一元一次方程的ppt
合集下载
《一元一次方程》PPT教学课文课件
巩固练习
练习
六
根据下列问题,设未知数,列出方程:
1 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000 m?
2 甲种铅笔每支 0.3 元,乙种铅笔每支 0.6 元,用 9 元钱买了两
种铅笔共 20 支,两种铅笔各买了多少支?
巩固练习
练习
六
1 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000 m?
引例
问题
一辆客车和一辆卡车同时从 A 地出发沿同一公路同方向行驶,客车的行
驶速度是 70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早 1 h 经过 B 地.
A,B 两地间的路程是多少?
问题
一辆客车和一辆卡车同时从 A 地出发沿同一公路同方向行驶,客车的行
驶速度是 70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早 1 h 经过 B 地.
+ =5
2 + 5
=6
6 2 + 5 + 1 = 0
3、一元一次方程
只含一个未知数(元),未知数的次数都是1,等号两边都
是整式,这样的方程叫做一元一次方程.
特点:
①只有一个未知数.
②未知数的次数都是1
③等号两边都是整式(分母中不含未知数)
④含未知数的项的系数不为0.
练习
三
判断下列式子是否为一元一次方程?
计算机的使用时间达到规定的检修时间2450 h?
1、什么是方程?
2、什么是等式?
1、方程-----含有未知数的等式
2、等式-----含有“=”的式子(左右式子要相等)
等号两边分别叫等式左边和等式右边
练习
一元一次方程课件20张PPT
WENKU DESIGN
代数问题
代数式化简
通过一元一次方程,我们 可以对代数式进行化简, 简化计算过程。
解方程
一元一次方程是解代数方 程的基础,通过解一元一 次方程,我们可以找到代 数方程的解。
方程组求解
利用一元一次方程,我们 可以求解更复杂的方程组, 找到多个未知数的值。
实际问题
比例问题
利润和折扣问题
培养学生对数学的兴趣 和热爱,提高数学素养。
PART 02
一元一次方程的基本概念
REPORTING
WENKU DESIGN
定义与形式
定义
一元一次方程是只含有一个未知 数,且该未知数的次数为1的方程 。
形式
ax + b = 0,其中a和b是已知数, x是未知数。
方程的解与根
解的概念
满足方程的未知数的值称为方程的解。
移项法
总结词
通过将方程两边的同类项进行移动,使得未知数的系数为1,从 而求解未知数。
详细描述
移项法是一元一次方程中最常用的解法之一。具体操作是将含 有未知数的项移到等号的左边,常数项移到等号的右边,使得 未知数的系数为1,从而可以通过简单的除法计算得出未知数的 值。
合并同类项法
总结词
通过将方程两边的同类项进行合并,简化方程的形式,从而更容易求解未知数。
历史背景
一元一次方程是数学中一 个基础而重要的概念,起 源于古代数学,是代数和 数学分析的基础。
重要性
一元一次方程在日常生活 和科学研究中有着广泛的 应用,是解决实际问题的 重要工具。
课程目标
01
掌握一元一次方程的基 本概念和性质。
02
学会解一元一次方程的 方法。
5.2 一元一次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
授课老师:
时间:2024年9月15日
随堂练习
1. x=3,x=0,x=-2,各是下列哪个方程的解?(1) 5x+7=7-2x;(2) 6x-8=8x-4;(3) 3x-2=4+x.
x=0
x=-2
x=3
2.已知关于 x 的一元一次方程2(x-1)+3a=3的解为4,则 a 的值是( )A.-1 B.1 C.-2 D.-3
解析:将x=4代入2(x-1)+3a=3,得2×3+3a=3,解得a= -1.
A
技巧点拨:根据方程的解的定义求有关字母的值时,通常先将解代入方程中,得到关于字母的方程,求解即可得到这个字母的值.
3.以下哪些是一元一次方程?
解: (4)(5)是一元一次方程.
不是整式方程
不是等式
含有两个未知数
是不等式,不是方程
x=60是方程x2=4 000的解吗?x=80呢?
观察下列式子:1-2x+18,4x-3=1,x2+1=10x,6-x>3,y=xy+9.
思考
问题1:请判断哪些式子是方程,哪些不是方程.为什么?问题2:请思考每个方程所含未知数的个数与所含未知数的项的次数分别是多少?
