方式3,多级通信时,SM2=1,当SM2=1时,只有当接收到的数据帧第9位(RB8)为1时,单片机才把前八位数据放入自己的SBUF中,否则,将丢弃数据帧。
当SM2=0时,不论RB8的值是什么,都会把串口收到的数据放到SBUF中。
(3)REN:允许接收位REN用于控制是否允许接收数据,REN=1时,允许接收数据,REN=0时,拒绝接收数据。
(4)TB8:要发送的第9位数据位在方式2和方式3中,TB8是要作为数据帧第9位被发送出去的,在多机通信中,可用于判断当前数据帧的数据是地址还是数据,TB8=0为数据,TB8=1为地址。
(5)RB8:接收到的第9位数据位当单片机已经接收一帧数据帧时,会把数据帧中的第9位放到RB8中。
方式0不使用RB8,在方式2和方式3中,RB8为接收到的数据帧的第9位数据位。
(6)TI:发送中断标志位方式0中,不用管他。
51单片机串口通信
51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。
而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。
本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。
一、串口通信的原理串口通信是以字节为单位进行数据传输的。
在串口通信中,数据传输分为两个方向:发送方向和接收方向。
发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。
接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。
在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。
其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。
二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。
具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。
b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。
2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。
b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。
c. 清除TI标志位。
3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。
b. 将接收到的数据从SBUF寄存器中读取出来。
c. 清除RI标志位。
三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。
解决方法是在初始化时确保两端的波特率设置一致。
2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。
51单片机串口通信试验汇编程序
51单片机串口通信试验汇编程序(今天是硬生生的把它给抠出来了):PC 通过串口助手向单片机系统传递命令和数据:以A5开始,以5A结束;中间是数据,长度不一,要求把数据部分用led灯显示出来;并且要求循环显示;//This is my x_Ed program code//we use it as the pc communicated with the mcu//At the same time,we want to see the result by LCD;STFLAG BIT 00H //收到起始码标志,1为收到起始码EDFLAG BIT 01H //到结束码标志,1为收到结束码TMFLAG BIT 02H //定时时间到标志,1为定时时间到ORG 0000HSJMP Initialize//主程序入口(初始化程序)ORG 000BH //定时器0入口LJMP TIMER0 //定时器0中断ORG 0023H //串口中断程序的入口地址LJMP Transfer //跳转到接受中断入口///////////////////////////////////////////////////////////////ORG 0050HInitialize:MOV SP,#70H //设置堆栈MOV TMOD,#21H //T1工作方式2 T0工作MOV TH1,#0FDH //波特率9600MOV TL1,#0FDH //波特率9600 自动重装载MOV TH0,#3CH //定时50msMOV TL0,#0BH //定时50msMOV SCON,#50H //串口工作方式1MOV R6,#00H //定时次数计数器20一秒MOV R5,#00H //接收数据长度计数器MOV R4,#00H //控制输出控制寄存器MOV R0,#30H //数据存储地址MOV R1,#30H //控制输出的数据缓存CLR STFLAG //清起始标志位CLR EDFLAG //清结束标志位CLR TMFLAG //清时钟标志位SETB PS //提高串口中断的优先级SETB TR1 //打开定时器1;SETB ES //打开串口中断允许位SETB ET0 //定时器0中断允许位SETB EA //打开全局中断允许位/////////////////等待接受命令//////////////////////// Main: JB STFLAG,NODE3 //已经收到起始位SJMP Main //未起始继续等待NODE3: JB EDFLAG,NODE4 //已经收到结束位SJMP Main //未结束继续等待NODE4: SETB TR0 //打开定时器0;NODE5: JB TMFLAG,OUTPUTSJMP NODE5///////////////////等待上位机传送数据并记录//////// Transfer: CLR ESMOV A,SBUFCJNE A,#0A5H,NODE0 //检测到起始位SETB STFLAGSJMP JIEDIANNODE0: CJNE A,#05AH,NODE1 //检测到结束位SETB EDFLAGMOV DPH,R5MOV R4,DPHclr ES //打开串口中断允许位SJMP ret00NODE1: MOV @R0,A //既非起始码,又非结束码,则为数据INC R0INC R5MOV SBUF,#055HJIEDIAN: CLR TICLR RISETB ESret00: RETITIMER0: CLR TR0MOV TH0,#3CHMOV TL0,#0B0HINC R6CJNE R6,#20,RTNSETB TMFLAGMOV R6,#00HRTN: SETB TR0RETIOUTPUT: CLR TR0clr TMFLAGMOV A,@R1MOV P1,AINC R1DJNZ R4,NODE4MOV R1,#30HCLR TMFLAGMOV DPH,R5MOV R4,DPHSJMP NODE4RETIEND。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01101
