2016年清华大学领军计划机考试试题分析

合集下载

2016年清华大学领军计划试题及解析

2016年清华大学领军计划试题及解析

2. 如图 1 所示,在光滑地面上,物块与弹簧相连做简谐运动,小车向右做匀速直线运 动,则对于弹簧和物块组成的系统,当以地面为参考系时,动量 不守恒 ,机械能 守恒 ;当以小车为参考系时,动量 不守恒 ,机械能 不守恒 .(填“守恒”或者 “不守恒”)
解:墙壁对弹簧有作用力,故动量不守恒。以地面为参考系,该力的作用点没有 位移,不做功,故机械能守恒。以小车为参考系时,该力的作用点有位移,所做 的功不为零,故机械能不守恒
4. 如图 3 所示,空间存在水平向右的匀强电场 E ,现有一质量为 m、带电量为 q 的小 √ 3mg ,求小球落地点距离抛出点的 球以初速度 v0 从地面斜向上抛出,已知 E = q 最远距离。
第 2 页 (共 11 页)
解:小球的运动可以分解为水平方向的匀加速直线运动和竖直方向的匀变速直线 运动。设发射角为 θ,则落地时小球的运动时间为 t= 此过程中小球在水平方向的位移为 √ 2 2 2 sin θ cos θ 2 3v0 sin θ 1 qE 2 2v0 x = v0 cos θ · t + t = + 2m 3g ] g √ 2[ ( ) 3v0 π = 2 sin 2θ − +1 3g 6 π 当 θ = 时,x 取最大值 3 √ 2 3v0 g 2v0 sin θ g
5. 现有一轻质绳拉动小球在水平面内做匀速圆周运动,如图 4 所示。小球质量为 m, 速率为 v ,重力加速度为 g ,轻绳与竖直方向夹角为 θ。求在小球运动半周的过程中 拉力的冲量。
解:小球的受力如图 5 所示。根据牛顿第二定律,有 mg tan θ = ma = m 2π v T
第 3 页 (共 11 页)
解:当系统稳定时,设左杆的速度为 v1 ,右杆的速度为 v2 ,在此过程中金属杆 ¯。根据动量定理,有 的平均电流为 I ¯ ∆t = mv1 − mv0 −2B Il ¯ ∆t = mv2 B Il 联立式 (1) 和式 (2),得 v1 + 2v2 = 0 系统稳定时,回路中无电流,则有 2Blv1 − Blv2 = 0 即 2v1 = v2 联立式 (3) 和 (5),得 1 2 v1 = v0 , v2 = v0 5 5 产生的热量为 1 2 − Q = mv0 2 ( 1 2 1 2 mv + mv 2 1 2 2 ) 2 2 = mv0 5 (5) (4) (3) (1) (2)

清华北大真题集

清华北大真题集

2015年清华大学领军计划测试(物理)注意事项:1.2016清华领军计划测试为机考,全卷共100分,考试时间与数学累积120分钟:2.考题全部为不定项选择题,本试卷为回忆版本,故有些问题改编为填空题。

1、在α粒子散射实验中,以下1到5五个区域哪个可能是中心原子存在的区域?2、质量为m,电阻为R的圆环在如图的磁场中下落,稳定时速度为v。

求匀速下落时电动势,有以下两种计算方案。

方法一:由受力平衡RvLBmg22=BLv=ε有结论mgRv=ε方法二:由功能关系mgvPR=RPR2ε=有结论mgvR=ε问:关于以上哪种方法说法正确的是()A.都正确B.都不正确C.只有方案一正确D.只有方案二正确3、理想气体做kVp=的准静态过程,已知定容比热V C和R,求该过程的比热C4、如图所示,光滑且不计电阻的导轨上有一金属棒,金属棒电阻为R,初速度为smv/1=,空间中有恒定的垂直于导轨平面的磁场,磁感应强度为B,当金属棒减速到10v时,用时s1,速度识别器最低记录是sm/001.0,求总共记录的该导体棒运动时间为多少?5、高为H出平抛一物体,同时在其正下方水平地面斜抛一物体,二者同时落到同地,则斜抛物体的射高为。

6、有一厚度为D的透明玻璃砖,一束白光以入射角60°角射入。

(1)求最早射出色光的折射率(玻璃折射率最小值为n)m in(2)若白色只有红黄绿三种颜色(并给出折射率)问那种色光最先射出?7、小磁铁在铝制空心杆中运动(无裂缝、有裂缝、有交错的矩形裂孔),则先落地的一个是哪一个?.8、均匀带电半圆环,一半带正电,一半带负电,电荷密度为λ,求P 点的场强和电势。

9、一个人在岸上以速度v 水平拉船,岸高度为h ,绳子与河夹角为θ。

此时船的速度和加速度为?2015年清华大学暑期夏令营测试(物理)本试卷共100分,考试用时90分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考点名称填写在答题卡上,并在规定位置粘贴考试用条形码。

1、2016年清华(自招领军自强)数学题招

1、2016年清华(自招领军自强)数学题招

f f
'
(0) 存在时,曲线 y f ( x) 在点 (0, f (0)) 处存在切线
(B)当曲线 y f ( x ) 在点 (0, f (0)) 处存在切线时,导数 (C)当导数
'
f
'
(0) 存在
(0) 存在时,函数 f ( x 2 ) 在 x=0 时的导数等于零
2
(D)当函数 f ( x ) 在 x=0 时的导数等于零时,导数 (5)设 z cos
且 AO AB AC , 则实数 和 [ ]
(A)
2 4 , 9 9
(B)
4 2 , 9 9
(C)
1 2 , 9 9
(D)
2 1 , 9 9
(28)三个互异的数 a,b,c 相乘时可以有不同的相乘方法,如 ab c, ba c, c ab , c ba 就是其中 4 种不同的相 乘 方 法 , 设 n 个 互 异 数 的 不 同 相 乘 方 法 , 设 n 个 互 异 数 的 不 同 相 乘 方 法 共 有 In 种 , 则 [ ] (B) I 3 12 (C) I 4 96 (D) I 4 120
f
'
(0) 存在时
[ ]
2 2 z2 2 ,则 z 2 i sin 3 3 z z2
(B)
(A)
1 3 i 2 2
3 1 i 2 2
(C)
1 3 i 2 2
(D)
3 1 i 2 2
(6)甲乙丙丁四人进行网球比赛,首先是甲与乙比,丙与丁比,这两场比赛的胜者再争夺冠军,他们之间相 互获胜的概率如下: 甲 甲获胜概率 乙获胜概率 丙获胜概率 丁获胜概率 则甲获得冠军的概率为 (A)0.165 (B)0.245 0.7 0.7 0.2 0.4 0.7 0.5 [ (C)0.275 (D0.315 ] 乙 0.3 丙 0.3 0.6 丁 0.8 0.3 0.5

2016年清华大学领军计划数学试题(含部分解析)

2016年清华大学领军计划数学试题(含部分解析)