1.4x-3=1,x2+1=10x,y=xy+9是方程,其他的不是.含有未知数的等式叫作方程,其他的式子不符合.2.4x-3=1 一个未知数,未知数次数是1;x2+1=10x 一个未知数,未知数次数是2;y=xy+9 两个未知数,未知数次数是2.
已知甲、乙两村相距18 km,小明骑自行车从甲村出发到乙村,行驶的速度是12 km/h.当小明骑行的时间为t h时,距乙村还有3 km,由此得到方程12t+3=18.
一元一次方程 课件ppt
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
《一元一次方程》PPT优秀课件
列方程: 1700 .150x 2450 .
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.
探究新知
(3) 某校女生占全体学生数的52%,比男生多8人,这个学校一共有多少学 生?
解:设这个学校的学生人数为x,那么女生人数为 0.52x,男生人数为 (1- 0.52)x.
等量关系:女生人数- 男生人数=8, 列方程:0.52x- (1-0.52)x=8.
(7) 3x+1.8=3 y.
含有两个
未知数 解析: 只含有一个未知数(元),未知数的次数都是1(次)的整式方程
叫做一元一次方程.
(4)(5)是一元一次方程.
巩固练习
下列哪些是一元一次方程?
(1)3y-7 ;
(2)7a+8=10 ;√
(3)16y-7=9-2y ; √ (4)7y-y2=12;
(5)-4.5y-12=x-10 ; (7)7-13 y 9 .
方程 的解
解方程就是求出使方程中等号两边相等的未知数 的值,这个值就是方程的解.
建立 方程 模型
实际 问题
设未 找等量 知数 关系
列方程
一元一次方程
导入新知 用方程来解决
汽车匀速行驶途经王家庄、青山、秀水三地的时间 如表所示,翠湖在青山、秀水两地之间,距青山50千米 ,距秀水70千米.王家庄到翠湖的路程有多远?
地名 时间 王家庄 10:00
青山 13:00 秀水 15:00
如果设王家庄到翠湖的路程为x千米,你能列出方程吗? 70千米
x千米 50千米
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.
《一元一次方程》优秀ppt课件
(1)写出y1,y2与x之间的函数关系式(即等式); (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费120元,则应选择哪一
种通话方式较合算?
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
课堂小结
1、计费类的应用题解决时应注意什么? 2、列一元一次方程解应用题的一般步骤有哪
3.4实际问题与一元一次方程
——电话计费问题
(第1课时)
学习目标
会用一元一次方程解决电话计费问题; 重点
会根据实际情况进行列表讨论。难点
《一元一次方程》优秀实用课件(PPT 优秀课 件)
情境导入
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
议一议:怎样选择计费方式更省钱?
•如果一个月内累计通话时间不 足300分,那么选择“方式二” 收费少;如果一个月内累计通 话时间超过300分,那么选择 “方式一”收费少。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
• 假如你爸爸也遇到同样的问题,请为你爸爸作个选择。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
典题精讲
• 一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费 统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给 出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优 惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较 省钱?
种通话方式较合算?
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
课堂小结
1、计费类的应用题解决时应注意什么? 2、列一元一次方程解应用题的一般步骤有哪
3.4实际问题与一元一次方程
——电话计费问题
(第1课时)
学习目标
会用一元一次方程解决电话计费问题; 重点
会根据实际情况进行列表讨论。难点
《一元一次方程》优秀实用课件(PPT 优秀课 件)
情境导入
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
议一议:怎样选择计费方式更省钱?
•如果一个月内累计通话时间不 足300分,那么选择“方式二” 收费少;如果一个月内累计通 话时间超过300分,那么选择 “方式一”收费少。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
• 假如你爸爸也遇到同样的问题,请为你爸爸作个选择。
《一元一次方程》优秀实用课件(PPT 优秀课 件)
《一元一次方程》优秀实用课件(PPT 优秀课 件)
典题精讲
• 一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费 统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给 出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优 惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较 省钱?
《一元一次方程》课件完美版
《一元一次方程》课件完美版(PPT优 秀课件 )
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9
①
4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9
①
4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
定义
注意:移项一定要变号 移项
步骤 合并同类项
应用
系数化为1
《一元一次方程》课件完美版(PPT优 秀课件 )
布置作业
1.教科书第92页习题3.2第6,10,11题。 2.补充作业:周末,甲、乙两个商场搞促销活动,甲商场的 活动为所有商品全部按标价的8折出售,乙商场的活动为标价 200元以下的商品按标价出售,超出200元的部分打7折。现有 某件商品在两个商场的标价都为400元,应当在哪个商场购买 更实惠?如果标价为600元呢?为800元呢?你能否给顾客一 些建议,以便获得更大的实惠呢?