机
甲 时钟
乙
外同步
时钟
计 数据 0 1 1 0 1
计
算
算
机 数据+时钟
机
甲
乙
自同步
面向字符的同步格式 :
SYN SYN SOH 标题 STX
数据块
ETB/ETX 块校验
此时,传送的数据和控制信息都必须由规定的字符集
(如ASCII码)中的字符所组成。图中帧头为1个或2个同 步字符SYN(ASCII码为16H)。SOH为序始字符 (ASCII码为01H),表示标题的开始,标题中包含源地 址、目标地址和路由指示等信息。STX为文始字符 (ASCII码为02H),表示传送的数据块开始。数据块是 传送的正文内容,由多个字符组成。数据块后面是组终 字符ETB(ASCII码为17H)或文终字符ETX(ASCII码 为03H)。然后是校验码。典型的面向字符的同步规程
典型的面向位的同步协议如ISO的高级数据链路控制规程 HDLC和IBM的同步数据链路控制规程SDLC。
同步通信的特点是以特定的位组合“01111110”作为帧的 开始和结束标志,所传输的一帧数据可以是任意位。所以传
输的效率较高,但实现的硬件设备比异步通信复杂。
二、串行通信的传输方向
1、单工 单工是指数据传输仅能沿一个方向,不能实现反向传输。 2、半双工 半双工是指数据传输可以沿两个方向,但需要分时进行。 3、全双工 全双工是指数据可以同时进行双向传输。
五、传输速率与传输距离
1、传输速率
比特率是每秒钟传输二进制代码的位数,单位 是:位/秒(bps)。如每秒钟传送240个字 符,而每个字符格式包含10位(1个起始位、1 个停止位、8个数据位),这时的比特率为:
10位×240个/秒 = 2400 bps
2、传输距离与传输速率的关系
异步通信的数据格式 :
起 空始 闲位
一个字符帧 数据位
校停 验止 位位
空 下一字符 闲 起始位
LSB
MSB
异步通信的特点:不要求收发双方时钟的
严格一致,实现容易,设备开销较小,但 每个字符要附加2~3位用于起止位,各帧 之间还有间隔,因此传输效率不高。
2、同步通信
同步通信时要建立发送方时钟对接收方时钟的直接控制, 使双方达到完全同步。此时,传输数据的位之间的距离均 为“位间隔”的整数倍,同时传送的字符间不留间隙,即 保持位同步关系,也保持字符同步关系。发送方对接收方 的同步可以通过两种方法实现。
第七讲
7.1 计算机串行通信基础 7.2 80C51的串行口 7.3 单片机串行口编程应用 举例
7.1 计算机串行通信基础
随着多微机系统的广泛应用和计算机网络技 术的普及,计算机的通信功能愈来愈显得重要。 计算机通信是指计算机与外部设备或计算机与 计算机之间的信息交换。
通信有并行通信和串行通信两种方式。在多 微机系统以及现代测控系统中信息的交换多采 用串行通信方式。
2、代码和校验 代码和校验是发送方将所发数据块求和(或各字节异或), 产生一个字节的校验字符(校验和)附加到数据块末尾。接 收方接收数据同时对数据块(除校验字节外)求和(或各字 节异或),将所得的结果与发送方的“校验和”进行比较, 相符则无差错,否则即认为传送过程中出现了差错。 3、循环冗余校验 这种校验是通过某种数学运算实现有效信息与校验位之间的 循环校验,常用于对磁盘信息的传输、存储区的完整性校验 等。这种校验方法纠错能力强,广泛应用于同步通信中。
RS-232C
DCE DTE
电话网
RS-232C
DCE DTE
四、串行通信的错误校验
1、奇偶校验 在发送数据时,数据位尾随的1位为奇偶校验位(1或0)。奇 校验时,数据中“1”的个数与校验位“1”的个数之和应为奇 数;偶校验时,数据中“1”的个数与校验位“1”的个数之和 应为偶数。接收字符时,对“1”的个数进行校验,若发现不 一致,则说明传输数据过程中出现了差错。
发送
接收
单工
发送 时间1 接收 接收 时间2 发送
半双工
发送
接收
接收
发送
全双工
三、信号的调制与解调
利用调制器(Modulator)把数字信号转换成 模拟信号,然后送到通信线路上去,再由解调器 (Demodulator)把从通信线路上收到的模拟信 号转换成数字信号。由于通信是双向的,调制器 和解调器合并在一个装置中,这就是调制解调器 MODEM。
串行通信是将数据字节分成一位一位的形 式在一条传输线上逐个地传送。
接
发
收
D0
D7
送
设 备
8位顺次传送
设 备
串行通信的特点:传输线少,长距离传送时 成本低,且可以利用电话网等现成的设备, 但数据的传送控制比并行通信复杂。
7.1.1 串行通信的基本概念
一、异步通信与同步通信
1、异步通信 异步通信是指通信的发送与接收设备使用各自的时钟
如IBM的二进制同步规程BSC。
面向位的同步格式 :
8位
8位
8位
≥0位
01111110 地址场 控制场
信息场
16位 校验场
8位 01111110
此时,将数据块看作数据流,并用序列01111110作为开始 和结束标志。为了避免在数据流中出现序列01111110时引起 的混乱,发送方总是在其发送的数据流中每出现5个连续的1 就插入一个附加的0;接收方则每检测到5个连续的1并且其后 有一个0时,就删除该0。
控制数据的发送和接收过程。为使双方的收发协调,要求 发送和接收设备的时钟尽可能一致。
接 收 设10100100 1 备
0 10100100 1
间隙任意 发
送
0 11100110 1 0 1110011设0
备
异步通信是以字符(构成的帧)为 单位进行传输,字符与字符之间的间 隙(时间间隔)是任意的,但每个字 符中的各位是以固定的时间传送的, 即字符之间不一定有“位间隔”的整 数倍的关系,但同一字符内的各位之 间的距离均为“位间隔”的整数倍。
计算机通信是将计算机技术和通信技术的相结合, 完成计算机与外部设备或计算机与计算机之间的信 息交换 。可以分为两大类:并行通信与串行通信。
并行通信通常是将数据字节的各位用多条数据线同
时进行传送 。
8位同时传送 1
0
接
1 0
发
收 设
1
送
1 0
设
备
0
备
询问
应答
并行通信控制简单、传输速度快;由于传输线较多,长距离 传送时成本高且接收方的各位同时接收存在困难。