2016年清华大学领军计划测试1.椭圆22221x y a b +=,两条直线1l :12y x =,2l :12y x =-,过椭圆上一点P 作两条直线的平行线,分别与两条直线交于M ,N 两点,若||MN=( ) .A .B .C 2 .D 【解析】C(田)坐标+向量,设(cos ,sin )P a b θθ,OP ON NP =+,MN ON NP =-,1l 方向向量11(1,)2e =,21(1,)2e =-,1ON ne =,2NP me =,12OP ne me ∴=+cos sin 22n m a n mb c θ-=⎧⎪⇒⎨+=⎪⎩ (,)(2sin ,cos )21222n m a aMN m n b b θθ-=+=⇒== (孙)设(cos ,sin )P a b θθ,则PM l ,PN l 已知,M ,N 点已知. 法3:设00(,)P x y ,可得0000111(,)242M x y x y ++,0000111(,)242N x y x y --+,||MN =为定值,所以2241614a b==2=. 注(1)若将这两条直线的方程改为y kx =±1k=; (2)两条相交直线上各取一点M ,N ,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或者椭圆. 2.已知,,x y z 为正整数,x y z ≤≤,那么方程11112x y z ++=的解有( )组 .A 8 .B 10 .C 11 .D 12【解析】方法一、列举法.○111112666=++,○211131212++,○3 111488++,○41111055++,○51113918++ ○61113824++,○71113742++,○81114612++,○91114520++,○1011131015++方法二、x 最小,1x∴最大,36x ∴≤≤,x 以3,4,5,6分类讨论当3x =时,可得11111236y z +=-=,通分可得66y z yz +=,因式分解可得(6)(6)36y z --=,此时需要对36进行分解,则361362183124966=====,故可得37423824(,,)39183101531212x y z ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,同理当4x =时,4520(,,)4612488x y z ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,当5x =时,[](,,)5510x y z = 当6x =时,[](,,)666x y z =3.将16个数:4个1、4个2、4个3、4个4填入44⨯的矩阵中,要求每行、每列正好有2个偶数,则共有______种填法.【解析】我们将题目稍作变形,将本题变为①在44矩阵中染色,黑白二色,要求每行每列正好有两个黑色;②将数字填入这些色块第一步,我们在第一列涂上两个黑色,为方便起见,我们用#代表黑色,用O 代表白色第一列涂两个黑色如图所示##O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样有42⎛⎫ ⎪⎝⎭种涂法,接下来我们研究第二层,分三种情况涂色:第一种####O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样的涂法有1种,并且下面两行只有########O O O O O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦这1种涂法、 第二种####O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样的涂法有4种,下面的话有########O O O O O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、########O O O O O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦这2种,所以第二种共有42种涂法第三种####O O O O ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,这样的涂法有1种,下面的涂法有224=种,所以第三种有14种涂法, 故共有78种涂法接下来填数,故共有887844⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭种填法.方法二、首先确定偶数的位置有多少种选择.第一行两个偶数有24C 种选择,下面考虑这两个偶数所在的列,每列还需要再填一个偶数,设为a ,b 情形一:若a ,b 位于同一行,它们的位置有3种选择,此时剩下的四个偶数所填的位置唯一确定.情形二:若a ,b 位于不同的两行,它们的位置有6种选择,此时剩下的四个偶数所填的位置有2种选择.所以偶数的不同位置数为24(362)90C ⋅+⋅=种,因此总的填法数位为448890441000C C ⋅⋅=.4.对于复数(0)z z ≠,10z 和40z 的实部和虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形面积为_______. 【解析】(田)z 与1z的角相等,设为θ,设||z r =,则cos sin 101010z r ri θθ=+⋅,404040cos sin i z r r θθ=+⋅,(cos ,sin )P r r θθ,令cos a r θ=,sin b r θ=,则有10a ≥,0b ≥○1,22140a a b ≥+,22140b a b ≥+222(20)20a b ⇒-+≤○2,222(20)20a b +-≤○3 即为阴影面积S ,1002(503150)3S π=+-(第一可以用积分的方法,第二可以用面积的方法)方法二:设z x yi =+,其中,x y R ∈.由于24040||z z z =,于是 22221,1101040401,1x y y x yx y ⎧≥≥⎪⎪⎨⎪≥≥++⎪⎩ 如图 弓形面积为2110020(sin )1002663πππ⋅⋅-=-,四边形ABCD 的面积为12(10310)1010031002⋅⋅-⋅=-,于是所求面积为 1002002(100)(1003100)100330033ππ-+-=+-5.下列计算正确的是( ).A tan1tan 61tan1213tan1tan 61tan121++=.B tan1tan 61tan1213tan1tan 61tan121++=-.C tan1tan 61tan1tan121tan 61tan1213++= .D tan1tan 61tan1tan121tan 61tan1213++=-【解析】BD3tan1tan13tan 61,tan12113tan113tan1+-==-+,故28tan1tan 61tan12113tan 1+=-,22tan 13tan 61tan12113tan 1-=-,由此可证6.从114的正整数中任选出若干数构成一个集合,该集合中任3个数不构成等差数列,求元素最多的集合的元素个数.【解析】(田)列举1,2,4,5,10,11,13,14(从1~14中删去公差为1时的等比数列,然后相继删去公差为2公差为3,为47.已知tan 43α=,求值sin 4sin 2sin sin cos8cos 4cos 4cos 2cos 2cos cos ααααααααααα+++. 【解析】(金刚)裂项求和,sin(84)sin(42)tan8cos8cos 4cos 4cos 2ααααααααα--++=8.一堆数乘在一起有很多种乘的顺序,如三个数,,a b c 可以有()ab c ,()ba c ,()c ab ,()c ba 四种不同的乘法,记n 个数的乘法为n I ,则( ) 【解析】AB.A 22I = .B 312I = .C 496I = .D 5120I =根据卡特兰数的定义,可得11121221!(1)!nn n n n n n n I C A C n n C n-----=⋅=⋅⋅=-⋅ 9.,,a b c R ∈,22211a b c a b c ⎧++=⎨++=⎩,那么( ).A max 23a =.B max ()0abc = .C min 13a =- .D max 4()27abc =- 【解析】(田)数形结合2221a b c ++=,表示半径为1的球,1a b c ++=表示一个平面(孙)2222222211()(1)122a b c a b c a b c a b c ⎧⎪+=-⎪+=-⎨⎪+-⎪+≥⇒-≥⎩,所以c 范围出来.222222()()(1)(1)ab a b a b c c =+-+=---,所以ab 范围出来.(方法三)由1x y z ++=,2221x y z ++=,可知0xy yz zx ++=.设xyz c =,则x ,y ,z 是关于t的方程320t t c --=的三个实根.令32()f t t t c =--,利用导数可得(0)024()0327f c f c =-≥⎧⎪⎨=--≤⎪⎩,所以4027c xyz -≤=≤,等号显然可以取到.故选项A ,B 都对,因为22222()(1)2()2(1)x y z x y z +=-≤+=-,所以113z -≤≤,等号显然取到.故选项C 错,选项D 对.10.AB 为圆O 的一条弦,P 为圆O 上一点,OC AB ⊥,PA OC M =,PB 交OC 延长线于N ,则以下结论正确的是( ).A OMBP 共圆 .B AMBN 共圆 .C AOPN 共圆 .D AOBN 共圆【解析】P选项A :首先连接OP 、MB ,即让证明POM PBM ∠=∠,则延长BM 交O 于P ',延长NO 交O于点E ,则易知PBM POE ∠=∠,故四点共圆选项B ,由选项A 可看出,当P 在BPE 上从B 向E 运动时,MBA PAB ∠=∠在逐渐增大,而MBN ∠也在逐渐增大,故MBN ∠并不恒等于2π,故四点并不共圆. 选项C ,连接OA 、AN ,则我们要证AOPN 四点共圆,即要证OPB OAN ∠=∠,而,OAN OBN OPN OBP ∠=∠∠=∠,故四点共圆选项D : OAB 三点不动,显然不共圆 11.F 为BC 中点,1114A E AA =,正方体1111ABCD ABCD -棱长为1,中心为O ,则O BEF V -=( )O PAMBNO PAMBNEP '.A 17144 .B 1738 .C 11144 .D 1138【解析】196. 如图111111221696O EBF G EBF E BCC B V V V ---=⋅=⋅=12.问一个正2016边形,任选顶点顺序相连构成的凸多边形中,正多边形有( )个 .A 6552 .B 4536 .C 3528 .D 2016【解析】选C .找2016的约数,若/2016n ,则有n 多边形2016n个,则分解522016237=⨯⨯,2016201620162016481632∴++++,即1111111132016(1)(1)(1)201624816323972=++++++++-⨯3528=13.求不定方程26152yx +=*(,)x y N ∈解的个数( ).A 0 .B 1 .C 2 .D 326152yx +=⇒2y层数为6,4,故y为偶数,设2y n=,22615(2)(2)(2)6153541n nnx x x +=⇒-+=⇒⨯⨯,252123n nx x ⎧-=⎪∴⎨+=⎪⎩或215241nn x x ⎧-=⎪⎨+=⎪⎩或232205n nx x ⎧-=⎪⎨+=⎪⎩,解得59x =,12y = 14.O 在ABC ∆内,::4:3:2S AOB S BOC S AOC ∆∆∆=,AO AB AC λμ=+,则λ=____,μ=_____. 【解析】奔驰定理得29,4915.22cos sin 33z i ππ=+,求2322z z z z +=++_______. 【解析】原式21z z +=-=1322i -,1322z i =-+ 16.在N 项有穷数列{}n a 中,满足①1i j N ≤<≤时,i j a a <;②1i j k N ≤<<≤时,i j a a +,i k a a +,j k a a +至少有一项在{}n a 中,则N 的最大值为______.【解析】假设该数列包含正数并且正数项大于3,则取12,,n n n a a a --三项,由②可知12n n n a a a --+=,而假设有第四个正数3n a -出现时,取13,,n n n a a a --,则同理可得31n n n a a a --+=矛盾,故正项至多有三项,同理负项至多有三项,而零当然可以加进来,故至多有七项17.22120()(1sin )n n x x dx ππ--+=⎰______.【解析】22122120()(1sin )(1sin )0n n n n x x dx x x dx ππππ----+=+=⎰⎰18.2|1|||z z +=,求||z 的范围和arg z 的范围. 【解析】几何意义,根据题意画出图形OZ z =,22,1OA z OB z ==+,则在OAB ∆中,2A πθ∠=-,2,OZ OB r OA r ===可得221,1r r r r ->+>r <<,再根据余弦定理求出θ的范围 19.在正三棱锥P ABC -中,ABC ∆的边长为1,设P 到平面ABC 的距离为h ,当h 趋近于正无穷时,异面直线AB 与CP 之间的距离为_____. . 当h →+∞时,CP 趋于与平面ABC 垂直,所求极限为ABC 中AB 20.,,x y z 均为非负实数,满足2221327()(1)()224x y z +++++=,则x y z ++的最大值为______,最小值为______. 【解析】32,32-.222274x y z ⇒++=,求3x y z ++-的最值. 方法二、由柯西不等式可知,当且仅当1(,,)(1,,0)2x y z =时,x y z ++取到最大值32.根据题意,有22213234x y z x y z +++++=,于是213()3()4x y z x y z ≤+++++,解得32x y z -++≥,于是x y z ++的最小值当3(,,))2x y z -=时取到,为32- 21.实数22322()4x y x y +=,则22x y +的最大值为______.【解析】.不等式22223222()44()2x y x y x y ++=≤⋅,221x y ∴+≤ 22.2()()xf x x a e =+有最小值,则220x x a ++=的解的个数为______.【解析】2'(2)xf x a x e ++有最小值,0∴∆>,个数为223.11a =,22a =,216n n n a a a ++=-,下列叙述正确的是( ).A 212n n n a a a ++-为定值 .B 2(mod 9)n a lor ≡.C 147n n a a +-为完全平方数 .D 187n n a a +-为完全平方数【解析】验证,11a =,22a =,311a =,464a =,5a =因为22222231221122112211(6)6(6)n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a +++++++++++++++-=--=-+=-+ 21.2n n n a a a ++=-,所以A 正确,由于311a =,故2222121111(6)67n n n n n n n n n n n a a a a a a a a a a a ++++++-=--=-+=-,对任意正整数恒成立,所以21147()n n n n a a a a ++-=-,21187()n n n n a a a a ++-=+,故C ,D 正确.24.已知抛物线E :24y x =,(1,0)F ,过F 作弦交E 于A ,B 两点,M 为AB 的中点,则下列说法正确的是( ).A 以AB 为直径的圆与32x =-始终相离 .B ||AB 的最小值为4.C ||AM 的最小值为2 .D 以BM 为直径的圆与y 轴有且仅有一个交点【解析】ABCD25.对于函数21y x =-和ln y x =,下列说法正确的事 .A .二者在(1,0)处有公切线B .二者存在平行切线C .两者只有一个交点D .两者有两个交点 解析:BD26.p 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为左右焦点,下列说法正确的是 .A .a =时,满足1290F PF ∠=的p 点有2个B .a >时,满足1290F PF ∠=的p 点有4个C .124PF F C a <D .1222PF F a S ≤ 【解析】焦点三角形,2tan p S C y S bc θ=⋅=≤,p 为椭圆上下顶点时,12PF F C 最大,22222b c a S bc +≤≤=,12224PF F C a c a =+<.27.随机变量ξ的分布列为()(1,2,,10)k P k a k ξ===,则下列说法正确的是 .A .若1210,,,a a a 成等差数列,则5615a a += B .若1210,,,a a a 满足1(1,2,,9)2n n a n ==,则10912a =C .若2()k P k k a ξ≤=,则11(1,2,,10)10(1)n na n n ==+D .若1(1)n n na n a +=+,则1110(1)n na n =+28.甲,乙,丙,丁四人参加比赛并有两个获奖,以下是四人对获奖人的猜测: 甲:获奖者在乙,丙,丁中 乙:我未获奖,丙获奖 丙:甲丁有一人获奖 丁:乙说的是正确的已知四人中有两个人的猜测是正确的那么获奖人是 . 解析,若乙对,则丁对,甲对,故乙错, 29.下列能够成唯一ABC ∆的是 .A .1a =,2b =,c Z ∈B .150A =,sin sin sin sin a A cC C b B +=C .cos sin cos cos()cos sin 0A B C B C B C ++=D .a =,1b =,60A =【解析】A .2c =,正确;B .正弦定理,余弦定理,135B =,错误;第 11 页 共 11 页 C .cos sin()0A B C -=,60C =,所以为直角或等边三角形,错误;D .显然成立,30B ∠=,正确.31.甲,乙,丙,丁四个人进行网球赛规定甲乙一组,丙丁一组先打,胜者再打决胜局,四人相互对战对战时胜率如图,求甲获胜的概率为 .【解析】0.165根据概率的乘法公式,所求概率为0.3(0.50.30.50.8)0.165⋅⋅+⋅=.32.已知实数a ,b ,c 满足1a b c ++=414141a b c ++++间( )..A (11,12) .B (12,13) .C (13,14) .D (14,15)33. sin sin sin cos cos cos A B C A B C ++>++为ABC 为锐角形的( )..A 充要非必要条件 .B 必要非充分条件 .C 充分必要条件 .D 既不充分也不必要条件【解析】B .必要性:由于sin sin sin sin()sin cos 12B C B B B B π+>+-=+>,类似的有sin sin 1A C +>,sin sin 1A B +>,于是sin sin sin sin()sin()sin()A B C B C C A A B ++=+++++ (sin sin )cos cos cos cos cycB C A A B C =+>++∑.不充分性:当2A π=,4B C π==时,不等式成立,而ABC 并非锐角三角形.34.已知集合12{,,,}n A a a a =,任取1i j k n ≤<<≤,i j a a A +∈,j k a a A +∈,k i a a A +∈这三个式中至少有一个成立,则n 的最大值( )..A 6 .B 7 .C 8 .D 9【解析】B .不妨设12n a a a >>>.若集合A 中的正数的个数大于等于4,由于23a a +和24a a +均大于2a ,于是有23241a a a a a +=+=,所以34a a =,矛盾.所以集合A 中至多有3个正数,同理可知集合A 至多有3个负数.取{3,2,1,0,1,2,3}A =---,满足题意,所以n 的最大值为7.。

