三角形单元测试卷(1)

合集下载

(完整版)三角形单元测试卷(含答案),推荐文档

(完整版)三角形单元测试卷(含答案),推荐文档

2018-2019学年江镜中学三角形单元测试卷学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A.B.C.D.2.在生产和生活中,一些图形的性质得到广泛使用,请找出下列四个图形中使用性质与其它三个不同的是( )A.起重机B.活动挂架C.伸缩门D.升降平台3.下列长度的三条线段(单位:cm)能组成三角形的是( )A.1,2,1B.4,5,9C.6,8,13D.2,2,44.如图,在△ABC中,CD是∠ACB的外角平分线,且CD∥AB,若∠ACB=100°,则∠B的度数为( )A.35°B.40o C.45o D.50o5.将两个直角三角板如图所示放置,DF恰好经过点C,AB与EF在同一条直线上,则∠BCF=( )第4题第5题A.30°B.45°C.60°D.75°6.下列图形中,能确定∠1>∠2的是( )A.B.C.D.7.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是( )A.45°B.45°或135°C.45°或125°D.135°8.下面的多边形中,内角和与外角和相等的是( )A.B.C.D.9.下列说法中正确的是( )A.三角形的角平分线是一条射线B.三角形的一个外角大于任何一个内角C.任意三角形的外角和都是180°D.内角和是1080°的多边形是八边形10.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形( )A.6B.7C.8D.9二.填空题(共6小题)11.若n边形的每个内角都为135°,则n= .12.如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了 m.13.如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=102°,则∠A的度数是 .第12题第13题14.若△ABC中,∠ACB是钝角,AD是BC边上的高,若AD=2,BD=3.CD=1,则△ABC的面积等于 .15.一个凸多边形的内角中,最多有 个锐角.16.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.三.解答题(共19小题)17.在△ABC中,AB=9,BC=2,并且AC为奇数,那么△ABC的周长为多少?18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.19.在△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.20.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.21.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456 (18)∠α的度数 …… (2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.22.四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE= °;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.2019年06月03日735608的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.在生产和生活中,一些图形的性质得到广泛使用,请找出下列四个图形中使用性质与其它三个不同的是( )A.起重机B.活动挂架C.伸缩门D.升降平台【分析】根据三角形的稳定性解答即可.【解答】解:因为三角形具有稳定性,所以只有A应用三角形的稳定性,而其他三个选项是利用四边形的不稳定性,所以A使用性质与其它三个不同,故选:A.【点评】此题考查三角形的稳定性,关键是根据三角形的稳定性和四边形的不稳定性解答.3.下列长度的三条线段(单位:cm)能组成三角形的是( )A.1,2,1B.4,5,9C.6,8,13D.2,2,4【分析】三角形的任意两边的和大于第三边,根据三角形的三边关系就可以求解.【解答】解:根据三角形的三边关系,知A、1+1=2,不能够组成三角形,故本选项错误;B、4+5=9,不能够组成三角形,故本选项错误;C、6+8>13,能够组成三角形,故本选项正确;D、2+2=4,不能够组成三角形,故本选项错误.故选:C.【点评】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.如图,在△ABC中,CD是∠ACB的外角平分线,且CD∥AB,若∠ACB=100°,则∠B的度数为( )A.35°B.40o C.45o D.50o【分析】根据平行线的性质和三角形的外角性质解答即可.【解答】解:∵∠ACB=100°,∴∠ECB=80°,∵CD是∠ACB的外角平分线,∴∠DCB=40°,∵CD∥AB,∴∠B=∠DCB=40°,故选:B.【点评】此题考查三角形外角的性质,关键是根据平行线的性质和三角形的外角性质解答.5.将两个直角三角板如图所示放置,DF恰好经过点C,AB与EF在同一条直线上,则∠BCF=( )A.30°B.45°C.60°D.75°【分析】根据三角形内角和定理计算即可.【解答】解:在△BCF中,∵∠BFC=45°,∠B=60°,∴∠BCF=180°﹣45°﹣60°=75°,故选:D.【点评】本题考查三角形的内角和定理,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.下列图形中,能确定∠1>∠2的是( )A.B.C.D.【分析】分别根据对顶角相等、平行线的性质、三角形外角的性质对四个选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项正确;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项正确;D、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.故选:C.【点评】本题考查的是对顶角相等、平行线的性质、三角形外角的性质及直角三角形的性质,熟知以上知识是解答此题的关键.7.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是( )A.45°B.45°或135°C.45°或125°D.135°【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【解答】解:①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°,在△ABD中,∵∠A=45°,∴∠ABD=90°﹣45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故选:B.【点评】本题主要考查了直角三角形的性质,三角形的内角和定理,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.8.下面的多边形中,内角和与外角和相等的是( )A.B.C.D.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.9.下列说法中正确的是( )A.三角形的角平分线是一条射线B.三角形的一个外角大于任何一个内角C.任意三角形的外角和都是180°D.内角和是1080°的多边形是八边形【分析】分别根据三角形的角平分线、三角形外角的性质、多边形内角和定理对各选项进行逐一分析即可.【解答】解:A、三角形的角平分线是一条线段,故本选项错误;B、三角形的一个外角大于任何一个和它不相邻的内角,故本选项错误;C、任意多边形的外角和都是360°,故本选项错误;D、1080°÷180°+2=8,即内角和是1080°的多边形是八边形,故本选项正确.故选:D.【点评】本题考查的是多角形内角和定理,三角形的有关概念,熟知三角形的内角与外角的关系是解答此题的关键.10.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形( )A.6B.7C.8D.9【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二.填空题(共6小题)11.若n边形的每个内角都为135°,则n= 8 .【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【解答】解:外角的度数是:180﹣135=45°,则n=360°÷45°=8.故答案为:8.【点评】本题考查了正多边形的性质,正确理解多边形的外角和定理是关键.12.如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了 30 m.【分析】从A点出发,前进5m后向右转60°,再前进5m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【解答】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,∴他第一次回到出发点A时一共走了:5×6=30(m),故答案为:30.【点评】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.13.如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=102°,则∠A的度数是 51° .【分析】延长B'E,C'F,交于点D,依据∠A=∠D,∠AED+∠AFD=258°,即可得到∠A的度数.【解答】解:如图,延长B'E,C'F,交于点D,由折叠可得,∠B=∠B',∠C=∠C',∴∠A=∠D,又∵∠1+∠2=100°,∴∠AED+∠AFD=360°﹣102°=258°,∴四边形AEDF中,∠A=(360°﹣258°)=51°,故答案为:51°.【点评】本题主要考查了三角形内角和定理,解决问题的关键是构造四边形,利用四边形内角和进行计算.14.若△ABC中,∠ACB是钝角,AD是BC边上的高,若AD=2,BD=3.CD=1,则△ABC的面积等于 2 .【分析】首先根据题意画出图形,求出BC,再根据三角形的面积公式列式计算即可.【解答】解:如图.∵BD=3,CD=1,∴BC=BD﹣CD=2,又∵AD是BC边上的高,AD=2,∴△ABC的面积=BC•AD=×2×2=2.故答案为2.【点评】本题考查了三角形的面积,三角形的高的定义,掌握钝角三角形的高的画法进而画出图形是解题的关键.15.一个凸多边形的内角中,最多有 3 个锐角.【分析】根据任意凸多边形的外角和是360°.可知它的外角中,最多有3个钝角,则内角中,最多有3个锐角.【解答】解:一个凸多边形的内角中,最多有3个锐角.【点评】注意每个内角与其相邻的外角是邻补角,由于多边形的外角和是不变的,所以要分析内角的情况可以借助外角来分析.16.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 36 度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).三.解答题(共19小题)17.在△ABC中,AB=9,BC=2,并且AC为奇数,那么△ABC的周长为多少?【分析】根据三角形的三边关系,就可以求出AC的范围,再结合AC为奇数确定AC的值,从而得到△ABC的周长.【解答】解:根据三角形三边关系有AB﹣BC<AC<AB+BC,所以9﹣2<AC<9+2,即7<AC<11.又因为AC为奇数,所以AC=9.所以△ABC的周长=9+9+2=20.【点评】考查了三角形的三边关系,同时注意奇数这一条件.18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD 的度数.【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠B=60°,∴∠BCD=90°﹣∠B=90°﹣60°=30°;∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,∴∠ACB=100°,∵CE是∠ACB的平分线,∴∠ACE=∠ACB=50°,∴∠CEB=∠A+∠ACE=20°+50°=70°,∠ECD=90°﹣70°=20°【点评】此题考查了三角形的内角和定理,三角形外角的性质以及三角形高线,角平分线的定义等知识.此题难度不大,解题的关键是数形结合思想的应用.19.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.20.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=105°,根据三角形的内角和即可得到结论.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.21.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456 (18)∠α的度数 60° 45° 36° 30° …… 10° (2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.【分析】(1)根据多边形内角和公式求出多边形的内角和,再根据三角形内角和定理求出即可;(2)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可;(3)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可.【解答】解:(1)填表如下:正多边形的边数3456 (18)∠α的度数60°45°36°30°……10°故答案为:60°,45°,36°,30°,10°;(2)存在一个正n边形,使其中的∠α=20°,理由是:根据题意得:°=20°,解得:n=9,即当多边形是正九边形,能使其中的∠α=20°;(3)不存在,理由如下:假设存在正n边形使得∠α=21°,得,解得:,又n是正整数,所以不存在正n边形使得∠α=21°.【点评】本题考查了多边形的内角与外角和等腰三角形的性质,能求出多边形的一个内角的度数是解此题的关键,注意:多边形的内角和=(n﹣2)×180°.22.四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE= 125 °;②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.【分析】(1)①根据平行线的性质和角平分线的定义可求∠BAE,∠CDO,再根据三角形外角的性质可求∠AEC,再根据四边形内角和等于360°可求∠DOE的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE和∠BAD、∠ADC的关系,再根据四边形内角和等于360°可求∠B、∠C、∠DOE之间的数量关系;(2)g根据四边形和三角形的内角和得到∠BAD+∠ADC=360°﹣∠B﹣∠C,∠EAD+∠ADO=180°﹣∠DOE,根据角平分线的定义得到∠BAD=2∠EAD,∠ADC=2∠ADO,于是得到结论.【解答】解:(1)①∵AD∥BC,∠B=40°,∠C=70°,∴∠BAD=140°,∠ADC=110°,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAE=70°,∠ODC=55°,∴∠AEC=110°,∴∠DOE=360°﹣110°﹣70°﹣55°=125°;故答案为:125;②∠B+∠C+2∠DOE=360°,理由:∵∠DOE=∠OAD+∠ADO,∵AE、DO分别平分∠BAD、∠CDA,∴2∠DOE=∠BAD+∠ADC,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠B+∠C+2∠DOE=360°;(2)∠B+∠C=2∠DOE,理由:∵∠BAD+∠ADC=360°﹣∠B﹣∠C,∠EAD+∠ADO=180°﹣∠DOE,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAD=2∠EAD,∠ADC=2∠ADO,∴∠BAD+∠ADC=2(∠EAD+∠ADO),∴360°﹣∠B﹣∠C=2(180°﹣∠DOE),∴∠B+∠C=2∠DOE.【点评】此题考查了多边形内角与外角,平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°的知识点.。

第十一章-三角形》单元测试卷含答案(共5套)

第十一章-三角形》单元测试卷含答案(共5套)

第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间:120分钟满分:120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。

2、3、6.B。

2、4、6C。

2、2、4.D。

6、6、62.如图,图中∠1的大小等于()A。

40°。

B。

50°。

C。

60°。

D。

70°3.一个多边形的每一个内角都等于140°,则它的边数是() A。

7.B。

8.C。

9.D。

104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠XXX于点D,那么∠XXX的度数是()A。

76°。

B。

81°。

C。

92°。

D。

104°5.用五根木棒钉成如下四个图形,具有稳定性的有()A。

1个。

B。

2个。

C。

3个。

D。

4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A。

180°。

B。

360°。

C。

540°。

D。

720°二、填空题7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为9.8.若n边形内角和为900°,则边数n为10.9.将一副三角板按如图所示的方式叠放,则∠α的度数为30°。