怎样才能使它向 x=a (a为常数)的形式转化呢?
一、用移项解一元一次方程
合作探究 请运用等式的性质解下列方程:
(1) 4x-15 = 9;
你有什么发现?
解:两边都加15,得 4x-15 +15 = 9 +15 合并同类项,得 4x = 9 +15。 4x = 24 系数化为1,得 x=6
(1) 4x--1155= 9
①
4x = 9 +15 ②
问题1 观察方程①到方程②的变形过程,说一说有 改变的是哪一项?它有哪些变化?
(1) 4x--1155 = 9
①
4x = 9 +15 ② “-15”这项移动后,从方程的左边移到了方程的右边。
符号由“-”变“+”
(2) 2x = 5x -21 解:两边都减5x,得
2x-5x = 5x-21-5x 2x-5x = -21 合并同类项,得
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最 大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t。 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?
《解方程》一元一次方程PPT课件 (共11张PPT)
作业:
课本习题5.3.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
他正为选哪一种方式犹豫呢!你能帮助 他作个选择吗? 你会吗??? (1)一个月内通话200分和300分, 按两种计费方式各需交多少元? 通话200分,按两种计费方式各需交费: 50+0.40×200=130(元) 0.60×200=120(元)
(2)对于某个通话时间,两种计费方式的收 费会一样吗?
本节课你有什么感受和收获?
小结
内容:引导学生结合本课时的内容,归纳总结解 一元一次方程的“移项法则”及此过程中的注意事 项。 目的:让学生及时归纳那总结所学知识,及时反思, 因为反思是进步的关键因素。 实际效果: 学生不仅会对课上的知识点进行梳理总结,而 且还会对课上感悟到的数学思想 ----- “转化的思 想方法”准确地应用到以后的数学学习中。 学生在合作学习中感受到伙伴优于自己的学习热情, 学习策略,他们会互相借鉴,取长补短,共同进步的。
第五章 一元一次方程
解方程
回顾
解方程: 5x-2=8
方程两边都加上2,得 5x -2 +2=8+2 即: 观察知 5x=10
-2 =8 5x-2
5x=8+2 +2
移项法则:把方程中的某一项,改变符号后,从 方程的一边移到另一边,这种变形叫做移项.
移项变号
注 意
例1、解方程:
(1)2x+6=1 (2)3x+3=2x&收费 (50+0.4t)元,用“神州行”要收费0.6t元, 如果两种计费方式的收费一样,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x+5) 元,
15
x=10
x
.
5
是一元一次方程
我来试试
(2)环形跑道一周长400m,沿跑道跑多 少周,可以跑3 000 m?
解:设沿跑道跑x周, 400x 3 000 是一元一次方程.
(3)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用9 元钱买了两种铅笔共20 支,两种铅 笔各买了多少支? 设甲种铅笔买了x支,乙种铅笔买了(20-x)支,
(6)已知方程 (m-1)y|m|+3=0是一元一次方
程,则 m= -1 。
1、通过本节的学习你有什么收获?
一种方法——列方程解决实际问题的方法; 三个概念——方程、一元一次方程、方程
的解;
2、在这部分学习中,你还有什么困难?
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
(2)若方程 3 xn +4 = 5(x是未知数)是一元一次方
程,则 n = 1 。
(3)关于 x 的方程 (a -2)x 2 + a x + 1 = 0 是一元
一次方程,则 a = 2 。
(4)长方形的长为acm,宽为bcm,则该长方形 的周长为 2(a+b) cm.
(5)列式: x的2倍与3的和; 2x+3
且未知数的次数都是1,等号两边都是整式。
2、自己写一个一元二次方程,同桌之间相 互评判
我来试试
练习:根据下列问题,设未知数,列出 方程,并指出是不是一元一次方程:
(1)用买10个大水杯的钱,可以买15个 小水杯,大水杯比小水杯的单价多5元,两 种水杯的单价各是多少元?
设小水杯的单价是x 元,大水杯的单价是
有什么共同点?
①都只含有一个未知数; ②未知数的次数都是1;
③等号两边都是整式;
小试身手
1、判断下列式子是不是一元一次方程?