2016年清华大学领军计划招生数学试题

2016年清华大学领军计划招生数学试题
1

ຫໍສະໝຸດ 10. A E四等分点
F B1 .O D
C1
三等分点
C
A B 1 1 棱 长 为 1 的 正 方 体 ABCD A1 B1C1 D1 中 , A1 E AA1 , B1 F B1G ,O 为 中 心 , 求 体 积
4
3
V三棱锥O BEF
11.
P A
正三棱锥,高为 h,当 h→ 时,AC 与 PB 的距离, ΔABC 为边长的正三角形 B
1 i i k N ,ai a j , a j ak , ak ai 至少有一项在 { an } 中, 4.各项均不相同的数列 { an } 中, N 的最大值为
A.6 5.已知实数 x , y, z 满足 A. ( xyz ) max 0 B.7 C.8 D.9 ( C. zmin ) ( )
C 12.有 4 个 1,4 个 2,4 个 3,4 个 4,填入 4 4 的方格中,保证每行每列均有两个偶数有几种填 法?
13.
sin sin sin sin ,求 24 cos4cos3 cos3cos2 cos2cos cos
14.三角形 AN
D.无法确定
1 1 x , l2 : y x 2 2
x2 y2 1 ,C 上任意一点 P,过 P 做 l1 的平行交 l 2 a 2 b2
于点 M,过 P 做 l 2 的平行线交 l1 于点 N, MN 为定值,则 A. a=2b B. a=3b C. A=5b D. A=4b
8.将 16 个数:4 个 1、4 个 2、4 个 3、4 个 4 填入一个 4 4 的矩阵中,要求每行、每列正好有 2 个偶数,则共有___________种填法。 9.已知 O 为 ABC 内一点,且满足 SAOB : SAOC : SBOC 4 : 3 : 2 , AO AB AC , 则 ___________, _________。