10.如图,在△ABC中,∠ACB=90°,∠A=20°。

若将XXX沿CD所在直线折叠,使点B落在AC边上的点E处,则∠XXX的度数是70°。

11.如图,在△ABC中,E、D、F分别是AD、BF、CE的中点。

若△DEF的面积是1cm²,则S△ABC=3cm²。

12.当三角形中一个内角β是另一个内角α的时,我们称此三角形为“希望三角形”,其中角α称为“希望角”。

如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为27°。

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章三角形》单元测试卷(一)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知三条线段的长是:①2,3,4;②3,4,5;③3,3,5;④6,6,10.其中可构成等腰三角形的有( )A.1个 B.2个 C.3个 D.4个2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A.15 B.16 C.18 D.193.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD 的度数为( )A.40° B.45° C.50° D.55°第3题图, 第4题图4.如图,在△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于( ) A.80° B.120° C.100° D.150°5.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( ) A.40° B.60° C.80° D.90°6.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A=12∠B=13∠CC.∠A∶∠B∶∠C=1∶2∶3 D.∠A=2∠B=3∠C7.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为( )A.8 B.9 C.10 D.128.若一个多边形的每个外角都等于60°,则它的内角和等于( ) A.180° B.720° C.1080° D.540°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)第9题图) 第10题图10.如图是D,E,F,G四点在△ABC边上的位置图,根据图中的符号和数据,则x+y的值为( )A.110 B.120 C.160 D.165二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.12.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为________度,这个三角形是________三角形.,第11题图) ,第13题图)13.如图,在△ABC中,已知∠BAC=50°,∠C=60°,AD是高,BE是∠ABC 的平分线,AD,BE交于点F,则∠BEC=________.14.已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.15.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.第15题图 ,第16题图16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF =90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=________.17.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.18.上午9时,一艘船从A处出发以20海里/时的速度向正北航行,11时到达B处,若在A处测得灯塔C在北偏西34°,且∠ACB=32∠BAC,则灯塔C应在B处的________.三、解答题(共66分)19.(9分)如图,已知AD,AE分别是△ABC的高和中线,AB=6 cm,AC=8 cm,BC=10 cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.20.(9分)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.21.(10分)如图,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.22.(9分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.23.(9分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?24.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.25.(10分)如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?请说明理由.参考答案1.B 2.D 3.A 4.C 5.A 6.D 7.C 8.B 9.B 10.B 11.6 12.75;钝角13.85°14.3a-b-c 15.360°16.25°17.七18.北偏西85°19.(1)24 cm2(2)4.8 cm (3)2 cm20.由题中条件可知:|a-4|≥0,(b-9)2≥0,又|a-4|+(b-9)2=0,∴|a-4|=0,(b-9)2=0,即a=4,b=9.若a为腰长,则另一腰长为4,∵4+4<9,∴不符合三角形三边关系.若b为腰长,则这个等腰三角形的周长为9+9+4=22.综上所述,这个等腰三角形的周长为22 21.∵∠A+∠ACB=90°,∴∠ACB =90°-10°=80°,∴∠DCE=80°,又∵∠DCE=∠A+∠ADC=80°,∴∠ADC =80°-10°=70°,∴∠EDF=70°,∴∠DEA=∠EDF-∠A=70°-10°=60°,∴∠FEG=60°,∴∠F=∠FEG-∠A=60°-10°=50°22.(1)∵26 20÷180=14……100,∴误加的外角为100°(2)设这个多边形的边数为n.由①知n-2=14,∴n=16,∴这个多边形的边数为1623.在△AOB中,∠QBO=180°-∠A-∠O=180°-28°-100°=52°.即∠QBO应等于52°才能确保BQ与AP在同一条直线上24.BE∥DF.理由如下:在四边形ABCD中,∠A+∠C+∠ABC+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又∵∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∵∠4+∠5=90°,∴∠2=∠5,∴BE∥DF25.不变化.∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=12∠OAB,∠EBA=12∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=12∠YBA-12∠OAB=12(∠Y BA-∠OAB),∵∠YBA-∠OAB=90°,∴∠C=12×90°=45°《第十一章三角形》单元测试卷(二)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为(D )A.3 B.4 C.5 D.6,第3题图,第6题图2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形 B.锐角三角形 C.直角三角形 D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF 等于( A )=2,则S△ABCA.16 B.14 C.12 D.10,第7题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形 B.八边形 C.九边形 D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°第9题图 ,第10题图10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图)12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB =2∠B,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠ACD=2x°=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎨⎧2x +y =18,x -y =3,或⎩⎨⎧2x +y =18,y -x =3,解得⎩⎨⎧x =7,y =4,或⎩⎨⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O 为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m ),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10 cm ,BC =8 cm ,AC =6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC =12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB =__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°《第十一章三角形》单元测试卷(三)一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上) 10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________. 12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE =__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是_____ _____边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD 和BC 相交于点O ,AB∥CD,∠AOC=95°,∠B=50°,求∠A 和∠D.21.(本题满分12分)如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________;(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B 中较短两边之和大于第三边,能组成三角形.132.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A 与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)12πR2(2)πR2 (3)32πR2(4)n-22πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.《第十一章三角形》单元测试卷(四)答题时间:90 满分:100分班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.3.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.4.如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC =°.6.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可).8.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.9.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,请你写出∠A与∠D的关系:.10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为.11.在△ABC中,∠A=55°,高BE、CF交于点O,则∠BOC=______.12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A=50°,∠ACD=40°,∠ABE=28°,则∠CFE 的度数为______. 14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”).二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9三、解答题(共60分)19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD 中,∠A=∠D ,∠B=∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB=AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?CBACBA25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______. (2)小明绝对不会走③,因为③路程最长,即AC+BC >AD+DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A+∠B+∠C+∠D+∠E=180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.图1图2图3DCBA(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案: (B 卷) 一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 11.55或125 12.360 13.62 14.否二、选择题15.C 16.C 17.B 18.C 三、解答题 19.36011⎛⎫⎪⎝⎭20.AD BC∥21.56 22.三边长为16,16,22或20,20,14 23.略 24.六边形 25.只要量得∠B +∠C=150°,∠C +∠D=160°,则模板即为合格 26.(1)两点之间,线段最短;(2)略 27.结论都成立,理由略 28.(1)60°,90°,108°,120°,(2)180n n-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.《第十一章三角形》单元测试卷(五)时间:120分钟满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11C.3,4,8 D.4a,4a,8a(a>0)2.下列说法错误的是( )A.一个三角形中至少有一个角不小于60°B.三角形的角平分线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A.60° B.70° C.80° D.90°4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短5.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )A.9 B.14 C.16 D.不能确定6.在△ABC中,已知∠A=4∠B=104°,则∠C的度数是( )A.50° B.45° C.40° D.30°7.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=12∠C;④∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.4个9.一个正多边形的边长为2,每个外角为45°,则这个多边形的周长是( ) A.8 B.12 C.16 D.1810.长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有( )A.3个 B.4个 C.5个 D.6个11.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是( )A.1260° B.1080°C.900° D.720°12.一个三角形的三个外角之比为3∶4∶5,则这个三角形内角之比是( ) A.5∶4∶3 B.4∶3∶2C.3∶2∶1 D.5∶3∶113.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=( )A.12° B.18° C.24° D.30°14.若a,b,c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.60° B.65° C.55° D.50°16.如图①,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图②.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.将一副三角板按如图所示的方式叠放,则∠α的度数为 .18.如图,在△ABC中,已知点D,E分别为AC,BD的中点,且S△BDC=2cm2,则S= .阴影19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A 1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为°.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.21.(9分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.(9分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.(9分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E,∠A=60°,∠BDC=100°,求△BDE各内角的度数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(11分)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).26.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.A 2.D 3.C 4.B 5.A 6.A 7.B 8.C 9.C 10.A11.C 12.C 13.C 14.B15.A 解析:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD +∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选A.16.C 解析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB +BE>AC+CE,由三角形三边关系得AC+BC>AB,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.17.75°18.1cm219.76 6 解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知,∠A=90°-n·14°,当n=6时,∠A取得最小值,最小度数为6°.20.解:(1)AB(2分) (2)CD(4分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(6分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)21.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(9分)22.解:由三角形的外角性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(9分)23.解:∵∠BDC是△ABD的一个外角,∠A=60°,∠BDC=100°,∴∠ABD=∠BDC-∠A=40°.(4分)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵ED∥BC,∴∠BDE=∠CBD=∠ABD=40°,(7分)∴∠BED=180°-40°-40°=100°.(9分)24.解:设AB=x cm,BC=y cm,则AD=CD=12x cm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系.(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm , 符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分) 25.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠CAD =90°-∠C =90°-70°=20°,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(9分)(3)∵∠C -∠B =α,∴由(2)中可知∠DAE =12(∠C -∠B )=12α.(11分)26.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n ·(180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n .(12分)《第十一章 三角形》单元测试卷(六)(满分:100分 时间:60分钟)一、选择题(每小题3分,共30分)1、下列长度的各组线段中,能组成三角形的是( )A .1,1,2B .3,7,11C .6,8,9D .3,3,62、下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线3、下列命题中,假命题是( )A .如果|a|=a ,则a ≥0B .如果,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( )A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形5、三角形的一个外角大于相邻的一个内角,则它是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定6、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60°7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )A .3:2:1B .5:4:3C .3:4:5D .1:2:38、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( )A .-6<a<-3B .-5<a<-2C .-2<a<5D .a<-5或a>29、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2图9 图1010、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( )A .10°B .18°C .20°D .30°二、填空题(每小题4分,共20分)11、 已知三角形的周长为15cm ,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是 .12、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .13、如图13,∠A =70°,∠B =30°,∠C =20°,则∠BOC= . F EC图13 图14 图1514、如图14,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF= .15、如图15,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .三、解答题(第16题6分,第17题8分,第18-21题每题9分,共50分)16、写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果a+b=0,那么a=0,b=0.(2)等角的余角相等.(3)如果一个数的平方是9,那么这个数是3.17、完成以下证明,并在括号内填写理由:已知:如图所示,∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2(),所以AB∥___(). 所以∠A=∠4().又因为∠A=∠3(),所以∠3=_ _().所以AC∥DE().18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm 的两个部分,求三角形各边的长.。

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)

第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。

《第十一章 三角形》单元测试卷及答案(共6套)

《第十一章 三角形》单元测试卷及答案(共6套)