①9x=2 (√ ) ②x+2y=0 ( × )
③x2-1=0 (× ) ④x=0 ( √ )
⑤
3 2 x
()
×
⑥ax=b(a、b是常数) √
注意:一元一次方程中,只含有一个未知数,
相等关系:
已用的时间+还可用时间150x小时=规定的检测时间2450小时.
1700 + 150x = 2450
我探究我发现
(3).某校女生占全体学生数的52%,比男生 多80人,这个学校有多少学生?
设这个学校的学生为x人,那么女生数为 0.52x人,男生数为(1-0.52)x人.
列方程 0.52x - (1-0.52)x=80
0.3x 0.620 x 9 是一元一次方程
总结反思:
列出一元一次方程的一般步骤:
1.审:寻找实际问题中的已知条件、所 求问题、数量关系
2.设:恰当的设出未知数,用字母X表示问
题中的未知量
关键
3.列:根据实际问题中的相等关系列出方程
思考
想一想:⑴使得方程4x=24成立的x的值为 多少?
当x=6时,方程4x=24成立。
3.1 从算式到方程 3.1.1 一元一次方程
列出的这两方程与上面的方程一样吗?
我回顾,我思考
1、象这种请用等大号家“观=察”来左表
1+2=3
示相等关边系的的这式些子式,子,
5=7-2 3+b=2b+1 4+x=7
叫 等式看看。它们有什么 2、象这共样同含的有特未知征数?的等
0.7x=1400 式叫做 方程 。
小结: 实际问题 设未知数 找等量关系一元一次方程
总结反思: 列出一元一次方程的一般步骤:
1.审:寻找实际问题中的已知条件、所 求问题、数量关系
2.设:恰当的设出未知数,用字母X表示问
题中的未知量
关键
3.找:寻找实际问题中的相等关系
4.列:根据实际问题中的相等关系列出方程
我探究,我发现
下面的几个方程: 4x=24, 1700+150x=2450, 0.52x-(1-0.52)x=80,
(2)使得方程5x+2=12成立的x的值为多少? 当x=2时,方程5x+2=12成立。
方程的解:使方程等号两边相等的未知数的值 叫方程的解.
实践练习
x=1000和x=2000哪一个是方程0.52x-(1-0.52)x=80 的解?
解:当x=1000时 方程的左边=0.52×1000-(1-0.52)×1000 =520-480=40
A、 1-x =2
B、 2x-1=4-3x
C、 3-(x-1)=4 D、 x-4=5x-2
2、检验x=3和x=1是否是方程 x+1=2(x-1)的解.
理解与运用
1 .填空: (1)在式子:2x -1 ,1+7=2+6 , 1-3x = x +1 ,
x + 2y = 3,x2 +3x -1 = 0 中,方程有 3 个, 一元一次方程有 1 个。
列方程, 4x=24.
我探究我发现
(2)一台计算机已使用1700小时,预计每月再使用 150小时,经过多少月这台计算机的使用时间达到规 定的检修时间2450小时?
解:设x月后这台计算机的使用时间达到 2450 小时, 那么在 x 月里这台计算机使用了 150x (即 150 乘 x)小时,根据题意得
方程的左边≠右边,所以x=1000不是方程 0.52x-(1-0.52)x=80的解。
当x=2000时
方程的左边=0.52×2000-(1-0.52)×2000 =1040-960=80
方程的左边=右边,所以x=2000是方程 0.52x-(1-0.52)x=80的解。
我掌握,我巩固
1、x=1是下列哪个方程的解? B .
列方程(代数方法): 方程是根据题中的等量关系 列出的等式.其中既含已知数,又含未知数.使问 题的已知量与未知量之间的关系很容易表示,解 决问题就比较方便.
所以,从算术到方程是数学的进步.
我探究我发现
(1)用一根长24cm的铁 丝围成一个正方形,正方
形的边长是多少cm?
解:如设正方形的边长为 x cm,
2x-2=6
判断方程的两个关键要素:
①有未知数 ②是等式
我回顾,我思考
3、判断下列各式哪些是方程?
①5x+3y-6x=37( √) ②4x-7( ×)
③5x ≥ 3 (×) ④ 6x²+x-2=0 ( √)
⑤1+2=3 (×)
⑥5 xm来自11(√)
思考
算术方法: 列出的算式表示解题的计算过程,其 中只能 用已知数.对于较复杂的问题,列算式比 较困难.