清华大学2016年自主招生与领军计划数学试题

清华大学2016年自主招生与领军计划数学试题

清华大学2016年自招、领军试题选择题:本卷共40小题,共100分。

在每小题给出的四个选项中,有一个或多个选项是正确的。

(1)若函数()y f x =具有下列两个性质:①在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增;②其图像关于3x π=对称.则()f x =( )(A )5sin 26x π⎛⎫-⎪⎝⎭ (B )cos 23x π⎛⎫+ ⎪⎝⎭ (C )sin 26x π⎛⎫- ⎪⎝⎭ (D )2cos 23x π⎛⎫-⎪⎝⎭ 【答案】CD解析:由②可知13f π⎛⎫=± ⎪⎝⎭,再结合①可知13f π⎛⎫= ⎪⎝⎭,由①还可知22T π≥,即T π≥,而选项中所有函数的周期都是π,可知此题最好的方法是代入法. 因此只需要检验四个选项中哪个符合这个条件即可. (A )132f π⎛⎫= ⎪⎝⎭;(B )13f π⎛⎫=- ⎪⎝⎭;(C )13f π⎛⎫= ⎪⎝⎭;(D )13f π⎛⎫= ⎪⎝⎭. 因此答案为CD.(2)曲线21y x =-与ln y x =( )ACD(A )在点(1,0)处相交 (B )在点(1,0)处相切 (C )存在相互平行的切线 (D )有两个交点 【答案】ACD解析:令2()1f x x =-,()ln g x x =,2()ln 1h x x x =--,()2f x x '=,1()g x x '=,1()2h x x x'=-. 其中()g x 和()h x 的定义域都是(0,)+∞.对于(A )(B ),(1)(1)0f g ==,(1)2f '=,(1)1g '=,可知两条曲线在点(1,0)处相交. (A )正确.令()()f x g x ''=,可得2x =;122f ⎛=- ⎝⎭,1ln ln 2g ==->-=-⎝⎭,所以f g ≠⎝⎭⎝⎭,因此两条曲线在2x =处存在相互平行的切线.令()0h x '=,可得x =()h x '和()h x 的变化如下表:由上述分析可知()h x 在0,2⎛ ⎝⎭上单调递减,且02h ⎛< ⎝⎭,2110h e e ⎛⎫=> ⎪⎝⎭,并且12e <,可知()h x 在⎛ ⎝⎭上只有有一个零点,因此两条曲线在⎛ ⎝⎭上只有一个交点.而()h x 在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,并且(1)0h =,()h x 在2⎛⎫+∞ ⎪ ⎪⎝⎭上只有一个零点1,可知两条曲线在2⎛⎫+∞ ⎪ ⎪⎝⎭上只有一个交点.因此答案为ACD.(3)“ABC 为锐角三角形”是“sin sin sin cos cos cos A B C A B C ++>++”的( )(A )充分不要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A解析:若ABC ∆为锐角三角形,则222A B A C B C πππ⎧+>⎪⎪⎪+>⎨⎪⎪+>⎪⎩, 且0,,2A B C π<<,可得022022022A B C A B C ππππππ⎧>>->⎪⎪⎪>>->⎨⎪⎪>>->⎪⎩,又()sin f x x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以sin cos sin cos sin cos A B C A B C >⎧⎪>⎨⎪>⎩, 因此可得sin sin sin cos cos cos A B C A B C ++>++,所以“ABC 为锐角三角形”是“sin sin sin cos cos cos A B C A B C ++>++”的充分条件.考虑直角ABC ∆,其中,,236A B C πππ===,则1sin sin sin 122A B C ++=++,1cos cos cos 2A B C ++=+,则sin sin sin cos cos cos A B C A B C ++>++,而显然ABC ∆是不是锐角三角形,因此“ABC ∆为锐角三角形”不是“sin sin sin cos cos cos A B C A B C ++>++”的必要条件.(4)设函数()f x 在区间(1,1)-内有定义,则( )(A )当导数(0)f '存在时,曲线()y f x =在点(0,(0))f 处存在切线 (B )当曲线()y f x =在点(0,(0))f 处存在切线时,导数(0)f '存在 (C )当导数(0)f '存在时,函数2()f x 在0x =时的导数等于零 (D )当函数2()f x 在0x =时的导数等于零时,导数(0)f '存在 【答案】ABC解析:(A )显然正确;(B )函数13()f x x =,在在点(0,(0))f 处的切线为y 轴,但是231()3f x x -'=-, (0)f '不存在;(C )()22()2()f x xf x ''=,因为(0)f '存在,所以()20()20(0)0x f x f =''=⨯⨯=,所以(C)正确;(D )令 ()f x x =,则222()f x x x ==,所以函数2()f x 在0x =时的导数等于零,但是()f x x =在0x =处的导数(0)f '不存在,因此(D )错误. (5)设22cos sin 33z i ππ=+,则2322z z z z +=++( ) (A)122-+ (B)122i -(C)122- (D)122i -+【答案】C解析:易得31z =,2z z =,210z z ++=,23211111212222z z z z i z z +=+=+=--=-++,因此答案选C.(6)甲、乙、丙、丁四人进行网球比赛,首先是甲与乙比,丙与丁比,这两场比赛的胜者再争夺冠军. 他们之间相互获胜的概率如下:则甲获得冠军的概率为( )(A )0.165 (B )0.245(C )0.275 (D )0.315 【答案】A解析:甲与乙比甲获胜为事件A ,则()0.3P A =, 丙与丁比,丙获胜为事件B ,则()0.5,P B =()0.5,P B = 甲与丙比甲获胜为事件C ,则()0.3,P C = 甲与丁比甲获胜为事件D ,则()0.8,P D = 甲获胜的概率为()()()P ABC ABD P ABC P ABD +=+ ()()()()()()P A P B P C P A P B P D =+0.30.50.30.30.50.80.165=⨯⨯+⨯⨯=. 因此答案选A.(7)设函数2()()x f x x a e =+在R 上存在最小值,则函数2()g x x x a =++的零点个数为( ) (A )0 (B )1 (C )2 (D )无法确定 【答案】C解析:2()(2)x f x x x a e '=++①当1a ≥时,220x x a ++≥在R 上恒成立,所以()0f x '≥在R 上恒成立,所以函数()f x 在R 上单调递增,因此()f x 在R 上无最小值;②当1a <时,令()0f x '=,则11x =,21x =,且21x x <,()f x '和()f x 的变化情况如下表:x →-∞时,()0f x →,因为()f x 在2(,)x -∞上单调递增,在21(,)x x 上单调递减,在1(,)x +∞上单调递增,所以若()f x 有最小值,只需要1()0f x ≤.11()(2)0x f x e =-≤2⇔≤11a ⇔≤-0a ⇔≤. 20x x a ++=的判别式为141a ∆=-≥,所以()g x 有两个零点. 因此选C.(8)设随机变量ξ的分布列如下:则 ( )(A )当{}n a 为等差数列时,5615a a += (B )数列{}n a 的通项公式可能为1110(1)n a n n =+(C )当数列{}n a 满足12n n a =(1,2,,9)n =时,10912a =(D )当数列{}n a 满足2()k P k k a ξ≤=(1,2,,10)k =时,1110(1)n a n n =+【答案】ABCD解析:由题目可知12101a a a +++=;(A )若{}n a 为等差数列,1210565()1a a a a a +++=+=,所以5615a a +=; (B )11111110(1)101n a n n n n ⎛⎫==- ⎪++⎝⎭,则0n a ≥,且121011111111111111022310111011a a a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,符合分布列的定义,因此B 正确; (C )129991111222a a a +++=++=-,又由分布列的定义可知12101a a a +++=,所以10912a =,C 正确; (D )2()k P k k a ξ≤=,则10(10)1001P a ξ≤==,所以10111100101011a ==⨯⨯,满足题意, 当2k ≥时,221()(1)(1)k k k a P k P k k a k a ξξ-=≤-≤-=--,则221(1)(1)(1)(1)k k k k a k a k k a --=-=-+,因为2k ≥,所以1(1)(1)k k k a k a --=+,即111k k k a a k -+=-. 91011111119910010910a a ==⋅=⨯⨯,满足题意. 当29n ≤≤时,1110112121110111111119(1)10010(1)n n n n n n n n a a a a n n n n nn n n n-++++++⨯==⋅=⋅⋅=⋅=-----则当18n ≤≤时,1110(1)n a n n =+. 因此D 正确.(9)棱长为1的正方体1111ABCD A B C D -中,O 为正方体的中心,E 在11B C 上,11113B E BC =,F 在1AA 上,1114A F AA =,则四面体B EFO -的体积为( )(A )11144 (B )17144(C )1138 (D )1738【答案】A解析:以A 为原点建立空间直角坐标系,则(0,0,0)A ,111(,,)222O ,(1,0,0)B ,1(1,0,1)B ,1(1,1,1)C ,1(1,,1)3E ,3(0,0,)4F ,则111(,,)222BO =-,1(1,0,)4BF =-,1(0,,1)3BF =,四面体B EFO -的体积为111222131110641441013--=(10)设定义在R 上的函数()f x ,()g x 满足:①(0)1g =;②对任意实数12,x x ,121212()()()()()g x x f x f x g x g x -=+;③存在大于零的常数λ,使得()1f λ=,且当(0,)x λ∈时,()0f x >,()0g x > 则(A )()(0)0g f λ== (B )当(0,)x λ∈时,()()1f x g x +> (C )函数()f x ()g x 在R 上无界 (D )任取x R ∈,()()f x g x λ-= 【答案】ABD解析:令120x x ==,代入②得22(0)(0)(0)g f g =+,因为(0)1g =,所以(0)0f =;令12x x λ==,代入②得22(0)()()g f g λλ=+,因为()1f λ=,所以()0g λ=,因此()(0)0g f λ==;A 正确对于任意实数x ,令12x x x ==代入②得22(0)()()1g f x g x =+=,可得2()1f x ≤,2()1g x ≤,进而()1f x ≤,()1g x ≤,因此C 错误;当(0,)x λ∈时,()0f x >,()0g x >,所以20()1f x <<,20()1g x <<,进而0()1f x <<,0()1g x <<,故22()(),()()f x f x g x g x <<,因此22()()()()f x g x f x g x +<+,又22()()1f x g x +=,故()()1f x g x +>,所以B 正确;令1x λ=,2x x λ=-,代入②得()()()()()g x f f x g g x λλλλ=-+-,又()(0)0g f λ==,()1f λ=,所以()()g x f x λ=-,故D 正确.