《第十一章三角形》单元测试卷(一)时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列长度的三条线段能组成三角形的是( )A.1cm,2cm,3cm B.2cm,2cm,5cmC.1.5cm,2.5cm,5cm D.3cm,4cm,5cm2.如图是某三角形麦田怪圈,经测量得∠A=85°,∠B=45°,则∠C的度数为( )A.40° B.45° C.50° D.55°3.如图是一个起重机的示意图,在起重架中间增加了很多斜条,它所运用的几何原理是( )A.三角形两边之和大于第三边 B.三角形具有稳定性C.三角形两边之差小于第三边 D.两点之间线段最短4.如图,AC⊥BC,CD⊥AB,DE⊥BC,下列说法中错误的是( )A.△ABC中,AC是BC边上的高B.△BCD中,DE是BC边上的高C.△ABE中,DE是BE边上的高D.△ACD中,AD是CD边上的高5.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A.正五边形 B.正六边形 C.正七边形 D.正八边形6.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是( )A.9 B.14 C.16 D.不能确定7.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.0个8.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°9.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为( )A.60° B.65° C.75° D.85°10.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且S△ABC =4cm2,则△BEF的面积为( )A.2cm2 B.1cm2 C.12cm2 D.14cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,∠1的度数为________.12.一个正多边形的内角和等于1440°,则此多边形是________边形,它的每一个外角的度数是________.13.如图,在△ABC中,AD为中线,DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,则DE=________.14.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.下列结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④∠BDC=12∠BAC.其中正确的结论是________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,求∠B的度数.16.如图,AB∥CD,求图形中x的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC 中,AD ⊥BC 于点D ,BE 平分∠ABC .若∠ABC =64°,∠AEB =70°,求∠CAD 的度数.18.如图,在△ABC 中,AD 是BC 边上的中线,P 是AD 上的一点,若△ABC 的面积为S .(1)当点P 是AD 的中点⎝⎛⎭⎪⎫即PD =12AD 时,△PBC 的面积=________(用含S 的代数式表示);(2)当PD =13AD 时,△PBC 的面积=________(用含S 的代数式表示); (3)当PD =1nAD 时,△PBC 的面积=________(用含S 、n 的代数式表示).五、(本大题共2小题,每小题10分,满分20分)19.梦雪的爸爸用一段长为30米的破旧渔网围成一个三角形的园地,用于种植各类蔬菜.已知第一条边长为a 米,第二条边长比第一条边长的2倍多2米.(1)请用含a 的式子表示第三条边长;(2)求出a的取值范围.20.如图,在四边形ABCD内找一点O,使OA+OB+OC+OD之和最小,并说出你的理由.六、(本题满分12分)21.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).七、(本题满分12分)22.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系;探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A 的数量关系;探究三:若将△ADC改为任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.八、(本题满分14分)23.如图①,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图①的图形称之为“8字形”,可知∠A+∠C=∠B+∠D.如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于点M、N.试解答下列问题:(1)仔细观察,在图②中有________个以线段AC为边的“8字形”;(2)在图②中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图②中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图③,则∠A+∠B+∠C+∠D+∠E+∠F的度数为________.参考答案与解析1.D 2.C 3.B 4.C 5.B 6.A 7.B 8.B 9.B10.B 解析:∵点E是AD的中点,∴S△ABE=S△DBE=12S△ABD,S△AEC=S△DEC=12S△ACD,∴S △BEC =S △DBE +S △DEC =12S △ABD +12S △ACD =12(S △ABD +S △ACD )=12S △ABC =12×4=2(cm 2).∵点F 是CE 的中点,∴S △BEF =12S △BEC =12×2=1(cm 2).故选B. 11.70° 12.十 36° 13.214.①②③④ 解析:∵AD 平分∠EAC ,∴∠EAC =2∠EAD .∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确;∵AD ∥BC ,∴∠ADB =∠DBC .∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ACB =∠ABC =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF .∵AD ∥BC ,∴∠ADC =∠DCF ,∠CAD =∠ACB ,∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°,∴∠ADC =90°-∠ABD ,∴③正确;∵∠ACF =2∠DCF ,∠ACF =∠BAC +∠ABC ,∠ABC =2∠DBC ,∠DCF =∠DBC +∠BDC ,∴∠BAC =2∠BDC ,∴④正确.综上所述,正确的结论是①②③④.15.解:∵∠A =30°,∴∠B +∠C =180°-∠A =150°.(3分)∵∠C =2∠B ,∴3∠B =150°,(6分)∴∠B =50°.(8分)16.解:∵AB ∥CD ,∠B +∠C =180°,(3分)∴(5-2)×180°=x +125°+180°+150°,(6分)∴x =85°.(8分)17.解:∵BE 平分∠ABC ,∴∠EBC =12∠ABC =12×64°=32°.(3分)∵AD ⊥BC ,∴∠ADB =∠ADC =90°.∵∠AEB =70°,∴∠C =∠AEB -∠EBC =70°-32°=38°,(6分)∴∠CAD =90°-∠C =90°-38°=52°.(8分)18.(1)S 2(2分) (2)S 3(4分) (3)S n(8分) 19.解:(1)第三条边长为30-a -(2a +2)=30-a -2a -2=(28-3a )(米).(4分)(2)根据三角形的三边关系得(2a +2)-a <28-3a <a +(2a +2),(8分)解得133<a <132.(10分)20.解:要使OA +OB +OC +OD 之和最小,则点O 是线段AC 、BD 的交点.(4分)理由如下:如图,在四边形ABCD 内,任取不同于点O 的点P ,连接PA 、PB 、PC 、PD ,那么PA +PC ≥AC ,PB +PD ≥BD ,且至少有一个不取“=”,∴PA +PC +PB +PD >AC +BD ,即PA +PB +PC +PD >OA +OB +OC +OD ,(8分)即点O 是线段AC 、BD 的交点时,OA +OB +OC +OD 之和最小.(10分)21.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠ADC =90°,∴∠CAD =90°-∠C =90°-70°=20°,∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(4分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(10分) (3)∵∠C -∠B =α,由(2)中可知∠DAE =12(∠C -∠B )=12α.(12分) 22.解:探究一:∵∠FDC =∠A +∠ACD ,∠ECD =∠A +∠ADC ,∴∠FDC +∠ECD =∠A +∠ACD +∠A +∠ADC =180°+∠A .(4分)探究二:∵DP 、CP 分别平分∠ADC 和∠ACD ,∴∠PDC =12∠ADC ,∠PCD =12∠ACD ,∴∠P =180°-∠PDC -∠PCD =180°-12∠ADC -12∠ACD =180°-12(∠ADC +∠ACD )=180°-12(180°-∠A )=90°+12∠A .(8分)探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD=180°-12∠ADC-12∠BCD=180°-12(∠ADC+∠BCD)=180°-12(360°-∠A-∠B)=12(∠A+∠B).(12分)23.解:(1)3(2分)(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP.∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C-∠P=∠P-∠B,即∠P=12(∠C+∠B).(6分)∵∠C=100°,∠B=96°,∴∠P=12(100°+96°)=98°. (7分)(3)∠P=13(β+2α).(8分)理由如下:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB.∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C-∠P=∠CDP-∠CAP=13∠CDB-13∠CAB,∠P-∠B=∠BDP-∠BAP=23∠CDB-23∠CAB,∴2(∠C-∠P)=∠P-∠B,∴∠P=13(∠B+2∠C).∵∠C=α,∠B=β,∴∠P=13(β+2α).(12分)(4)360°(14分) 解析:如图,连接AE,∴∠1+∠2=∠C+∠D.∵∠1+∠2+∠B+∠BAC+∠DEF+∠F=360°,∴∠BAC+∠B+∠C+∠D+∠DEF+∠F=360°.故答案为360°.87654321D C B A《第十一章 三角形》单元测试卷(二)第Ⅰ卷(选择题 共24分)一、选择题:(每小题3分,共24分)1、下列各组线段,能组成三角形的是( )A 、2 cm ,3 cm ,5 cmB 、5 cm ,6 cm ,10 cmC 、1 cm ,1 cm ,3 cmD 、3 cm ,4 cm ,8 cm2、在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是( )A 、150° B、135° C、120° D、100°3、如图4,△ABC 中,AD 为△ABC 的角平分线,BE为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A 、59° B、60° C、56° D、22°4、在下列条件中:①∠A+∠B=∠C;②∠A:∠B∠:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C,能确定△ABC 是直角三角形的条件有( )个.A.1B.2C.3D.45、.坐标平面内下列个点中,在坐标轴上的是( )A.(3,3)B.(-3,0)C.(-1,2)D.(-2,-3)6.将某图中的横坐标都减去2,纵坐标不变,则该图形( )A. 向上平移2个单位B. 向下平移2个单位C. 向右平移2个单位D. 向左平移2个单位7.点P (x,y )在第三象限,且点P 到x 轴、y 轴的距离分别为5,3,则P 点的坐标为( )A.(-5,3)B.(3,-5)C.(-3,-5)D.(5,-3)8、如图6,如果AB ∥CD ,那么下面说法错误的是( ) A .∠3=∠7; B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠8第Ⅱ卷(非选择题共76分)二、填空题:(每小题4分,共32分)9、如图1,△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°,则∠DAE= 度。

第十一章 三角形单元测试卷(含解析)

第十一章 三角形单元测试卷(含解析)

第十一章三角形单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3 B.3,3 C.3,4 D.4,42.如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?()A.AD=AE B.AD<AE C.BE=CD D.BE<CD3.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°4.下列说法中,正确的个数是()①三角形的中线、角平分线、高都是线段;②三角形的三条角平分线、三条中线、三条高都在三角形内部;③直角三角形只有一条高;④三角形的三条角平分线、三条中线、三条高分别交于一点.A.1 B.2 C.3 D.45.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是()A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块6.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为20,则△ABE的面积为()A.5 B.10 C.15 D.187.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个8.已知:在△ABC中,∠A=2∠B=2∠C,则∠A的度数是()A.90°B.30°C.()°D.45°9.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°10.如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()A.180°B.270°C.360°D.540°二.填空题(共8小题,满分16分,每小题2分)11.如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有.12.如图,△ABC中,∠C=90°,AC=3,BC=4,P是△ABC的外角平分线AP、BP的交点,则AP的长为.13.若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=度.14.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.15.如图所示,则(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=度.16.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.17.从1,2,3…2004中任选k个数,使所选的k个数中,一定可以找到能构成三角形边长的三个数(这里要求三角形边长互不相等),试问满足条件的k的最小值是.18.多边形所有外角中,最多有个钝角,个直角.三.解答题(共2小题,满分8分,每小题4分)19.(4分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(4分)如图:在直角坐标系中,已知B(b,0),C(0,c),且|b+3|+(2c﹣8)2=0.(1)求B、C的坐标;(2)点A、D是第二象限内的点,点M、N分别是x轴和y轴负半轴上的点,∠ABM=∠CBO,CD∥AB,MC、NB所在直线分别交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB﹣∠CNB的值;(3)如图:AB∥CD,Q是CD上一动点,CP平分∠DCB,BQ与CP交于点P,给出下列两个结论:①的值不变;②的值改变.其中有且只有一个是正确的,请你找出这个正确的结论并求其定值.四.解答题(共3小题,满分15分,每小题5分)21.(5分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD 交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)22.(5分)问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.23.(5分)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值;(2)求这个等腰三角形的周长.五.解答题(共3小题,满分21分,每小题7分)24.(7分)补全解题过程.如图,在△ABC中∠ABC平分线BP和外角平分线CP交于点P,试猜想∠A与∠P之间的关系,并说明理由.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=∠1,∠ACD=2∠2 ()∵∠ACD为△ABC的外角∴∠ACD=∠A+∠=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1同理:∠2=∠P+∴∠A=2∠P.25.(7分)四边形ABCD是任意四边形,AC与BD交点O.求证:AC+BD>(AB+BC+CD+DA).证明:在△OAB中有OA+OB>AB在△OAD中有,在△ODC中有,在△中有,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即:,即:AC+BD>(AB+BC+CD+DA)26.(7分)如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?六.解答题(共3小题,满分30分,每小题10分)27.(10分)如图,在四边形ABCD中,∠A=104°﹣∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.28.(10分)探究:中华人民共和国国旗上的五角星的每个角均相等,小明为了计算每个角的度数,画出了如图①的五角星,每个角均相等,并写出了如下不完整的计算过程,请你将过程补充完整.解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=°,∴∠A+∠B+∠C+∠D+∠E=°,∴∠A=∠B=∠C=∠D=∠E=°.拓展:如图②,小明改变了这个五角星的五个角的度数,使它们均不相等,请你帮助小明求∠A、∠B、∠C、∠D、∠E的和.应用:如图③.小明将图②中的点A落在BE上,点C落在BD上,若∠B=∠D=36°,则∠CAD+∠ACE+∠E=°.29.(10分)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.参考答案与试题解析1.解:对角线的数量=6﹣3=3条;分成的三角形的数量为n﹣2=4个.故选:C.2.解:∵∠C<∠B,∴AB<AC,∵AB=BD AC=EC∴BE+ED<ED+CD,∴BE<CD.故选:D.3.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.4.解:①三角形的中线、角平分线、高都是线段,故正确;②钝角三角形的高有两条在三角形外部,故错误;③直角三角形有两条直角边和直角到对边的垂线段共三条高,故错误;④三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.所以正确的有1个.故选:A.5.解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴需要正方形2块,正三角形3块.故选:B.6.解:∵AD是△ABC的中线,BE是△ABD的中线,∴S△ABE =S△ABC=×20=5.故选:A.7.解:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选:D.8.解:∵∠A+∠B+∠C=180°,而∠A=2∠B=2∠C,∴∠A+∠A+∠A=180°,∴∠A=90°.故选:A.9.解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.10.解:由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°﹣(∠B'FG+∠B'GF)﹣(∠C'HI+∠C'IH)﹣(∠A'DE+∠A'ED)=720°﹣(180°﹣∠B')﹣(180°﹣C')﹣(180°﹣A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故选:C.11.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.12.解:作PD⊥AC于D,PH⊥AB于H,PE⊥CB于E,如图,在Rt△ABC中,AB==5,设AD=x,BE=y,∵P是△ABC的外角平分线AP、BP的交点,∴PD=PH,PE=PH,∴PD=PE,∴四边形PECD为正方形,∴CD=CE,即3+x=4+y,∴y=x﹣1,易得AD=AH=x,BH=BE=y,∴x+y=5,∴x+x﹣1=5,解得x=3,∴DP=DC=3+3=6,在Rt△PAD中,PA==3.故答案为3.13.解:根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.14.解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;15.解:∵∠1+∠2+(360°﹣∠3)+∠4+∠5+(360°﹣∠6)+∠7+∠8+(360°﹣∠9)=180°•(9﹣2)=1260度,∴(∠1+∠2﹣∠3)+(∠4+∠5﹣∠6)+(∠7+∠8﹣∠9)=1260﹣360×3=180°.16.解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.17.解:为使k达到最大,可选加入之数等于已得数组中最大的两数之和,这样得:1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597 ①共16个数,对符合上述条件的任数组,a1,a2…a n显然总有a i大于等于①中的第i个数,所以n≤17≤k,从而知k的最小值为17.故答案为:17.18.解:∵多边形的外角和360度,∴外角最多可以有3个钝角;又∵当有4个直角时,四角的和是360度,∴多边形所有外角中,最多有4个直角.19.解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.20.解:(1)由题意得:b+3=2c﹣8=0,(1分)∴b=﹣3,c=4.(2分)∴B(﹣3,0),C(0,4).(3分)(2)∵CD∥AB,∴∠DCB+∠ABC=180°.∵∠COB=90°,∴∠CBO+∠BCO=90°.(4分)∵(∠GCF+∠DCB+∠BCO)+(∠CBO+∠ABC+∠ABM)=180°+180°=360°,∴∠ABM+∠GCF=360°﹣180°﹣90°=90°.(5分)又∵∠CMB=∠MEA﹣∠ABM=70°﹣∠ABM∠CNB=∠GCF﹣∠CFB=∠GCF﹣30°(6分)∴∠CMB﹣∠CNB=(70°﹣∠ABM)﹣(∠GCF﹣30°)=100°﹣(∠ABM+∠GCF)=100°﹣90°=10°.(3)答:①的值不变,定值为2.∵CP平分∠DCB,∴∠QCB=2∠PCB.又∵∠DQB=∠QBC+∠QCB,∴∠DQB+∠QBC=(∠QBC+∠QCB)+∠QBC=2∠QBC+2∠PCB=2(∠QBC+∠PCB)=2∠QPC∴②==2.(12分)21.解:(1)∵∠B=35°,∠ACB=85°,∠B+∠ACB+∠BAC=180°.∴∠BAC=60°.∵AD平分∠BAC.∴∠DAC=30°.∵∠ACB=85°,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=65°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=25°.(2))∵∠B=α,∠ACB=β,∠B+∠ACB+∠BAC=180°.∴∠BAC=180°﹣α﹣β.∵AD平分∠BAC.∴∠DAC=(180°﹣α﹣β).∵∠ACB=β,∠ACB+∠DAC+∠PDE=180°.∴∠PDE=180°﹣β﹣(180°﹣α﹣β)=90°.又∵PE⊥AD.∴∠DPE=90°.∵∠PDE+∠DPE+∠E=180°.∴∠E=180°﹣90°﹣(90°)=.22.解:用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为和.结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为.结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)23.解:(1)②×3+①得:10a=50,解得a=5.∴b=3.(2)当a为腰时,三角形的周长为5+5+3=13,当b为腰时,三角形的周长=3+3+5=11.24.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=2∠1,∠ACD=2∠2 (角平分线的定义)∵∠ACD为△ABC的外角∴∠ACD=∠A+∠ABC=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1,同理:∠2=∠P+∠1,∴∠A=2∠P.故答案为:2,角平分线的定义,ABC,∠1.25.证明:∵在△OAB中OA+OB>AB在△OAD中有OA+OD>AD,在△ODC中有OD+OC>CD,在△OBC中有OB+OC>BC,∴OA+OB+OA+OD+OD+OC+OC+OB>AB+BC+CD+DA即2(AC+BD)>AB+BC+CD+DA,即AC+BD>(AB+BC+CD+DA).故答案为:OA+OD>AD;OD﹣OC>CD;OBC;OB+OC>BC;2(AC+BD)>AB+BC+CD+DA.26.解:不符合规定.延长AB、CD交于点O,∵△AOC中,∠BAC=32°,∠DCA=65°,∴∠AOC=180°﹣∠BAC﹣∠DCA=180°﹣32°﹣65°=83°<80°,∴模板不符合规定.27.解:能辨认∠1=∠2.理由如下:∵∠A=104°﹣∠2,∠ABC=76°+∠2,∴∠A+∠ABC=104°﹣∠2+76°+∠2=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠DBC(两直线平行,内错角相等),∵BD⊥DC,EF⊥DC,∴BD∥EF(根据垂直于同一直线的两直线平行),∴∠2=∠DBC(两直线平行,同位角相等),∴∠1=∠2.28.解:探究:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°,∴∠A=∠B=∠C=∠D=∠E=36°;拓展:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.∵∠A+∠AFG+∠AGF=180°,∴∠A+∠B+∠C+∠D+∠E=180°;应用:∠CAD+∠ACE+∠E=180°﹣∠EAD=180°﹣∠B﹣∠D=108°.29.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C.(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE =45°+40°=85°.③∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63即∠A的度数为63°.故答案为:50.。