(11)设,,A B C 是随机事件,A 与C 互不相容,1()2P AB =,1()3P C =,则()P AB C = ( ) (A )16 (B )12(C )13 (D )34【答案】D解析:因为A 与C 互不相容,所以A C ⊂,则AB C ⊂,因此ABC AB =,可得1()()32()2()()43P ABC P AB P AB C P C P C ====,所以该题选D.(12)甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测:甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖; 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的.成绩公布后表明,四人的猜测中有两人的预测与结果相符. 另外两人的预测与结果不相符,已知有两人获奖,则获奖的是( )(A )甲和丁 (B )乙和丁 (C )乙和丙 (D )甲和丙 【答案】B解析:因为乙和丁的预测一样,则根据题干可知四人的猜测有两种情况:①乙和丁的预测与结果相符,甲和丙的预测与结果不相符,那么丙获奖,因为丙的预测与结果不相符,所以丙和乙获奖,与甲的预测相符了,矛盾;②乙和丁的预测与结果不相符,甲和丙的预测与结果相符,那么乙获奖,丙不获奖,结合甲预测可知丁获奖,与丙的预测相符,因此获奖者是乙和丁.该题选B. (13)设24πα=,则sin sin sin sin cos 4cos3cos3cos 2cos 2cos cos ααααααααααα+++=(A)6 (B)3 (C)2 (D )12【答案】B 解析:sin sin((1))cos cos(1)cos cos(1)n n n n n n ααααααα--=--sin cos(1)cos sin(1)tan tan(1)cos cos(1)n n n n n n n n αααααααα---==---所以sin sin sin sin cos 4cos3cos3cos 2cos 2cos cos ααααααααααα+++tan 4tan3tan3tan 2tan 2tan tan ααααααα=-+-+-+tan 4tan63πα===. 因此该题选B(14)设正三棱锥P ABC -的高为h ,底面三角形的边长为1. 设异面直线AB 与PC 的距离为()d h ,则lim ()h d h →∞=(A )1 (B )12(C (D )【答案】C解析:在APC ∆内,过A 向PC 做垂线,垂足为Q ,即AQ PC ⊥,连结BQ ,根据对称性,显然BQ PC ⊥,且BQ AQ =,取AB 中点D ,连结DQ ,DQ ⊂平面AQBAQ PC BQ PC ⊥⎫⇒⎬⊥⎭PC ⊥平面AQB ,又DQ ⊂平面AQB DQ PC ⇒⊥,在AQB 中,BQ AQ =,D 为AB 中点,所以DQ AB ⊥, 因此DQ 为AB 与PC 的公垂线;设点P 在平面ABC 的投影为O ,则AO BO CO ===,AP BP CP ===在APC 中,112APCS=⋅=又12APCSPC AQ AQ =⋅⋅=,所以AQ =,在等腰三角形AQB ∆中,DQ ===()d h =lim ()h h h d h →∞====(15)设,,αβγ分别为1,61,121︒︒︒,则(A )tan tan tan 3tan tan tan αβγαβγ++=- (B )tan tan tan tan tan tan 3αββγγα++=-(C )tan tan tan 3tan tan tan αβγαβγ++=- (D )tan tan tan tan tan tan 3αββγγα++=【答案】AB解析:22tan (tan 3)tan(60)tan tan(60)tan (13tan )βββββββ--︒+︒==-tan(60)tan tan(60)tan ββββ-︒+++︒=+3228tan 9tan 3tan tan tan 13tan 13tan βββββββ-=+=+=-- 223tan (3tan )13tan βββ-=- 所以tan tan tan tan(60)tan tan(60)3tan tan tan tan(60)tan tan(60)αβγβββαβγβββ++-︒+++︒==--︒+︒,A 正确.tan tan tan tan tan tan αββγγα++tan(60)tan tan tan(60)tan(60)tan(60)ββββββ=-︒++︒++︒-︒tan (tan(60)tan(60))tan(60)tan(60)βββββ=+︒+-︒++︒-︒ tan (tan(60)tan(60))tan(60)tan(60)βββββ=+︒+-︒++︒-︒22228tan tan 313tan 13tan ββββ-=+-- 229tan 313tan ββ-=- 3=-. 所以B 正确.(16)设函数7(,)6()22f x y xy x y =-++-,则[0,1][0,1]max{min{(,)}}y x f x y ∈∈=(A )0 (B )124(C )124- (D )[0,1][0,1]min{max{(,)}}y x f x y ∈∈【答案】BD解析:77(,)6222f x y x y x ⎛⎫=-+- ⎪⎝⎭求[0,1]min{(,)y f x y ∈把(,)f x y 看成y 的一次函数,[0,1]77(,0) 2 212min (,)357(,1) 2212y f x x x f x y f x x x ∈⎧⎛⎫=-≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-> ⎪⎪⎝⎭⎩则[0,1]min (,)y f x y ∈在[0,1]x ∈上的最大值在712x =处取得, 所以[0,1][0,1]771max{min{(,)}}221224y x f x y ∈∈=⨯-=. 选项B 正确.[0,1]357(1,) 2212max{(,)}77(0,) 2 212x f y y y f x y f y y y ∈⎧⎛⎫=-≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-> ⎪⎪⎝⎭⎩, 则[0,1]max{(,)}x f x y ∈在[0,1]y ∈的最小值在712y =处取得, 所以[0,1][0,1]771min{max{(,)}}221224y x f x y ∈∈=⨯-=,故[0,1][0,1][0,1][0,1]max{min{(,)}}min{max{(,)}}y y x x f x y f x y ∈∈∈∈=.所以D 正确.(17)椭圆2222:1x y C a b+=的左、右焦点分别为1F 和2F ,P 为C 上的动点,则(A)当a =时,满足1290F PF ∠=︒的点P 有两个 (B)当a <时,满足1290F PF ∠=︒的点P 有四个(C )12F PF 面积的最大值为22a(D )12F PF 的周长小于4a 【答案】AD解析:求满足1290F PF ∠=︒的点的个数只需要求22222221x y a b x y c ⎧+=⎪⎨⎪+=⎩的交点的个数,将222y c x =-代入椭圆可得222221x c x a b -+=,化简得22222222221c c b a x a b b b --=-=,即222222a b x a c-=.当a =时,0x =,因此满足1290F PF ∠=︒的点P 有两个,为短轴两个端点,A 正确;当a <时,20x <,因此满足1290F PF ∠=︒的点P 不存在,B 错误; 显然,当点P 位于短轴端点时,12F PF 面积最大,此时12122F PF Sc b bc =⋅⋅=,C 错误; 12F PF 的周长为224a c a +<,D 正确.(18)设复数z 使得10z 及10z的实部和虚部都是小于1的正数. 记z 在复平面上对应的点的集合是图形C ,则C 的面积是(A )25752π- (B )25702π- (C )15752π- (D )15702π-【答案】A解析:令z x iy =+,则101010z x y i =+,22101010()x iy z x iy x y ==+-+由题意可知22220,1101010100,1x y x y x y x y ⎧<<⎪⎪⎨⎪<<++⎪⎩,则22220,101010x y x y x x y y <<⎧⎪+>⎨⎪+>⎩,图中的阴影部分就是所求的图形C ,两圆相交部分的面积为252542π-,所以 C 的面积是25252510025275422S πππ⎡⎤⎛⎫=---⨯=-⎪⎢⎥⎝⎭⎣⎦. 选A. (19)设n 是正整数,则定积分22120()(1sin )d n n x x x ππ--+⎰的值(A )等于0 (B )等于1 (C )等于π (D )与n 的取值有关 【答案】A解析:令x y π-=,则22122120()(1s i n )d (1s i n )d n nn nx x x y yyππππ----+=+⎰⎰,因为212(1sin )n n y y -+是奇函数,则积分的上下限关于原点对称,所以212(1sin )d 0n n y y y ππ--+=⎰.(20)过点(1,0)F 的直线交抛物线24y x =于,A B 两点,则(A )以AB 为直径的圆与直线32x =-没有公共点(B )以FB 为直径的圆与y 轴只有一个公共点(C )AB 的最小值为4(D )AF 的最小值为2【答案】ABC解析:AB 时抛物线的焦点弦,焦点弦与准线1x =-相切,与32x =-相离,A 项正确;由抛物线定义知B 项也正确;当AB 垂直x 轴时,其长度最短为2p=4(此时称为通径),C 正确;||||1AF AO >=,即AF 可无限接近于1,最小值不存在,D 错误。

清华北大真题集

清华北大真题集

2015年清华大学领军计划测试(物理)注意事项:1.2016清华领军计划测试为机考,全卷共100分,考试时间与数学累积120分钟:2.考题全部为不定项选择题,本试卷为回忆版本,故有些问题改编为填空题。

1、在α粒子散射实验中,以下1到5五个区域哪个可能是中心原子存在的区域?2、质量为m ,电阻为R 的圆环在如图的磁场中下落,稳定时速度为v 。

求匀速下落时电动势,有以下两种计算方案。

方法一:由受力平衡RvL B mg 22=有结论 mgRv =ε 方法二:由功能关系 mgv P R = RP R 2ε=有结论 mgvR =ε问:关于以上哪种方法说法正确的是( )A.都正确B.都不正确C.只有方案一正确D.只有方案二正确3、理想气体做kV p =的准静态过程,已知定容比热V C 和R ,求该过程的比热C4、如图所示,光滑且不计电阻的导轨上有一金属棒,金属棒电阻为R ,初速度为s m v /10=,空间中有恒定的垂直于导轨平面的磁场,磁感应强度为B ,当金属棒减速到10v 时,用时s 1,速度识别器最低记录是s m /001.0,求总共记录的该导体棒运动时间为多少?5、高为H出平抛一物体,同时在其正下方水平地面斜抛一物体,二者同时落到同地,则斜抛物体的射高为。

6、有一厚度为D的透明玻璃砖,一束白光以入射角60°角射入。

(1)求最早射出色光的折射率(玻璃折射率最小值为m inn)(2)若白色只有红黄绿三种颜色(并给出折射率)问那种色光最先射出?7、小磁铁在铝制空心杆中运动(无裂缝、有裂缝、有交错的矩形裂孔),则先落地的一个是哪一个?8、均匀带电半圆环,一半带正电,一半带负电,电荷密度为λ,求P点的场强和电势。

9、一个人在岸上以速度v水平拉船,岸高度为h,绳子与河夹角为θ。

此时船的速度和加速度为?2015年清华大学暑期夏令营测试(物理)本试卷共100分,考试用时90分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考点名称填写在答题卡上,并在规定位置粘贴考试用条形码。