第一章三角形单元测试卷(含解析)

第一章三角形单元测试卷(含解析)

〖鲁教版五四制七年级上数学单元测试卷〗第一章《三角形》班级:姓名:得分:(时间90分钟满分100分)一、选择题:本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.如图三角形的个数为() A.4 B. 5 C. 6 D.72.(2016·湖北鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A. 50°B. 40°C. 45°D. 25°第1题第2题3. (2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4. (2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm5.若一个三角形三个内角的度数比为1:3:5,则这个三角形中最大内角的度数为()A. 60ºB. 90ºC. 100ºD.110º6.(2016·山东聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28°B.38°C.48°D.88°7. 根据下列条件,不能唯一画出△ABC 的是( )A. AB=12,BC=7,CA=8B. AB=20,BC=30,∠A=50ºC. AB=9, ∠A=60º ,AC=15D. ∠A=50º,∠B=40º,AB=238. (2015•绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A . 118°B . 119°C . 120°D . 121°9. 如图,A 点和B 点之间有一池塘,已知OB=OC ,AC=BD ,若能米尺测出CD=10米,就能知道AB 的距离,它根据( ) A. SAS B. SSS C. ASA D. AAS10. (2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,詹姆斯在探究筝形的性质时,得到如下结论: ①AC ⊥BD ;②AO=CO=21AC ;③△ABD ≌△CBD ,其中正确的结论有( )A . 0个B . 1个C . 2个D . 3个二、填空题(本大题共4小题,每小题4分,满分16分)11. (2015•江苏盐城)如图,在△ABC 与△ADC 中,已知AD=AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需再添加的一个条件可以是 .12. 小明家的椅子坏了, 小明在学校学习了鲁教版五四制七上数学第一章《三角形》的知识后,正在家里帮爸爸妈妈修理椅子,请你告诉大家聪明的小明应用的数学原理: 。

(典型题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

(典型题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20 2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .11 3.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 4.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 5.已知三角形的一边长为8,则它的另两边长分别可以是( ) A .4,4B .17,29C .3,12D .2,9 6.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 7.如图,在等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,点B 在直线l 上,过A 作AD l ⊥于D ,过C 作CE l ⊥于E .下列给出四个结论:①BD CE =;②BAD ∠与BCE ∠互余;③AD CE DE +=.其中正确结论的序号是( )A .①②B .①③C .②③D .①②③ 8.如图,要测量河两岸相对的两点A 、B 的距离,先过点B 作BF AB ⊥,在BF 上找点D ,过D 作DE BF ⊥,再取BD 的中点C ,连接AC 并延长,与DE 交点为E ,此时测得DE 的长度就是AB 的长度.这里判定ABC 和EDC △全等的依据是( )A .ASAB .SASC .SSSD .AAS 9.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( )A .7B .8C .9D .10 10.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45° 11.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS 12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.在非直角三角形ABC 中,∠A =50°,高BD 和高CE 所在的直线相交于点H ,则∠BHC =___.14.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.15.如图,12∠=∠,要使ABE ACE △≌△,还需添加一个条件是:______.(填上你认为适当的一个条件即可)16.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)17.有两根小棒分别长2厘米和4厘米.要围成一个等腰三角形,第三根小棒的长度应该是____厘米.18.如图,在ABC ∆中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF AC =,BD=8,3CD =,则线段AF 的长度为______.19.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 .20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.如图1,已知AB =AC ,AB ⊥AC .直线m 经过点A ,过点B 作BD ⊥m 于D , CE ⊥m 于E .我们把这种常见图形称为“K”字图.(1)悟空同学对图1进行一番探究后,得出结论:DE =BD +CE ,现请你替悟空同学完成证明过程.(2)悟空同学进一步对类似图形进行探究,在图2中,若AB =AC ,∠BAC =∠BDA =∠AEC ,则结论DE =BD +CE ,还成立吗?如果成立,请证明之.22.如图,90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =.(1)试说明:ADE 是等腰直角三角形;(2)若2CDE BAE ∠=∠,求CDE ∠的度数.23.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)在图中,只要量出CD 的长,就能求出工件内槽的宽AB 的长,依据是____________.24.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.25.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.26.已知:如图,AB = AD .请添加一个条件使得△ABC ≌△ADC ,然后再加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF ,∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题. 2.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.4.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.5.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A 、∵4+4=8,∴构不成三角形;B 、29−17=12>8,∴构不成三角形;C 、∵12−3=9>8,∴构不成三角形;D 、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D .【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.6.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .7.D解析:D【分析】证△ADB ≌△BEC 即可.【详解】证明:∵AD l ⊥, CE l ⊥,∴∠ADB=∠BEC=90°,∴∠BAD+∠ABD=90°,∠BCE+∠CBE=90°,∵90ABC ∠=︒,∴∠ABD+∠CBE=90°,∴∠BAD=∠CBE ,∴∠BCE+∠BAD=90°,故②正确;∵∠BAD=∠CBE ,∠ADB=∠BEC=90°,,AB BC =∴△ADB ≌△BEC ,∴BD CE =,AD=BE ,故①正确;DE=DB+BE=CE+AD ,故③正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,解题关键是找到并证明全等三角形.8.A解析:A【分析】根据条件可得到BC=CD ,∠ABD=∠EDC ,∠ACB=∠DCE ,可得出所用的判定方法.【详解】解:∵C 为BD 中点,∴BC=CD ,∵AB ⊥BF ,DE ⊥BF ,∴∠ABC=∠CDE=90°,且∠ACB=∠DCE ,∴在△ABC 和△EDC 中,满足ASA 的判定方法,故选:A .本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .9.A解析:A【分析】根据非负数的性质列方程求出a 、b 的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c 的取值范围,然后解答即可.【详解】解:∵|a ﹣5|+(b ﹣3)2=0,∴a ﹣5=0,b ﹣3=0,解得a =5,b =3,∵5﹣3=2,5+3=8,∴2<c <8,∴c 的值可以为7.故选:A .【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.10.A解析:A【分析】先根据全等三角形的性质可得105ACB E ∠=∠=︒,再根据三角形的外角性质可得AFC ∠的度数,然后根据对顶角相等可得DFG ∠的度数,最后根据三角形的内角和定理即可得.【详解】ABC ADE ≅,105E ∠=︒,105ACB E ∴∠=∠=︒,ACB DAC AFC ∠=∠+∠,16DAC ∠=︒,10516AFC ︒=︒+∴∠,解得89AFC ∠=︒,89DFG AFC ∴∠=∠=︒,在DFG 中,180GB F D D D G ∠∠=+∠+︒,25D ∠=︒,2518089DGB ∴∠+︒+=︒︒,解得66DGB ∠=︒,故选:A .【点睛】本题考查了全等三角形的性质、三角形的外角性质、三角形的内角和定理、对顶角相等,熟练掌握全等三角形的性质是解题关键.11.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.12.A解析:A【分析】利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:易得OC=O C',OD=O′D',CD=C′D',∴△OCD≌△O′C′D′,∴∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.50°或130°【分析】①△ABC是锐角三角形时先根据高线的定义求出∠ADB=90°∠BEC=90°然后根据直角三角形两锐角互余求出∠ABD再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行解析:50°或130°.【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形等角的余角相等求出∠BHC=∠A,从而得解.【详解】解:①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°.在△ABD中,∵∠A=50°,∴∠ABD=90°-50°=40°,∴∠BHC=∠ABD+∠BEC=40°+90°=130°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=50°.综上所述,∠BHC的度数是130°或50°.故答案为:50°或130°.【点睛】本题主要考查了直角三角形的性质,三角形的外角性质,等角的余角性质,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.14.102°【分析】首先根据∠DFC=3∠B=117°可以算出∠B=39°然后设∠C=∠D=x°根据外角与内角的关系可得39+x+x=117再解方程即可得到x=39再根据三角形内角和定理求出∠BED的度解析:102°首先根据∠DFC =3∠B =117°,可以算出∠B =39°,然后设∠C =∠D =x°,根据外角与内角的关系可得39+x +x =117,再解方程即可得到x =39,再根据三角形内角和定理求出∠BED 的度数.【详解】解:∵∠DFC =3∠B =117°,∴∠B =39°,设∠C =∠D =x°,39+x +x =117,解得:x =39,∴∠D =39°,∴∠BED =180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.或或【分析】由∠1=∠2可得∠AEB=∠AECAD 为公共边根据全等三角形的判定添加条件即可【详解】∵∠1=∠2∴∠AEB=∠AEC ∵AE 为公共边∴根据SAS 得到三角形全等可添加BE=CE ;根据AAS解析:BE CE =或B C ∠=∠或BAE CAE ∠=∠【分析】由∠1=∠2可得∠AEB=∠AEC ,AD 为公共边,根据全等三角形的判定添加条件即可.【详解】∵∠1=∠2,∴∠AEB=∠AEC ,∵AE 为公共边,∴根据“SAS”得到三角形全等,可添加BE=CE ;根据“AAS”可添加∠B=∠C ;根据“ASA”可添加∠BAE=∠CAE ;故答案为:BE=CE 或∠B=∠C 或∠BAE=∠CAE .【点睛】本题考查全等三角形的判定,全等三角形的常用的判定方法有SSS 、SAS 、AAS 、ASA 、HL ,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.熟练掌握全等三角形的判定定理是解题的关键.16.AF=CB 或EF=EB 或AE=CE 【分析】根据垂直关系可以判断△AEF 与△CEB 有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD ⊥BCCE ⊥AB 垂足分别为DE ∴∠BEC=∠AEC解析:AF=CB 或EF=EB 或AE=CE根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.17.4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边任意两边之差小于第三边即可得出结果【详解】解:∵要围成一个等腰三角形∴有两种可能:224和2442+2=4所以224舍掉∴第三根小棒的长度解析:4【分析】根据三角形三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边即可得出结果.【详解】解:∵要围成一个等腰三角形,∴有两种可能:2、2、4和2、4、4,2+2=4,所以2、2、4舍掉,∴第三根小棒的长度为4,故答案为:4【点睛】本题主要考查的三角形三边关系,掌握三角形的三边关系是解题的关键.18.5【分析】首先证明△ADC≌△BDF再根据全等三角形的性质可得FD=CDAD=BD根据BD=8即可算出AF的长【详解】解:∵AD是BC边上的高BE 是AC边上的高∴∠ADC=∠FDB=90°∠AEB=解析:5【分析】首先证明△ADC≌△BDF,再根据全等三角形的性质可得FD=CD,AD=BD,根据BD=8,CD ,即可算出AF的长.3解:∵AD 是BC 边上的高,BE 是AC 边上的高,∴∠ADC =∠FDB =90°,∠AEB=90°∴∠1+∠3=90°,∠2+∠4=90°,∵∠3=∠4,∴∠1=∠2,在△ADC 和△BDF 中1=2ADC FDB AC BF ∠∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BDF (AAS ),∴FD =CD ,AD =BD ,∵CD =3,BD =8,∴FD =3,AD =8,∴AF =AD-DF=8−3=5,故答案为:5.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握证明三角形全等的方法:AAS 、SSS 、ASA 、SAS .19.1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边任意两边之差小于第三边解:由题意有8﹣5<1+2x <8+5解得:1<x <6考点:三角形三边关系解析:1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x <8+5,解得:1<x <6.考点:三角形三边关系.20.3【分析】易证△ABE ≌△DCF 从而可得出△ABF ≌△DCE 进而可得出△BEF ≌△CFE 【详解】∵AB ∥DC ∴∠A=∠D ∵AB=CDAE=DF ∴△ABE ≌△DCF(SAS)∴AE=DFBE=CF ∴A 解析:3【分析】易证△ABE ≌△DCF,从而可得出△ABF ≌△DCE,进而可得出△BEF ≌△CFE .【详解】∵AB ∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE ≌△DCF(SAS)∴AE=DF ,BE=CF∴AF=ED∴△ABF ≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF ≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA 是不能证明全等的.三、解答题21.(1)见解析;(2)成立,见解析【分析】(1)先证∠ABD=∠EAC ,再证△ABD ≌ △CAE (AAS )即可;(2)先证出∠ABD = ∠EAC ,再证△ABD ≌ △CAE (AAS )即可.【详解】证明:(1)∵AB ⊥AC,BD ⊥DE,CE ⊥DE,∴∠BDA=∠AEC=∠BAC=90°,∴∠DAB+∠ABD=∠EAC+∠DAB=90°,∴∠ABD=∠EAC,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA ;(2)成立,理由如下:∵ ∠BAC + ∠BAD + ∠EAC = 180° ,∠ADB + ∠BAD + ∠ABD = 180°,∠BAC = ∠BDA ,∴∠ABD = ∠EAC ,在△ABD 和 △CAE 中,ABD EAC BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ △ABD ≌ △CAE (AAS ),∴ BD = AE ,AD = CE ,∴ DE = AE + DA = BD + CE .【点睛】本题考查三角形全等的判定与性质,掌握三角形全等的判定与性质是解题关键. 22.(1)见解析;(2)60°.【分析】(1)利用ASA 证明△BAE ≌△CED ,可证AE=DE ,后利用∠BAE+∠BEA=90°,证明∠BEA+∠CED=90°,问题得证;(2)利用直角三角形的两个锐角互余,求解即可.【详解】(1)∵90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =,∴△BAE ≌△CED ,∴AE=DE ,∵∠BAE+∠BEA=90°,∴∠BEA+∠CED=90°,∴∠AED=90°,∴△AED 是等腰直角三角形;(2)∵2CDE BAE ∠=∠,BAE CED ∠=∠,∴2CDE CED ∠=∠,∵∠CDE+∠CED=90°,∴∠CDE=60°.【点睛】本题考查了三角形的全等,等腰直角三角形的定义,直角三角形的锐角互余的性质,根据图形,结合条件选择对应判定方法,根据性质构造基本的计算等式是解题的关键. 23.全等三角形的对应边相等【分析】连接AB ,CD ,可以证△AOB ≌△COD (SAS ),依所据全等三角形对就边相等得CD AB =所以测量CD 的长也就等于测量了工件内槽AB 的长.【详解】解:连接AB ,CD ,如图,∵点O 分别是AC 、BD 的中点,∴OA =OC ,OB =OD .在△AOB 和△COD 中,OA =OC ,∠AOB =∠COD (对顶角相等),OB =OD ,∴△AOB ≌△COD (SAS ).∴CD =AB (全等三角形的对应边相等).故答案为:全等三角形的对应边相等.【点睛】本题考查全等三角形的应用,在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.24.见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明△ACF ≌△BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =;//AC BD , CAF DBE ∴∠=∠在ACF 与BDE 中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键. 25.(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP=⎧⎨=⎩ ∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.26.BC=CD,证明见解析(答案不唯一).【分析】已知两组对应边相等,则找另一组边相等或找另一组对应角相等均可证明△ABC ≌△ADC .【详解】解:若添加条件为:BC=CD,证明如下:在△ABC 和△ADC 中AC AC BC CD AB AD =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS )(答案不唯一).【点睛】本题主要考查了全等三角形的判定,灵活运用全等三角形的判定方法是解答本题的关键.。