2016年清华大学领军计划物理学科测试

2016年清华大学领军计划物理学科测试

关灯行驶的汽车,甚至车队已经离开,也瞒不过它,这种遥感照相机敏感的电磁波属于
()
A、可见光波段
B、红外波段 C、紫外波段 D、 X 光波段
解:一切的物体都能发出红外线,并且不同物体发出的红外线的波长和强度都不同。
3、在光滑地面上,物块与弹簧相连作简谐运动,小车向右作匀速直线运动,则对于弹簧和 物块组成的系统,则() A、当以地面为参考系时,系统动量守恒,机械能守恒; B、当以地面为参考系时,系统动量不守恒,机械能守恒; C、当以小车为参考系时,系统动量不守恒,机械能不守恒; D、当以小车为参考系时,系统动量不守恒,机械能守恒;
A、电源电动势 E 16V ; C、电源输出功率 P 8W ;
B、电源电动势 E 24V ; D、电阻 R2 的阻值为12 ;
10、弹性绳原长为 L 2R L 2R ,劲度系数为 k ,上端挂在半径为 R 的光滑圆轨的顶端,
下端系一重量为 G 的小球,小球还套在圆轨上,平衡时,弹性绳与竖直方向夹角为 。用 L 、 R 、 q 、 G 表示此时弹性绳的弹力为()
D、 1019
28、已知空气分子的平均动能为 kT ,则在常温下,质量为 m 4.7 10-23 kg 的气体分子的
德布罗意波波长的数量级为()
A、 1018
B、 1015
C、 1012
D、 109
29、质量为 m 的小球从高为 hA 的地方静止释放,则正好在光滑轨道上的 A 点飞出;而同样
小球从高为 hC 的地方释放,则正好从圆弧光滑轨道的最高点 C 点飞出,图中两虚线 OA 、 OB 夹角为 60 ,圆弧的半径为 R , A 、 B 两点的连线为水平,则()
27、物理学家创小路和创小知在剑桥大学做了这样一个实验,在一个高为 22.5m 的塔的顶

清华大学2016自主招生暨领军计划试题 解析版

清华大学2016自主招生暨领军计划试题   解析版

For personal use only in study and research; not for commercial useFor personal use only in study and research; not for commercial use2016年清华大学自主招生暨领军计划试题1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A.0 B.1 C.2 D.取决于a 的值 答案:注意)()(/x g e x f x=,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A.Z c b a ∈==,2,1B.B b C a C c A a A sin sin 2sin sin ,1500=+=C.060,0sin cos )cos(cos sin cos ==++C C B C B C B A D.060,1,3===A b a答案:对于选项A ,由于b a c b a +<<-||,于是c 有唯一取值2,符合题意;对于选项B ,由正弦定理,有2222b ac c a =++,可得0135,22cos =-=B B ,无解; 对于选项C ,条件即0)sin(cos =-C B A ,于是)60,60,60(),60,30,90(),,(0=C B A ,不符合题意;对于选项D ,由正弦定理,有21sin =B ,又060=A ,于是0090,30==C B ,符合题意. 答案:AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A.)(),(x g x f 在点)0,1(处有公切线B.存在)(x f 的某条切线与)(x g 的某条切线平行C. )(),(x g x f 有且只有一个交点D. )(),(x g x f 有且只有两个交点答案:注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4. 过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A.以线段AB 为直径的圆与直线23-=x 一定相离 B. ||AB 的最小值为4 C. ||AB 的最小值为2D.以线段BM 为直径的圆与y 轴一定相切 答案:对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=aa AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值; 对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误. 答案:AB .5. 已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( ) A.b a 2=时,满足02190=∠PF F 的点P 有两个 B. b a 2>时,满足02190=∠PF F 的点P 有四个C.21F PF ∆的周长小于a 4D. 21F PF ∆的面积小于等于22a答案:对于选项A,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点; 对于选项C ,21PF F ∆的周长为a c a 422<+;对于选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅.答案:ABCD .6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测: 甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A.甲 B.乙 C.丙 D.丁答案:乙和丁同时正确或者同时错误,分类即可,答案:BD . 7. 已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( )A.P B M O ,,,四点共圆 B. N B M A ,,,四点共圆 C. N P O A ,,,四点共圆 D.以上三个说法均不对答案:7.对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意; 对于选项C ,MAN MOP MBN ∠=∠=∠即得. 答案:AC.8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A.充分非必要条件 B.必要非充分条件C.充分必要条件D. 既不充分也不必要条件 答案:必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C , 于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.答案:B.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A.8 B.10 C.11 D.12 答案:由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ;若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ;若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A =,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( )A.6B.7C.8D.9答案:不妨假设n a a a >>> 21,若集合A 中的正数的个数大于等于4,由于32a a +和42a a +均大于2a ,于是有14232a a a a a =+=+,从而43a a =,矛盾!所以集合A 中至多有3个正数.同理可知集合A 中最多有3个负数.取}3,2,1,0,1,2,3{---=A ,满足题意,所以n 的最大值为7.答案B . 11.已知0121,61,1===γβα,则下列各式中成立的有( ) A.3tan tan tan tan tan tan =++αγγββα B.3tan tan tan tan tan tan -=++αγγββαC.3tan tan tan tan tan tan =++γβαγβαD.3tan tan tan tan tan tan -=++γβαγβα答案:令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x , 以上三式相加,即有3111-=++=++xyzzy x zx yz xy .答案BD.12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A.)12,11(B.)13,12(C.)14,13(D.)15,14( 答案:设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图, 于是可得321)31(7212147174+-≤+≤+x x x , 左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A.xyz 的最大值为0 B. xyz 的最大值为274- C. z 的最大值为32 D. z 的最小值为31- 答案:由1,1222=++=++z y x z y x 可得0=++zx yz xy .设c xyz =,则z y x ,,是关于t 的方程023=--c t t 的三个根.令c t t t f --=23)(,则利用导数可得⎪⎩⎪⎨⎧≤--=>-=0274)32(0)0(c f c f ,所以0274≤=≤-xyz c ,等号显然可以取到.故选项A,B 都对. 因为)1(2)(2)1()(22222z y x z y x -=+≤-=+,所以131≤≤-z ,等号显然可以取到,故选项C 错误.答案ABD .14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( )A.n n n a a a 221++-为定值 B.)9(mod 1≡n a 或)9(mod 2≡n a C.741-+n n a a 为完全平方数 D.781-+n n a a 为完全平方数答案:因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a an n n n n n n a a a a a a a 22121122)6(++++++-=+-=.所以A 选项正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a , 又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C,D 正确.计算前几个数可判断选项B 错误. 答案:ACD .说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值. 15. 若复数z 满足11=+zz ,则z 可以取到的值有( ) A.21 B.21- C.215- D.215+ 答案:因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD . 16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( ) A.6552 B.4536 C.3528 D.2016答案:从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A.2 B.3 C.2 D.5 答案:设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++, 故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=; (2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程yx 21652=+的正整数解的组数为( ) A.0 B.1 C.2 D.3答案:方程两边同时模3,可得)3(mod 22yx ≡,因y2不能被3整除,故2x 不能被3整除,所以)3(mod 12≡x ,故)3(mod 12≡y,所以y 为偶数,可设)(2*N m m y ∈=,则有4153615)2)(2(⨯⨯==+-x x mm,解得⎪⎩⎪⎨⎧=+=-,1232,52x x m m 即⎩⎨⎧==.12,59y x 答案:B .19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( )A.22=IB.123=IC.964=ID.1205=I 答案:根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nn n n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 .答案:根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .答案:当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .答案:如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V . 23.=+-⎰-dx x x n n )sin 1()(22012ππ .答案:根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n nn ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 .答案:根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 .答案:由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23. 根据题意,有41332222=+++++z y x z y x , 于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ .答案:根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin32cos ππi z +=,则=+++2223z z z z . 答案:根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ. 28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 .答案:设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y yx x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ, 四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ.29.若334tan =x ,则=+++xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 答案:根据题意,有xxx x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++ 38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.答案:首先确定偶数的位置有多少种选择.第一行两个偶数有24C 种选择. 下面考虑这两个偶数所在的列,每列还需要再填空一个偶数,设为b a ,.情形一:若b a ,位于同一行,它们的位置有3种选择,此时剩下的四个偶数所填的位置唯一确定;情形二:若b a ,位于不同的行,它们的位置有6种选择,此时剩下的四个偶数所填的位置有2种选择.所以偶数的不是位置数为90)263(24=⋅+C .因此,总的填法数为4410009048488=C C .31.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .答案:一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21. 若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{=A ,满足题意. 综上所述,A 中元素个数的最大值为8. 1. 2. 3. 4. 5. 6. 8. 9. 10. 11. 11. 12.For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Fors chung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。

2016清华大学自主招生暨领军计划数学试题(精校word版,带解析)-历年自主招生考试数学试题大全

2016清华大学自主招生暨领军计划数学试题(精校word版,带解析)-历年自主招生考试数学试题大全

2016年清华大学自主招生暨领军计划试题1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A .0 B .1 C .2 D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x=,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+=C .060,0sin cos )cos(cos sin cos ==++C C B C B C B A D .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离 B .||AB 的最小值为4 C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=aa AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( ) A .b a 2=时,满足02190=∠PF F 的点P 有两个 B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为ac a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅. 6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测: 甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC . 8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A .8B .10C .11D .12【答案】B 【解析】由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ; 若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A =,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( ) A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC .3tan tan tan tan tan tan =++γβαγβαD .3tan tan tan tan tan tan -=++γβαγβα【答案】BD 【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x ,以上三式相加,即有3111-=++=++xyzzy x zx yz xy .答案BD . 12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0 B .xyz 的最大值为274- C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( )A .n n n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数D .781-+n n a a 为完全平方数 【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误.说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值.15.若复数z 满足11=+zz ,则z 可以取到的值有( ) A .21B .21-C .215-D .215+ 【答案】CD 【解析】因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( ) A .6552 B .4536 C .3528 D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程y x 21652=+的正整数解的组数为( ) A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( )A .22=IB .123=IC .964=ID .1205=I 【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nn n n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23 【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 . 【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322- 【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ .【答案】23【解析】根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin32cos ππi z +=,则=+++2223z z z z . 【答案】1322i - 【解析】根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ. 28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 . 【答案】20010033003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ. 29.若334tan =x ,则=+++xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 【答案】3【解析】根据题意,有xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++ 38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{ A ,满足题意. 综上所述,A 中元素个数的最大值为8.。