人教新版 八年级(上)数学 第11章 三角形 单元测试卷 (含解析)

人教新版 八年级(上)数学 第11章 三角形 单元测试卷 (含解析)

第11章三角形单元测试卷一、选择题(共10小题).1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有条对角线.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为.15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=°.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=(用含a的式子表示).19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.参考答案一、选择题(每小题3分,共30分)1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③解:①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.故选:B.2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选:D.3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°解:(n+1)边形的内角和:180°×(n+1﹣2)=180°(n﹣1),n边形的内角和180°×(n﹣2),(n+1)边形的内角和比n边形的内角和大180°(n﹣1)﹣180°×(n﹣2)=180°,故选:A.4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.解:A、B、C均不是高线.故选:D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线解:当AC与BC重合时,折痕是∠C的角平分线;当点A与点B重合时,折叠是AB的中垂线,故选:A.7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形解:A、∵四边形的内角和等于它的外角和,∴选项A不符合题意;B∵三角形中,锐角最多有三个,∴选项B不符合题意;C、∵一个多边形中,锐角最多有三个,∴选项C符合题意;D、∵每一个外角都等于15°的多边形是二十四边形,∴选项D不符合题意;故选:C.8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°解:由折叠的性质得:∠D=∠C=40°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1﹣∠2=80°.故选:B.9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个解:△ABC的高BD、CE相交于点H,(1)∠ABD+∠A=90°,∠ACE+∠A=90°,∴∠ABD=∠ACE,故(1)正确;(2)四边形的一组对角互补,另一组对角互补,故(2)正确;(3)∠HDC=∠A+∠ABD,∠BHC=∠HDC+∠ACE,∴∠BCH=∠A+∠ABD+∠ACE,故(3)正确;(4)∵∠BHC+∠CHD=180°,∠ABD+∠ACE+∠BHC+∠CHD>180°,故(4)错误;故选:B.10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°解:如图,连接AE.∵△ABC是等边三角形,∴∠C=∠ABC=60°,∵∠ADB=m°,∠BDE=(180﹣2m)°,∴∠ADC=180°﹣m°,∠ADE=180°﹣m°,∴∠ADC=∠ADE,∵AD=AD,DC=DE,∴△ADC≌△ADE(SAS),∴∠C=∠AED=60°,∠DAC=∠DAE,∴∠DEA=∠DBA,∴A,D,E,B四点共圆,∴∠DBE=∠DAE=∠DAC=(m﹣60)°,故选:A.二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有405条对角线.解:设内角和为5040°的多边形的边数为n,由多边形内角和定理得:(n﹣2)•180°=5040°,解得:n=30,∴这个多边形所有对角线的条数为:n(n﹣3)=×30×(30﹣3)=405.故答案为:405.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=75°.解:∵∠A﹣∠C=25°,∠B﹣∠A=10°,∴∠B﹣∠C=35°①,∠A=25°+∠C,∵∠A+∠B+∠C=180°,∴25°+∠C+∠B+∠C=180°,即2∠C+∠B=155°②,②﹣①得,3∠C=120°,解得∠C=40°③,把③代入①得,∠B=75°.故答案为:75°.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是5<BC<16.解:∵在△ABC中,AB=7cm,AC=9cm,∴9﹣7<BC<9+7,即:5<BC<16,故答案为:5<BC<16.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为64°.解:∵∠A=52°,∴∠ABC+∠ACB=128°,∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°,故答案为:64°;15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=6.解:连接AP.∵AB=AC,∴S△APB=S△ABC+S△ACP=AC×BF+AC×PE=×AC×(BF+PE),∵S△APB=AB×PD=AC×PD,∴BF+PE=PD.∵PE=3,PD=9,∴BF=9﹣3=6.故答案为:6.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为80°或20°或50°或35°.解:有四种情况:①AD=AC,∵AD=BD,∴∠B=∠BAD=40°,∵AD=AC,∴∠C=∠ADC=∠B+∠BAD=80°,②AC=DC,∵AC=DC,∴∠DAC=∠ADC=∠B+∠BAD=80°,∴∠C=180°﹣∠ADC﹣∠DAC=20°,③AD=DC,∵AD=DC,∴∠C=∠DAC,∵∠ADC=80°,∴∠C=(180°﹣∠ADC)=50°,④AB=BD,AD=DC,∵∠B=40°,AB=BD,∴∠ADB=∠BAD=(180°﹣∠B)=70°,∵AD=DC,∴∠C=∠CAD,∵∠C+∠CAD=∠ADB,∴∠C=∠CAD=70°=35°,故答案为:80°或20°或50°或35°.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=126°.解:正十边形的一个内角为(10﹣2)×180°÷10=144°,∠BAE=[(5﹣2)×180°﹣144°×3]÷2=54°,∠ABE=[(6﹣2)×180°﹣144°×4]÷2=72°,则∠AED=54°+72°=126°.故答案为:126.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=19a(用含a的式子表示).解:连接BC1,∵C1A=2CA,∴S△ABC1=2S△ABC,同理:S△A1BC1=2S△ABC1=4S△ABC,∴S△A1AC1=6S△ABC,同理:S△A1BB1=S△CB1C1=6S△ABC,∴S△A1B1C1=19S△ABC=19a,故答案为19a.19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是α=β+γ.解:∵三角内角和是个定值为180度,∴∠A+∠B+∠C=180°∴∠A越来越小,∠B、∠C越来越大时,∴∠A﹣α+∠B+β+∠C+γ=180°,∴α=β+γ.故答案为:α=β+γ.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为45°.解:∵AB=AC,∴∠ABC=∠ACB,∵将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,∴∠A=∠E,∵将△DCE沿CD对折得到△DCF,∴∠E=∠F,∠DCE=∠DCF,∵∠DCE=∠ABC+∠A,∠DCF=∠ACB+∠BCF,∴∠BCF=∠A,∴∠BCF=∠A=∠E=∠F,∵DF⊥BC,∴∠BCF=∠F=45°,∴∠A=45°,故答案为:45°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°﹣∠ACB=90°﹣65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣55°﹣65°=60°,∵∠BEC=90°,∴∠4=90°﹣∠ABC=30°,∴∠5=∠BOC=180°﹣∠3﹣∠4=180°﹣25°﹣30°=125°.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?解:设新多边形是n边形,由多边形内角和公式得(n﹣2)×180°=1440°,解得n=10,原多边形是10﹣1=9,10+1=11,故答案为:9、10或11.23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.解:∵∠BAD+∠BAF=180,∠BAD:∠BAF=2:3,∴∠BAD=,∵∠C+(∠B+∠D)+∠BAD=360°,∴∠C=360°﹣(∠B+∠D)﹣∠BAD=360°﹣190°﹣72°=98°.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).【解答】证明:∵M是BC中点,∴CM=BM,∵AM+BM>AB,AM+CM>AC,∴2(AM+BM)>AB+AC,∴AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有10个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.解:(1)10;;(2)不存在(法一)当n=6时,三角形的个数为;当n=7时,三角形的个数为;所以不存在n使三角形的个数为25.(法二)由=25,得n(n+1)=50,而不存在两个连续整数的乘积为50,所以不存在n使三角形的个数为25.(3)S1+S3=2S2.∵点B是线段AC的中点,∴AB=BC,∴S△PAB=S△PBC,∴S1+S3=2S2.。

三角形单元测试卷(学生版)

三角形单元测试卷(学生版)

三角形单元测试卷一.选择题1.下列图形中具有稳定性的是A.梯形B.菱形C.三角形D.正方形2.三角形一边上的中线把原三角形分成两个A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形3.在下列条件中:①A B C,②A B C123,③A900B,④A B C中,能确定ABC是直角三角形的条件有A.1个B.2个C.3个D.4个4.若一个三角形的一个外角小于与它相邻的内角则这个三角形是A.直角三角形B.锐角三角形C.钝角三角形D.无法确定5.已知三角形的三个外角的度数比为234则它的最大内角的度数为A.90B.110C.100D.1206.下列说法中,正确的是A.正六边形和正三角形的外角和相等B.三角形的两边之差不一定小于第三边C.五边形只有两条对角线D.多边形的内角和公式为n2360n37.以下说法错误的是A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点.·1·在ABC中,A B2C B A20A如图所示,1234度.已知三角形的两边分别为a2cm b5cm,a b c取值范围为.等腰三角形周长为21cm一中线将周长分成的两部分差为3cm则这个三角形三边长为.长为,6,4的四根木条,选其中三根能组成三角形有法,分别是如下图,在ABC AE是中线,AD是角平分线,AF根据图形填空:⑴BAD 1 2⑵BE 12BC;⑶AFB AFC.DFA边形有一个外角是60,其它各外角都是0n·2·15.从n 边形一个顶点出发共可作5条对角线,则这个n 边形的内角和为16.n 边形的内角和与外角和相等,则n三.证明题:17.如图3,BD 为ABC 的角平分线,CD 为ABC 的外角ACE 的平分线,它们相交于点D ,试探索BDC 与A 之间的数量关系.18.如图4,D 是ABC 的BC 边上一点,且12,34,BAC63,求DAC 的度数.·3·,ABC 平分BAC BE AC 若EBC ,ADB 80求BAC 的度数.AD E6,ABC AD 、是角平分线,它们相交于点BAC 50,C 70求DAC 及BOA ACD E FOB。

《三角形》单元测试题(含答案)

《三角形》单元测试题(含答案)

《三角形》单元测试题(含答案) D等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

3、判定一个三角形的形状主要看三角形中最大角的度数。

4、直角三角形的面积等于两直角边乘积的一半。

5、任意一个三角形都具备六个元素,即三条边和三个内角。

都具有三边关系和三内角之和为1800的性质。

6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。

四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、Array中线和高线。

2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。

3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

(2)三角形有三条中线,它们相交于三角形内一点。

4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

(2)任意三角形都有三条高线,它们所在的直线相交于一点。

五、全等图形1、两个能够重合的图形称为全等图形。

2、全等图形的性质:全等图形的形状和大小都相同。

3、全等图形的面积或周长均相等。

4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。

5、全等图形在平移、旋转、折叠过程中仍然全等。

6、全等图形中的对应角和对应线段都分别相等。

六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。

2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试卷(包含答案解析)(1)

(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试卷(包含答案解析)(1)

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.下列命题中,是假命题的是( )A .直角三角形的两个锐角互余B .在同一个平面内,垂直于同一条直线的两条直线平行C .同旁内角互补,两直线平行D .三角形的一个外角大于任何一个内角 3.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25° 4.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 5.如图,1∠等于( )A .40B .50C .60D .706.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .87.如图,,AD CE 分别是ABC 的中线与角平分线,若,40B ACB BAC ∠=∠∠=︒,则ACE ∠的度数是( )A .20︒B .35︒C .40︒D .70︒ 8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( )A .3cmB .10cmC .4cmD .6cm 9.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF 10.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 11.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒12.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠ B .12A B C ∠=∠=∠C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 二、填空题13.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________14.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.15.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.16.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.17.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.18.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.19.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.20.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .三、解答题21.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC 的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB 上找到格点D ,并连接CD ,使CD 将△ABC 面积两等分; (2)在图②中△ABC 的内部找到格点E ,并连接BE 、CE ,使△BCE 是△ABC 面积的14. (3)在图③中△外部画一条直线l ,使直线l 上任意一点与B 、C 构成的三角形的面积是△ABC 的18.22.如图,在ABC 中,D 是AB 上一点,且AD AC =,连结CD .请在下面空格中用“>”,“<”或“=”填空.(1)AB________AC BC +;(2)2AD________CD ;(3)BDC ∠________A ∠.23.如果一个n 边形的内角都相等,且它的每一个外角与内角的比为2:5,求这个多边形的边数n .24.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?25.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.(1)一个多边形的内角和等于1800度,求这个多边形的边数.(2)一个多边形的每一个内角都是108°,求这个多边形的边数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+2<4,不能构成三角形;B、5+6=11,不能构成三角形;C、3+3>3,能构成三角形;D、8+4=12,不能构成三角形.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.2.D解析:D【分析】利用三角形外角的性质、平行线的性质及直角三角形的性质分别判断后即可确定正确的选项.【详解】解:A. 直角三角形的两个锐角互余,正确,是真命题;B. 在同一个平面内,垂直于同一条直线的两条直线平行,正确,是真命题;C. 同旁内角互补,两直线平行,正确,是真命题;D. 三角形的一个外角大于任何一个内角,错误,是假命题;故选:D.【点睛】本题考查了命题与定理的知识,三角形外角的性质、平行线的性质及直角三角形的性质,熟悉相关性质是解题的关键.3.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B.【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.4.A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A、1+2=3,故以这三根木棒不能构成三角形,符合题意;B、2+3>4,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.5.D解析:D【分析】根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒故选D.【点睛】本题考查了三角形外角的性质,比较简单.6.A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.7.B解析:B【分析】由,40B ACB BAC ∠=∠∠=︒,再利用三角形的内角和定理求解ACB ∠,结合三角形的角平分线的定义,从而可得答案.【详解】解: ,B ACB ∠=∠40BAC ∠=︒,18040702B ACB ︒-︒∴∠=∠==︒, CE 是ABC 角平分线,1352ACE ACB ∴∠=∠=︒, 故选:.B【点睛】本题考查的是三角形的角平分线的定义,三角形的内角和定理,掌握以上知识是解题的关键.8.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.C解析:C【分析】根据三角形的高的定义,△ABC 中AC 边上的高是过B 点向AC 作的垂线段,即为BF .【详解】解:∵BF ⊥AC 于F ,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.10.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 11.B解析:B【分析】根据题意,结合三角形内角和定理、角平分线的性质,三角形外角的性质分别求解即可得出结论.【详解】解:由题意可得:在四边形BDCI 中,1180902IBD IBC CBD ∠=∠+∠=⨯︒=︒,90ICD ∠=︒, 可得180BDC BIC ∠+∠=︒,故A 选项不符合题意, 90ICE ∠=︒,故B 选项符合题意,48BAC ∠=︒,在三角形ICE 中, EIC ∠=18048662IBC ICB ︒-︒∠+∠==︒,90ICE ∠=︒, 906624E ∠=︒-︒=∴︒ ,故C 选项不符合题意,90DBE ∠=︒,故D 选项不符合题意,故选:B.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.12.C解析:C【分析】利用三角形的内角和,代入已知条件求出角的度数,逐一判断是否有直角即可.【详解】A :ABC ∠+∠=∠,代入+=180A B C ∠+∠∠︒得:2=180C ︒∠⇒=90C ∠︒,故此选项不符合题意;B :12A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:11++=2=18022C C C C ︒∠∠∠∠⇒=90C ∠︒,故此选项不符合题意; C :3A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:3+3+=180C C C ︒∠∠∠⇒26C ≈︒∠,故此选项符合题意;D :1123A B C ∠=∠=∠代入+=180A B C ∠+∠∠︒得:12++=18033C C C ︒∠∠∠⇒=90C ∠︒,故此选项符合题意; 故答案选:C【点睛】本题主要考查了三角形的内角和,熟悉掌握三角形的内角和运算方式是解题的关键.二、填空题13.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.14.【分析】根据求出mn 的长根据三角形三边关系求出k 的取值范围再根据k 为最长边进一步即可确定k 的取值【详解】解:由题意得n-9=0m-5=0解得m=5n=9∵mnk 为三角形的三边长∴∵k 为三角形的最长边解析:914k ≤<【分析】根据2|9|(5)0n m -+-=求出m 、n 的长,根据三角形三边关系求出k 的取值范围,再根据k 为最长边进一步即可确定k 的取值.【详解】解:由题意得n-9=0,m-5=0,解得 m=5,n=9,∵m ,n ,k ,为三角形的三边长,∴414k ≤<,∵k 为三角形的最长边,∴914k ≤<.故答案为:914k ≤<【点睛】本题考查了绝对值、偶次方的非负性,三角形的三边关系,根据题意求出m 、n 的长是解题关键,确定k 的取值范围时要注意k 为最长边这一条件. 15.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P 在目标A 的正上方飞行员测得目标B 的俯角为30°∴∠A=∠CPB=∵CP ∥AB ∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP ∥AB ,∴∠B=∠CPB=30,∴APB ∠=90︒-∠B=60︒,故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B 的俯角为30°得到∠B=30是解题的关键.16.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.17.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC 解析:32【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC ,∴S △ABD =S △ADC =12×6=3(cm 2), ∵AE=DE ,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.19.15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数再由补角的定义得出∠BDF的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B及∠CDE的度数,再由补角的定义得出∠BDF的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半别以BCAC为底写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据进行计算即可解答题目【详解】S△ABC=BC·AD=AC·解析:9 2【分析】三角形的面积等于任意一条底边乘以该边上的高的积的一半,别以BC、AC为底,写出△ABC的面积的两种表示方法;结合两个面积相等和已知中的数据,进行计算即可解答题目.【详解】S△ABC=12BC·AD=12AC·BE,将AD=3cm,BC=6cm,AC=4cm代入,得:11364 22BE ⨯⨯=⨯92BE=cm故答案为:9 2【点睛】本题考查三角形等面积法求高,通过三角形面积建立等量关系是解题的关键.三、解答题21.(1)见解析图;(2)见解析图;(3)见解析图【分析】(1)根据三角形中线的性质可知,当CD为△ABC在AB边上的中线时,可将其面积平分,即找到AB的中点,连接AE即可;(2)可按照△BCE与△ABC都以BC为底边进行分析,当都以BC为底边时,△ABC 的高为4,从而使得△BCE的高为1即可;(3)延续(2)的解题思路,都以BC为底边,要使得构成的三角形的面积是△ABC的1 8,则让构成的三角形的高为12即可,则在BC下方12个单位处作平行于BC的直线即为所求.【详解】如图所示:(1)D在格点上,也为AB的中点,故CD即为所求;(2)当点E在直线m上,且三角形内部时,均满足题意,如图△BCE,此时答案不唯一,符合要求即可;(3)如图,直线l即为所求.【点睛】本题主要考查作图-应用与设计作图,充分理解三角形中线的性质,以及灵活运用底相等时,面积之比等于高之比进行图形构造是解题关键.22.(1)<;(2)>;(3)>【分析】(1)根据三角形的三边关系解答;(2)根据三角形的三边关系解答;(3)根据三角形的外角性质解答.【详解】(1)在△ABC中,AB<AC+BC,故答案为:<;(2)在△ACD中,AD+AC>CD,,∵AD AC∴2AD>CD,故答案为:>;(3)∵∠BDC是△ACD的外角,∴∠BDC>∠A,故答案为:>.【点睛】此题考查三角形的三边关系:两边之和大于第三边,三角形的外角性质三角形的外角大于每一个与它不相邻的内角.23.7【分析】先根据外角与内角的比为2:5,求出每个外角度数,再依据外角和360°求边数n.【详解】解:因为多边形的每一个外角与内角之和为180°,所以每个外角度数为180°2 7⨯=(3607)°.又n边形每个内角度数相等,则每个外角度数也相等,根据多边形外角和360°,可得n=3603607÷=7.答:这个多边形的边数n是7.【点睛】本题主要考查多边形的内角和外角关系以及多边形外角和,运用外角计算边数是这一类题的通用方法.24.2cm.【分析】先根据中线的定义得出MA=MC,再求出两三角形的周长差即可.【详解】解:∵BM是△ABC的中线,∴MA=MC,∴△ABM的周长﹣△BCM的周长=AB+BM+MA﹣BC﹣CM﹣BM=AB﹣BC=5﹣3=2(cm).答:△ABM与△BCM的周长是差是2cm.【点睛】本题考查的是三角形的中线,熟知三角形中线的定义是解答此题的关键.25.(1)证明见解析;(2)110°【分析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,在△PBC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.26.(1)十二边形;(2)五边形【分析】(1)n边形的内角和可以表示成(n−2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数;(2)根据多边形外角的性质进行计算即可.【详解】解:(1)设这个多边形是n边形,根据题意得:2180(10)80n⨯︒=︒﹣,解得:12n=.故这个多边形是十二边形;(2)18010872︒-︒=︒,多边形的边数是:360725÷=.则这个多边形是五边形.故这个多边形的边数为5.【点睛】此题考查了多边形的内角和定理和多边形外角和,注意多边形的内角和为:(n−2)×180°.。

(易错题)小学数学四年级下册第五单元三角形测试卷(答案解析)(1)

(易错题)小学数学四年级下册第五单元三角形测试卷(答案解析)(1)

(易错题)小学数学四年级下册第五单元三角形测试卷(答案解析)(1)一、选择题1.下面哪一组中的三根小棒不能围成一个三角形()A. 10cm、8cm、3cmB. 10cm、8cm、7cmC. 10cm、3cm、7cm2.用3个小三角形拼成一个大三角形,这个大三角形的内角和是()度。

A. 540B. 180C. 3603.在直角三角形中,一个锐角是36°,另一个锐角是()。

A. 144°B. 54°C. 44°4.下图中,线段BC=6厘米,那么线段BA的长度()A. 大于6厘米B. 等于6厘米C. 小于6厘米D. 无法确定5.根据下列描述,一定是锐角三角形的是()。

A. 有一个内角是85°的三角形B. 有两个内角都是锐角的三角形C. 其中最大的内角小于90°D. 等腰三角形6.下列三根小棒不能围成三角形的是()A. 6厘米、8厘米、9厘米B. 8厘米、8厘米、8厘米C. 4厘米、5厘米、9厘米7.一个三角形被遮住了两个角,露出的角是锐角,这个三角形是()三角形.A. 锐角B. 直角C. 钝角D. 不能确定8.下面三组小棒,不能围成三角形的是()。

A. B. C.9.在一个三角形中,一个内角的度数比另外两个内角的度数和大2°,这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形10.下面各组线段不能围成三角形的是()。

A. 6cm 7cm 8cmB. 3cm 3cm 5cmC. 5cm 3cm 8cm11.下列各线段,不能围成三角形的是()A. 6cm 6cm 6cmB. 7cm 4cm 4cmC. 2cm 4cm 6cm12.四根小棒都用上,能围成等腰三角形的是()。

A. B. C.二、填空题13.一个直角三角形中一个锐角是46°,它的另一个锐角是________;一个等腰三角形的一个底角是70°,它的顶角是________。

单元测试卷 第1章 直角三角形(基础卷)

单元测试卷 第1章 直角三角形(基础卷)

单元测试卷第1章直角三角形(基础卷)总分数 100分时长:90分钟题型单选题填空题简答题题量10 8 5总分30 24 46一、选择题(共10题 ,总计30分)1.(3分)如图所示,∠C=90°,∠D=90°,B为CD上一点,且AB⊥BE,则图中相等的锐角有()A. 2对B. 3对C. 4对D. 1对2.(3分)如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论中错误的是()A. PC=PDB. OD=OCC. ∠DPO=∠CPOD. PC=OC3.(3分)如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M所表示的实数为()A. 2B.C.D.4.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为()A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km5.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 14C. 7D. 7或256.(3分)下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个7.(3分)如图,若BE⊥CD,BE=DE,BC=DA,则∠CFD()A. 大于90°B. 等于90°C. 小于90°D. 不确定8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D. 39.(3分)如图,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定10.(3分)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S2>S3B. S1+S2=S3C. S1+S2<S3D. 无法确定二、填空题(共8题 ,总计24分)11.(3分)如图所示,已知△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AB、AC于点E、D,若AC=12 cm,则AD=____1____cm.12.(3分)将一根长为15 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是____1____.13.(3分)在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=____1____.14.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____1____.15.(3分)如图,点M、A、N在一条直线上,△ABC为等腰三角形,AB=AC,BM⊥MN,CN⊥MN,垂足分别为M、N,且BM=AN,则MN与BM、CN之间的数量关系为____1____.16.(3分)如图,已知△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,CE和BD交于点O,AO的延长线交BC于点F,则图中全等三角形的对数是____1____.17.(3分)如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△ABO:S△BCO:S△CAO=____1____.18.(3分)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于____1____.三、解答题(共5题 ,总计46分)19.(8分)已知,如图,四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,且∠A=90°,求四边形ABCD的面积.20.(10分)如下图所示,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF,求证:AB=AC.21.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求CD的长;(2)求AB的长.22.(8分)“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m处的C点,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?23.(10分)如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F.(1)求证:OE垂直平分CD;(2)若∠AOB=60°,请你探究OE、EF之间的数量关系,并证明你的结论.单元测试卷第1章直角三角形(基础卷)参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)如图所示,∠C=90°,∠D=90°,B为CD上一点,且AB⊥BE,则图中相等的锐角有()A. 2对B. 3对C. 4对D. 1对【解析】略【答案】A2.(3分)如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别为C,D,则下列结论中错误的是()A. PC=PDB. OD=OCC. ∠DPO=∠CPOD. PC=OC【解析】略【答案】D3.(3分)如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M所表示的实数为()A. 2B.C.D.【解析】略【答案】C4.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为()A. 0.5 kmB. 0.6 kmC. 0.9 kmD. 1.2 km【解析】略【答案】D5.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A. 25B. 14C. 7D. 7或25【解析】略【答案】D6.(3分)下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=90°-∠B;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【解析】略【答案】D7.(3分)如图,若BE⊥CD,BE=DE,BC=DA,则∠CFD()A. 大于90°B. 等于90°C. 小于90°D. 不确定【解析】略【答案】B8.(3分)等边三角形的边长为2,则该三角形的面积为()A.B.C.D. 3【解析】略【答案】B9.(3分)如图,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定【解析】略【答案】A10.(3分)如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S2>S3B. S1+S2=S3C. S1+S2<S3D. 无法确定【解析】略【答案】B二、填空题(共8题 ,总计24分)11.(3分)如图所示,已知△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AB、AC于点E、D,若AC=12 cm,则AD=____1____cm.【解析】略【答案】412.(3分)将一根长为15 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是____1____.【解析】【答案】2 cm≤h≤3 cm13.(3分)在△ABC中,AB=AC,BD⊥AC于D,若BD=3,DC=1,则AD=____1____.【解析】【答案】414.(3分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=____1____.【解析】略【答案】215.(3分)如图,点M、A、N在一条直线上,△ABC为等腰三角形,AB=AC,BM⊥MN,CN⊥MN,垂足分别为M、N,且BM=AN,则MN与BM、CN之间的数量关系为____1____.【解析】略【答案】MN=BM+CN16.(3分)如图,已知△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,CE和BD交于点O,AO的延长线交BC于点F,则图中全等三角形的对数是____1____.【解析】【答案】7对17.(3分)如图所示,△ABC的三边AB、BC、CA的长分别为12、10、6,其三条角平分线的交点为O,则S△ABO:S△BCO:S△CAO=____1____.【解析】略【答案】6:5:318.(3分)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于____1____.【解析】略【答案】6三、解答题(共5题 ,总计46分)19.(8分)已知,如图,四边形ABCD中,AB=3 cm,AD=4 cm,BC=13 cm,CD=12 cm,且∠A=90°,求四边形ABCD的面积.【解析】36 cm2提示:连接BD.【答案】36 cm220.(10分)如下图所示,在△ABC中,延长AC至点D,使CD=BC,连接BD,作CE⊥AB于点E,DF⊥BC交BC的延长线于点F,且CE=DF,求证:AB=AC.【解析】略【答案】证明:∵CE⊥AB,DF⊥BC,∴∠BEC=∠CFD=90°.又CD=BC,CE=DF,∴Rt△BEC≌Rt△CFD(HL),∴∠FCD=∠ABC,又∠FCD=∠ACB,∴∠ABC=∠ACB,∴AB=AC21.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求CD的长;(2)求AB的长.【解析】略【答案】(1)CD=12(2)AB=2522.(8分)“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70 km/h,如图,一辆小汽车在一条城街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m处的C点,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?【解析】解:由题意知AC=30 m,AB=50 m.∵AC⊥BC,∴BC2=AB2-AC2=502-302=402.∴BC=40 m.∴v=20(m/s)=72(km/h).∵72 km/h>70 km/h,∴这辆小汽车超速【答案】超速23.(10分)如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD交OE于点F.(1)求证:OE垂直平分CD;(2)若∠AOB=60°,请你探究OE、EF之间的数量关系,并证明你的结论.【解析】略【答案】(1)证明:∵E是∠AOB平分线上一点,EC⊥OB,ED⊥OA,∴EC=ED.在Rt△EDO和Rt△ECO中,∵DE=CE,OE为公共边,∴Rt△DEO≌Rt△CEO,∴OD=OC,∴△ODC是等腰三角形,又∵OF为∠DOC的平分线,∴OE垂直平分CD.(2)OE=4EF.证明:∵OE垂直平分CD,∴∠DFE=90°,∠AOE=30°∵ED⊥OA,∴∠ODE=∠DFO=90°,∴2DE=OE,∠DEO=60°,∴∠FDE=30°,∴2EF=DE.∴OE=4EF.。

第一章 解直角三角形单元测试卷(标准难度 含答案)

第一章 解直角三角形单元测试卷(标准难度 含答案)

浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)(1)

一、选择题1.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.13cm B.6cm C.5cm D.4cm2.已知图中的两个三角形全等,则∠α等于()A.50°B.60°C.70°D.80°3.已知如图,AB=AE,只需再加一个条件就能证明△ABC≌△AED,下列选项是所加条件,请判断哪一个不能判断△ABC≌△AED()A.∠B=∠E B.AC=AD C.∠ADE=∠ACB D.BC=DE4.如图△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为()A.45°B.40°C.35°D.25°5.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为()平方厘米A.8 B.12 C.16 D.18=,6.如图,点C,D分别在线段OA,OB上,AD与BC相交于点E,若OC OD∠=∠,则图中全等三角形的对数为()A BA .5对B .4对C .3对D .2对7.根据下列条件能唯一画出ABC 的是( )A .AB =5,BC =6,AC =11B .AB =5,BC =6,∠C =45° C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°8.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .49.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45° 10.已知三角形的三边长分别是3,8,x ,则x 的值可以是( )A .6B .5C .4D .3 11.如图,AOB ∠是一个任意角,在边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与点M ,N 重合,过顶点O 与角尺顶点C 的射线OC 便是AOB ∠的平分线.这样的作法所运用的原理是三角形全等的判定,该判定方法是( )A .SASB .SSSC .ASAD .AAS 12.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S二、填空题13.如图,∠A =∠B =90°,AB =100,E ,F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC 上取一点G ,使△AEG 与△BEF 全等,则AG 的长为_____.14.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.15.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.18.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是_______________________________.19.如图,已知AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC=______.20.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.三、解答题21.如图,AB AC =,AD AE =,BAD CAE ∠=∠,求证:D E ∠=∠.22.如图,在△ABC 中,∠ACB =70 °,∠B =65°,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E . (1)求证:AE =CE .(2)求证:△AEF ≌△CEB .23.如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE 的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.24.如图,在ABC 中,90ABC ∠=︒,过C 点作DC BC ⊥,垂足为C ,且AB DC =,连接BD ,交AC 于点E .(1)求证:ABC DCB △△≌;(2)若E 是AC 的中点,求证2AC BE =.25.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .26.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用三角形的三边关系即可求解.【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<,故选:B .【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.2.C解析:C【分析】利用全等三角形的性质及三角形内角和可求得答案.【详解】解:如图,∵两三角形全等,∴∠2=60°,∠1=52°,∴∠α=180°-50°-60°=70°,故选:C.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.3.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.4.A解析:A【解析】∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.5.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 6.B解析:B【分析】由条件可证△AOD ≌△BOC ,可得OA=OB ,则可证明△ACE ≌△BDE ,可得AE=BE ,则可证明△AOE ≌△BOE ,可得∠COE=∠DOE ,可证△COE ≌△DOE ,可求得答案.【详解】解:在△AOD 和△BOC 中OC=OD∠AOD=∠BOCA B ∠=∠∴△AOD ≌△BOC(SAS)∴OA=OB∵OC=OD ,OA=OB,∴AC=BD ,在△ACE 和△BDE 中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE ≌△BDE(AAS),∴AE=BE∴AE=BE ,在△AOE 和△BOE 中OA=OB∠A=∠BAE=BE∴△AOE ≌△BOE(SAS),∴∠COE=∠DOE ,在△COE 和△DOE 中OC=OD∠COE=∠DOEOE=OE∴△COE ≌△DOE(SAS),故全等的三角形有4对.故选:B .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AA 和HL .7.C解析:C【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【详解】解:A :AC 与 BC 两边之和不大于第三边,所以不能作出三角形;B :∠C 不是 AB ,BC 的夹角,故不能唯一画出△ABC ;C :AB=5,AC=4,∠C=90°,所以BC=3,故能唯一画出△ABC ;D :∠C 并不是 AB ,AC 的夹角,故可画出多个三角形;故选: C .【点睛】本题考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.9.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 10.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x ,∴8-3<x <8+3,即5<x <11,故选:A .【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 11.B解析:B【分析】根据作图过程可得OM=ON ,MC=NC ,再利用SSS 可判定△MCO ≌△NCO .【详解】解:∵在△MCO 和△NCO 中MO NO CO CO MC NC ⎧⎪⎨⎪⎩===,∴△MCO ≌△NCO (SSS ),故选:B .【点睛】此题主要考查了基本作图,以及全等三角形的判定,关键是掌握判定三角形全等的方法. 12.A解析:A【分析】利用SSS 可证得△OCD ≌△O′C′D′,那么∠A′O′B′=∠AOB .【详解】解:易得OC=O 'C',OD=O′D',CD=C′D',∴△OCD ≌△O′C′D′,∴∠A′O′B′=∠AOB ,所以利用的条件为SSS ,故选:A .【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点,熟练掌握三角形全等的性质是解题的关键.二、填空题13.40或75【分析】设BE=2t 则BF=3t 使△AEG 与△BEF 全等由∠A =∠B =90°可知分两种情况:情况一:当BE=AGBF=AE 时列方程解得t 可得AG ;情况二:当BE=AEBF=AG 时列方程解得解析:40或75.【分析】设BE=2t,则BF=3t,,使△AEG 与△BEF 全等,由∠A =∠B =90°可知,分两种情况:情况一:当 BE = AG ,BF = AE 时,列方程解得t ,可得 AG;情况二:当 BE = AE ,BF = AG时,列方程解得 t ,可得AG.【详解】设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=100,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=100,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.14.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.15.55°【分析】由∠AFD=145°可求得∠CFD=35°证明Rt△BDE≌△Rt△CFD根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.1或7【分析】分两种情况进行讨论根据题意得出BP=2t=2或AP=16-2t=2即可求得结果【详解】因为AB=CD若∠ABP=∠DCE=90°BP=CE=2根据SAS 证得△ABP≌△DCE由题意得:解析:1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.18.③两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角得到原来三角形的边角根据三角形全等的判定方法即可求解【详解】第一块和第二块只保留了原三角形的一个角和部分边根据这两块中的任一解析:③ 两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为③;两个角及它们的夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,解题的关键是要认真观察图形,根据已知选择判定方法.19.60°【分析】由AD∥BC∠B=30°根据平行线的性质可得∠ADB=30°又由DB平分∠ADE可求得∠ADE的度数继而求得答案【详解】∵AD ∥BC ∠B=30°∴∠ADB=∠B=30°∵DB 平分∠AD解析:60°【分析】由AD ∥BC ,∠B=30°,根据平行线的性质,可得∠ADB=30°,又由DB 平分∠ADE ,可求得∠ADE 的度数,继而求得答案.【详解】∵AD ∥BC ,∠B=30°,∴∠ADB=∠B=30°,∵DB 平分∠ADE ,∴∠ADE=2∠ADB=60°,∵AD ∥BC ,∴∠DEC=∠ADE=60°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.20.180°【详解】解:∵AB ∥CD ∴∠1=∠EFD ∵∠2+∠EFC=∠3∠EFD=180°-∠EFC ∴∠1+∠3—∠2=180°故答案为:180°解析:180°【详解】解:∵AB ∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°三、解答题21.见解析【分析】直接利用SAS 证明ADC AEB △≌△,再根据全等三角形的性质即可求解;【详解】证明:∵BAD CAE ∠=∠∴BAD BAC CAE BAC ∠+∠=∠+∠即CAD BAE ∠=∠∴在ADC 与AEB △中AD AE CAD BAE AC AB =⎧⎪∠=∠⎨⎪=⎩∴()ADC AEB SAS ≌△△∴D E ∠=∠【点睛】本题考查了全等三角形的证明以及全等三角形的性质,正确掌握知识点是解题的关键; 22.(1)见解析;(2)见解析【分析】(1)根据已知条件得到∠EAC =45 °,再根据等腰三角形的性质和垂直即可得解; (2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,根据已知条件证明即可;【详解】(1)∠ACB =70 °,∠B =65°,得∠EAC =45 °,又CE ⊥AB ,得∠ECA =45 °,所以AE =CE ;(2)由于AD ⊥BC ,CE ⊥AB ,所以∠BAD =∠ECB =90°- ∠B ,在△AEF 和△CEB 中,AEC BEC AE ECBAD ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩, 所以△AEF ≌△CEB .【点睛】本题主要考查了全等三角形的判定与性质,结合等腰三角形的性质分析证明是解题的关键.23.(1)见详解;(2)BD=CE ,BD ⊥CE ;(3)902α︒-【分析】(1)根据三角形全等的证明方法SAS 证明两三角形全等即可;(2)由(1)△AEC ≌△ADB 可知CE=BD 且CE ⊥BD ;利用角度的等量代换证明即可; (3)过A 分别做AM ⊥CE ,AN ⊥BD ,易知AF 平分∠DFC ,进而可知∠CFA【详解】(1)∵∠CAB=∠EAD∴∠CAB+∠BAE=∠EAD+∠BAE ,∴ ∠CAE=∠BAD ,∵AB=AC ,AE=AD在△AEC 和△ADB 中AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠= ∴ △AEC ≌△ADB (SAS )(2)CE=BD 且CE ⊥BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC ≌△ADB ,∴ CE=BD , ∠ACE=∠ABD ,∵∠BOF=∠AOC ,∠α=90°,∴ ∠BFO=∠CAB=∠α=90°,∴ CE ⊥BD .(3)过A 分别做AM ⊥CE ,AN ⊥BD由(1)知△AEC ≌△ADB ,∴两个三角形面积相等故AM·CE=AN·BD ∴AM=AN∴AF 平分∠DFC由(2)可知∠BFC=∠BAC=α∴∠DFC=180°-α∴∠CFA=12∠DFC=902α︒-【点睛】本题考查了全等三角形的证明,以及全等三角形性质的应用,正确掌握全等三角形的性质是解题的关键;24.(1)证明见详解;(2)证明见详解.【分析】(1)由DC BC ⊥,可得DCB=90ABC ∠=∠︒,由AB DC =,BC=CB ,可证△ABC ≌△DCB (SAS );(2)由(1)知△ABC ≌△DCB ,可得AC=DB ,由DC BC ⊥,90ABC ∠=︒,可得CD ∥AB ,由平行线性质可得∠D=∠EBA ,由E 是AC 的中点,可得CE=AE ,可知△CED ≌△AEB (AAS ),DE=BE=11BD=AC 22即可. 【详解】证明:(1)∵DC BC ⊥,∴∠DCB=90°,∴DCB=90ABC ∠=∠︒,∵AB DC =,BC=CB ,∴△ABC ≌△DCB (SAS );(2)由(1)知△ABC ≌△DCB ,∴AC=DB ,∵DC BC ⊥,90ABC ∠=︒,∴CD ∥AB ,∴∠D=∠EBA ,∵E 是AC 的中点,∴CE=AE ,∵∠CED=∠AEB ,∴△CED ≌△AEB (AAS ), ∴DE=BE=11BD=AC 22, ∴2AC BE =.【点睛】 本题考查三角形全等的判定与性质,掌握全等的证明方法,关键是仔细分析图形找出三角形全等具备的条件.25.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a , 故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.26.(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>,∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.。

三角形的初步认识单元测试卷(一)及答案

三角形的初步认识单元测试卷(一)及答案

CABD第6题21AFED CB第一章 三角形的初步认识能力提升测试卷(一)一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B=21∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 2.如图,∠BAC=90°,AD ⊥BC ,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 3.下列说法错误的是( )A. 三角形三条中线交于三角形内一点;B. 三角形三条角平分线交于三角形内一点C. 三角形三条高交于三角形内一点;D. 三角形的中线、角平分线、高都是线段 4.如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等的三角形有( ) A. 1对 B. 2对 C. 3对 D. 4对5.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B ,∠B=2∠DAE ,那么∠ACB 为( )A. 80°B. 72°C. 48°D. 36°6.如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A. 一处B. 两处C. 三处D. 四处 7. 如图,∠1=∠2,∠C=∠B ,结论中不正确的是( )A. △DAB ≌△DACB. △DEA ≌△DFAC. CD=DED. ∠AED=∠AFD8. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( ) A. 180° B.360° C.540° D.720°第4题第5题 ADEABCDNM第7题9.直线L ⊥线段AB 于点O ,且OA=OB ,点C 为直线L 上一点,且有CA=8cm ,则CB 的长度为( )A 、4cmB 、8cmC 、16cmD 、无法求出10.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件, 不能说明ΔABD ≌ΔACE 的是( )A 、∠B=∠CB 、AD=AEC 、∠BDC=∠CEBD 、BD=CE 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11. △ABC 中,AB=9,BC=2,周长是偶数,则AC= 。

1全等三角形单元测试

1全等三角形单元测试

《全等三角形》单元测试卷班级__姓名得分____________ 一、选择题(每题3分,共30分)1.全等形都相等的是()A.形状 B.大小 C .边数和角度 D.形状和大小2.如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠F B.∠AGF C.∠AEF D.∠D3.如图,AB=AD,BC=CD,则全等三角形共有()A.1对;B.2对;C.3对;D.4对;4.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD=()A.8;B.7;C.6;D.5;5.在△ABC与△DEF中,已知∠C=∠D, ∠B=∠E,要判定这两个三角形全等,还需要条件( )A. AB=EDB. AB=FDC. AC=FDD. ∠A=∠F 6.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,则①△ABE≌△ACF;②△BOF≌△COE;③点O在∠BAC的角平分线上,其中正确的结论有()A.3个B.2个C.1个D.0个7.根据下列已知条件,能惟一画出三角形ABC的是()A.A B=3,BC=4,AC=8;B.AB=4,BC=3,∠A=30;C.∠A=60,∠B=45,AB=4;D.∠C=90,AB=68.下列说法正确的是( )A. 三角形的三个外角的和是180°B. 三角形的一个外角大于任何一个内角C. 有两边和它们的夹角对应相等的两个三角形全等D. 如果两个三角形不全等,那么这两个三角形的面积一定不相等9.A、B、C三个居民小区的位置可以构成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()CBAE FOBACD E F第4题第2题第2题A. AC、BC两边高线的交点处B. AC、BC两边中线的交点处C. AC、BC两边垂直平分线的交点处D. ∠A、∠B的两角平分线的交点处10.下列各组条件中,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长= △DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F二、填空题(每题4分,共20分)1.如果△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,则∠D=°2.如图,如果△ABC ≌△CDA,则对应边是__________________________,对应角是________________________;3.如图,AB与CD交与O,∠C=∠D,又因为∠ =∠,所以△AOD≌△BOC,理由是4. 已知∠A=90°,BD是∠ABC的平分线,AC=10,DC=6,则D•点到BC的距离是__________.5.在△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______三、证明题(共50分)1.(8分)如图所示在△ABC中,AB=AC,D是BD2.(8分)如图所示,AE=AD,AB=AC,求证:△EAB≌△DAC.3.(10分)如图所示,AE=AC , AD=AB ,∠EAC=∠DAB ,求证:∠D=∠B .4.(10分)如图,已知AB=AC ,AD=AE,求证:BD=CE5.(14分)如图所示,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FCFE D CB AA CB ED 图13-4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

威宁县九三中学七年级数学下册第四章单元测试卷(一)
班级姓名。

一、选择题(共15小题,每小题3分,共45分)
1.有下列长度的三条线段,能组成三角形的是()
A、2cm,3cm,4cm
B、1cm,4cm,2cm
C、1cm,2cm,3cm
D、6cm,2cm,3cm
2.在下列各组图形中,是全等的图形是()
A B C D
3.下列说法中正确的有()
①全等三角形对应边相等;②三个角对应相等的两个三角形全等;
③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

A.4个 B、3个 C、2个 D、1个
4. 具备下列条件的两个三角形中,不一定全等的是 ( )
A、有两边一角对应相等
B、三边对应相等
C、两角一边对应相等
D、有两边对应相等的两个直角三角形
5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到
玻璃店去配一块完全一样的玻璃,那么最省事的办法是()
A.带①去
B. 带②去
C. 带③去
D. 带①和②去
6.已知△ABC≌△DEF,∠A=70°,∠E=30°,则∠F的度数为()
A、80°
B、70°
C、30°
D、100°
7.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,错误的个数有( )
A.1个 B.2个 C.3个 D.4个
8.如图所示,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()
A.50° B.30° C.20° D.15°
9.如图在△ABC中AD⊥BC,AE平分∠BAC,若∠1=50°,∠2=40°,则∠B=( ) A.20° B.30° C.40° D.50°
10.如图,△ABC≌△CDA,那么下列结论错误的是()
A.∠1=∠2 B.AC=CA C.∠D=∠B D.AC=BC
11、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()
A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC
第8题第9题第10题第11题
12、在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
13、下列说法错误的是( )
A .三角形三条高交于三角形内一点
B .三角形三条中线交于三角形内一点
C .三角形三条角平分线交于三角形内一点
D .三角形的中线、角平分线、高都是线段
14、用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是()
A .(SSS )
B .(SAS )
C .(ASA )
D .(AAS )
第14题 第15题
15.如图,工人师傅做门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )
A.两点之间的线段最短
B.三角形有稳定性
C.长方形的四个角都是直角
D.长方形是轴对称图形
二、填空题(共5小题,每小题5分,共25分)
16.已知三角形的两边的长分别为3和8,则此三角形第三边的长度x 的取值范围是______.
17.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线,若∠A=52∘,则∠1+∠2的度数为________.
18.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB ,需要说明
△C′O′D′≌△COD ,则这两个三角形全等的依据是____ ____(写出全等的简写).
19、如图,△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是 .
20.如图,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ , 或 ∥ ,就可证明ΔABC ≌ΔDEF 。

第17题 第18题 第19题 第20题
三、解答题
21.(10分)如图,已知AB =CD ,AC =DB.试说明:∠A =∠D.
图7
22.(10分)如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.
23(10分).如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD。

求证:AB=DE, AC=DF.
24.(10分)如图,已知AD,AE是△ABC的高和角平分线,∠B=44°,C=76°,
求∠DAE的度数.
25.(10分)如图AB=AC,BD=CD,DE⊥BA,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.
26、(10分)已知∠1=∠2,∠3=∠4,求证:AB=CD
27、(10分)如图要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,并使点A、C、E三点在同一条直线上,因此只要测得ED的长就知道AB的长.请说明这样测量正确性的理由.
28、(10分)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点P的射线OP便是∠AOB的平分线,请说明理由.
附加题:如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)写出图中一对全等的三角形,并写出它们的所有对应角;
(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x 或y的代数式表示)
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.。

相关文档
最新文档