清华领军计划2016

清华领军计划2016

清华领军计划2016工作目标1.深入研究清华领军计划的背景和意义:我将深入挖掘2016年清华领军计划的政策背景、实施情况以及该计划在教育改革和社会发展中的重要意义。

通过对相关资料的搜集与分析,我希望能够全面了解这一计划的历史背景和它在推动我国高等教育改革中的作用。

2.追踪领军人物的成长轨迹:针对清华领军计划中涌现出的杰出人才,我将追踪他们的成长轨迹,了解他们在清华的学习经历、科研成就以及后来的事业发展。

这不仅可以展示清华领军计划的培养效果,也可以为后来的学子提供宝贵的经验和启示。

3.探讨计划的持续影响:我将关注清华领军计划对参与者以及社会的长期影响,分析这一计划在推动科技创新、服务国家战略以及培养未来领导者方面的持续效应。

工作任务1.资料搜集与整理:为了深入研究清华领军计划2016,我将首先进行广泛的资料搜集,包括政策文件、新闻报道、学术文章以及领军人物的访谈等。

通过这些资料的整理与分析,为后续工作奠定坚实的基础。

2.采访与报道:通过对清华领军计划2016的参与者和相关专家的采访,我希望能够获得第一手的信息和观点,为读者呈现一个真实、生动的领军计划画卷。

3.研究分析与报告撰写:基于资料搜集和采访所得,我将进行深入的研究分析,并撰写报告。

报告将详细阐述清华领军计划2016的背景、实施情况、成果以及影响,以期为相关政策制定者和实践者提供参考。

[]任务措施1.建立研究团队:为了高效地完成任务,我将组建一个跨学科的研究团队,成员包括教育研究者、社会学家、经济学家等。

团队成员将共同参与资料搜集、分析和报告撰写,确保研究结果的全面性和深度。

2.分阶段开展工作:我会将整个研究工作分为几个阶段,包括资料搜集、初步分析、深入研究、专家访谈、报告撰写等。

每个阶段都有明确的任务和截止时间,以确保工作的顺利进行。

3.质量控制与反馈机制:在研究过程中,我将设立质量控制和反馈机制,定期检查研究进度和质量,及时调整研究方法和策略。

2016年清华大学“领军计划”试题解析

2016年清华大学“领军计划”试题解析

2016年清华大学“领军计划”试题解析01友谊的小船说翻就翻,假如你不会游泳,就会随着小船一起沉入水底.从理论上来说,你和小船沉入水底后的水面相比于原来().A.一定上升B.—定下降C.一定相等D.条件不足,无法判断解析 人和小船受到的浮力在翻船前等于重力,翻船后小于重力.根据阿基米德原理,有F gV ρ=浮排,则V 排减少,水面下降.B 选项正确.02如图1所示,在光滑地面上,物块与弹簧相连做简谐运动,小车向右做匀速直线运动,则对于弹簧和物块组成的系统,当以地面为参考系时,动量__________,机械能__________;当以小车为参考系时,动量__________,机械能__________.(填“守恒”或者“不守恒”)解析 墙壁对弹簧有作用力,故动量不守恒.以地面为参考系时,该力的作用点没有位移,不做功,故机械能守恒.以小车为参考系时,该力的作用点有位移,所做的功不为零,故机械能不守恒.03如图2所示,水平光滑导轨上垂直放置两根质量均为m 且有电阻的金属杆,导轨宽处与窄处间距比为2:1,空间存在竖直向下的匀强磁场.现给左边的杆一个初速度0v ,在系统稳定时,左杆仍在宽轨上运动,右杆仍在窄轨上运动.则这个过程产生的热量Q =__________.解析 当系统稳定时,设左杆速度为1v ,右杆速度为2v ,在-此过程中金属杆的平均电流为I .根据动量定理,有102BIl t mvmv -∆=-,① 2BIl t mv ∆=.①联立式①和式①,得1202v v v +=.① 系统稳定时,回路中无电流,则有1220Blv Blv -=.① 即122.v v =①联立式①和式①,得102012,.55v v v v ==产生的热量为222201201112.2225Q mv mv mv mv ⎛⎫=-+= ⎪⎝⎭04如图3所示,空间存在水平向右的匀强电场E ,现有一质量为m 、带电量为q 的小球以初速度0v 从地面斜向上抛出,已知3mgE =,求小球落地点距离拋出点的最远距离.解析 小球的运动可以分解为平方向的匀加速直线运动和竖直方向的匀变速直线运动.设发射角为θ,则落地时小球的运动时间为2sin v t g θ=. 此过程中小球在水平方向的位移为2222000202sin cos 23sin 1cos 232sin 21.6v v qE x v t t m g v θθθθπθ=⋅+=+⎤⎛⎫=-+ ⎪⎥⎝⎭⎣⎦当3πθ=时,x 23v .05现有一轻质绳拉动小球在水平面内做匀速圆周运动,如图4所示.小球质量为m ,速率为v ,重力加速度为g ,轻绳与竖直方向的夹角为θ.求在小球运动半周的过程中拉力的冲量.解析 小球的受力如图5所示.根据牛顿第二定律,有2tan .mg ma mv Tπθ== 小球在运动半周的过程中,合力的冲量为2mv ,重力的冲量为cot 2Tmg m v πθ⋅=,所以力的冲量为06如图6所示,轨道AC 由倾角为θ的粗糙倾斜轨道AB 和水平光滑轨道BC 构成,a 球从AB 上距离B 点L 处静止释放,经B 点后在水平轨道BC 上运动(忽略小球a 过B 点时速率的微小变化);b 从C 点上方高为4.5L 处下落.a 、b 两球同时释放,并在C 处相遇,已知a 球与轨道AB 间的动摩擦因数μ=0.5,BC 间距离也为L ,则sin θ=____________.解析 a 球在斜面上运动的加速度为(sin cos )a g θμθ=-. ①a 球运动的时间为a t ①b 球运动的时间为b t =①a 、b 两球同时释放,并在C 处相遇,则有.a b t t =①联立式①~①,得4sin .5θ=07在水平面内,金属棒MN 以角速度ω绕过O 点的竖直轴顺时针旋转,空间存在竖直向下的匀强磁场,如图7所示.已知||||MO NO >,则下列说法中正确的是().A.M 点电势高于N 点B.M 点电势低于N 点C.若增大ω则M 、N 两点电势差增大D.若增大B ,则M 、N 两点电势差增大 解析 M 、N 两点电势差为221(||||)0.2MN M N M O O N MO NOU U U B MO NO ϕϕϕϕϕϕω=-=-+-=-=->A 选项正确.当ω或B 增大时,MN U 增大,C 、D 选项正确.08如图8所示电路中,小灯泡规格为“6 V ,3 W”, 34R =Ω,电源内阻1r =Ω,电压表、电流表均为理想电表.闭合开关,调节滑动变阻器阻值,使电压表示数为0,此时灯泡恰好正常发光,电流表的示数为 1 A.则电源电动势E =_____________,电源输出功率P =_____________,2R =_____________.解析 这是一个桥式电路,等效电路图如图9所示.当电压表示数为0时,电桥处于平衡状态.流过小灯泡的电流为0.5 A ,3R 两端的电压为2 V ,电源内阻的分压为1 V ,故电源电动势E =9V .电源输出功率P =8 W.两个支路的电流均为0.5A ,2R 两端的电压为6V ,故212R =Ω.09弹性绳原长为2)L L R <<,劲度系数为k ,上端挂在半径为R 的光滑圆轨的顶端,下端系一重量为G 的小球,小球套在圆轨上.平衡时,弹性绳与竖直方向夹角为θ.用L ,R ,k ,G 表示此时弹性绳的弹力.解析 小球受力如图11所示,根据平衡条件,有sin sin2.T G θθ=① 根据胡克定律,有(2cos ).T k R L θ=-①联立式①和式①,得cos ,.2()kL kLGT kR G kR Gθ==--10在质量均匀分布的星球(近似为球体)的北极和南极打一条竖直贯通的通道,一小球从北极由静止释放进入该通道,小球运动过程中不与通道发生碰撞,则小球做__________运动.解析 设星球质量为M ,半径为R ,小球质量为m .当小球运动到距球心为r 时,小球受到的引力为323.r Mm Mm R F G G r r R⎛⎫⎪⎝⎭==所以小球做的是简谐运动.11潜水员为测量某湖水深度,测得湖面气温127t =①,大气压强51010p =⨯ Pa.现将一盛有空气的试管从湖面带入湖底,整个过程管口始终向下.潜至湖底后水充满试管的一半,湖底温度27t =,则湖深约为().A.5mB.10mC.15mD.20m解析 试管在湖面时,管内气体的压强为1p p =,体积为V ,温度为1T =300K.试管在湖底时,管内气体的压强为2p p gh ρ=+,体积为2V,温度为2280T =K.根据理想气体的状态方程,有21122Vp p VT T =.解得8.7h ≈m.B 选项正确.12如图12所示,一用钉鞘锁定的导热活塞将导热气缸分成体积相等的左右两室,开始时气体压强之比为:5:3p p =右左,拔出钉鞘后活塞移动并最终保持稳定状态,外界温度恒定,则().A.稳定后左右两室体积比为5:3B.左室气体对右室气体做功C.左室气体吸热D.右室气体吸热解析 根据玻意耳定律,有p V pV =左左,①p V pV =右右.①联立式①和式①,得5:3V V ==右左.A 选项正确.左室气体膨胀,对右室气体做功,B 选项正确.两室气体内能不变,根据热力学第一定律U Q W ∆=+知,左室气体吸热,右室气体放热,C 选项正确,D 选项错误. 13有一左端封闭、右端开口的均匀U 形管,左管内有一段水银分割出两端长度相等的气柱,如图13所示,现向右管缓慢注入水银,设平衡后上段气体长1l ,下段气体长2l ,则1l 与2l 的关系为().A. 12l l >B. 12l l =C. 12l l <D.无法确定,视注入水银的量解析 设左管内水银柱长为h ,玻璃管的横截面积为S ,两段气体的初始长度为l ,上段气体的初始压强为p ,平衡后的压强为1p .根据玻意耳定律,有1112()(),()()()().p Sl p Sl p gh Sl p gh Sl ρρ=+=+解得1211,.p p gh l l l l p p ghρρ+==+ 由“糖水不等式”a a mb b m+<+,得12l l <,C 选项正确. 14在高为h 的立柱上放一质量为M 的球,质量为m 的子弹以一定初速度水平射向球并从球中穿出,球与子弹的落地点距立柱水平距离分别为S 和s ,重力加速度为g ,则子弹的初速度为._______________.解析 根据动量守恒定律,有0mv mv MV =+. ① 根据平抛运动的规律,有s vt =,① S Vt =,① 21.2h gt =①联立式①~①,得0M v s S m ⎛=+ ⎝15在高为H 处平抛一物体,同时在其正下方水平地面上斜抛一物体,两者同时落到地面上同一点,则斜抛物体的射高为____________.解析 设斜抛初速度的竖直分量为y v ,则有2.yv g= 斜抛物体的射高为2.24y v Hh g == 16从地面以初速度0v 竖直向上抛出一小球,与此同时,在该小球上抛能达到的最高处有另外一个小球以初速度0v 竖直向下抛出.忽略空气阻力,则两球相遇时速度之比为____________.解析 根据竖直上抛运动和竖直下抛运动的规律,有22200011222v v t gt v t gt g -++=.解得.4v t g= 则两球相遇时速度之比为003.5v gt v gt -=+ 17质量分别为1m 、2m (12m m >)的两物体具有相同的初动能,现分别给其与速度方向相反的阻力1f 、2f 使其减速,经过时间t 后两物体同时停止,运动距离分别为1s 、2s ,则1f _________2f ,1s _________2s .(填“>”“<”或“=”)解析由p =12p p >.根据动量定理,有ft p =,则12f f >. 根据动能定理,有k fs E =,则12s s <.18如图14所示,水平细绳与一弹簧作用于小球使其处于静止状态,若剪断细绳,则在剪断细绳的一瞬间().A.小球竖直方向加速度为0B.小球水平方向加速度为0C.弹簧弹力为cos mg θD.弹簧弹力为cos mgθ解析 剪断细绳的一瞬间,弹賛弹力不变,仍为cos mgθ.此时重力和弹簧弹力的合力水平向右,小球水平方向加速度为tan g θ.A 、D 选项正确.19如图15所示,光滑平行U 形轨道相距为L ,倾角为θ,一质量为m 、电阻为R 、长为L 的导体棒置于距导轨底端L 处.空间存在竖直向上的变化磁场,磁感应强度0(0)B B kt k =+>.现在导体棒上加一沿斜面向上的力,使导体棒始终保持静止,重力加速度为g ,则t 时刻的力F =_________.解析 根据法拉第电磁感应定律,有2cos BE S kL tθ∆==∆. 回路中的感应电流2cos E kL I R Rθ==. 导体棒受到的安培力30()cos B kt kL f BIL Rθ+==. 导体棒的受力如图16所示,根据平衡条件,有320()cos cos sin sin B kt kL F f mg mg Rθθθθ+=+=+.20导体球壳内有一点P ,壳外有一正点电荷位于Q 处,现将该电荷的电荷量加倍,则P 点电势__________(填“升高”“降低”或“不变”);P 点场强__________(填“升高”“降低”或“不变”).解析 处于静电平衡状态的整个导体是个等势体,内部的场强处处为零.当电荷量加倍时,P 点电势升高,场强不变.21下列物理学家及其成果,已经获得诺贝尔奖的有(). A.伦琴发现X 射线 B.爱因斯坦发现相对论 C.普朗克提出量子论D.LIGO (激光干涉引力波观测站)探测到引力波解析 爱因斯坦由于发现了光电效应的规律而获得1921年的诺贝尔物理学奖.A 、C 、D 选项正确.22像在实物的上方叫上现折射,反之则叫下现折射,则天气炎热的高速公路上看到的“水纹”一样的东西属于__________;“海市蜃楼”属于__________.解析 参见本书第15页第4题. 23波长均为λ的两束平行光如图17所示打在光屏上,发生干涉现象,干涉条纹的间距为().A. sin sin λαβ+ B. cos cos λαβ+C.sin sin λαβ-D.cos cos λαβ-解析 如图18所示,设点M 、N 处为相邻亮条纹,条纹间距为x ∆.则光线1、3的光程差满足31.r r m λ-= 光线2、4的光程差满足42.r r n λ-=两式做差,有3421()()()r r r r m n λλ-+-=-=过点M 、N 分别作光线2、3的垂线,则有sin sin x x αβλ∆⋅+∆⋅= 解得.sin sin x λαβ∆=+A 选项正确.24引力波是时空的涟漪.在北京时间2016年2月11日,美国科学家通过两个相距3000公里的监测站探测到了来自于宇宙深处距离地球数亿光年的两个巨大的黑洞猛烈撞击并融合所产生的引力波.双黑洞的初始质量分别是太阳的52倍和14倍,合并后的黑洞质量是太阳的62倍.下列说法中正确的是().A.引力波在宇宙中的传递是能量的传递B.引力波先后到达两个监测站的时间差不会超过10msC.引力波在真空中以光速传递D.双黑洞合并过程质量守恒解析 引力波在空间传播的方式与电磁波类似,以光速传播,携带有一定的能量和信息.引力波先后到达两个监测站的时间差不会超过6-28310m 10s=10310m⨯=⨯ms.A 、B 、C 选项正确.双黑洞合并过程质量不守恒,质量亏损产生的能量以引力波的形式释放出来,D 选项错误.25在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图19中实线所示.两虚线和轨迹将平面分为五个区域.不考虑其他原子核对α粒子的作用,那么该原子核可能在区域__________.解析 曲线运动的轨迹特点是切于速度偏向力,故原子核可能在区域①. 26 已知空气分子的平均动能为kT ,则在常温下,质量为234.710m -=⨯kg 的空气分子的德布罗意波波长的数量级为____________.解析 玻尔兹曼常量231.3810k -=⨯J/K ,常温T =298K ,普朗克常量346.6310h -=⨯J·s.空气分子的德布罗意波波长为121022khp mE mkTλ-===≈m.27质量为m的小球从高为h的地方释放,如果在光滑轨道上的A点飞出,求h的值;如果是从轨道的B点(圆弧的最高点)飞出,求h的值.(图20中两虚线夹角为60°,圆弧曲率半径为R)解析小球在A点脱离轨道做斜上抛运动.小球在A点的方程为2cos30.Avmg mR︒=①根据动能定理,有21.2Amgh mv=①联立式①和式①,得3.h=小球在B点脱离轨道做平拋运动,小球在B点的方程为2.Bvmg mR=①根据动能定理,有21[(1cos30)].2Bmg h R mv--︒=①联立式①和式①两式,得33.h-28如图21所示,两物块重叠放置,从距地面h=5m高的地方静止释放,假定所有碰撞均为弹性碰撞,B碰地后静止,A弹起的高度为h',那么().A. h '=20mB. h '=10mC. 3A B m m =D. 2A B m m =解析 根据机械能守恒定律和动量守恒,有()A B A m m gh m gh '+=,①m m m①联立式①和式①,得20m,3B A h m m '==A 选项正确.29一束由红、黄、绿三种单色光组成的光线从一平板玻璃砖的上表面以60°角入射,经两次折射后从玻璃砖的下表面射出,已知该玻璃对红光的折射率为 1.5,则最先射出的是_____________.解析 某单色光的光路图如图22所示.设玻璃砖的厚度为d ,则单色光穿过玻璃所用的时间为cos dt v α=. ①光在玻璃中的传播速度为.cv n=①根据折射定律,有sin .sin nθα=①联立式①~①,得2sin .sin2d t c θα=①红、黄、绿三种单色光所对应的物理量的角标分别记为1、2、3,则有321 1.5.n n n >>=于是32132132145,22290,sin 2sin 2sin 2 1.ααααααααα<<<︒<<<︒<<< 由式①,得321.t t t ><所以最先射出的是红光.30如图23所示,在空间有匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B.光滑绝缘空心细管的长度为h ,管内有一质量为m 、带正电q 的小球.开始时小球相对管静止,管带着小球沿垂直于管长度方向匀速运动,速率为u .设重力及其他阻力均可忽略不计,当小球离开管口后,在磁场中做圆周运动的半径为(). A.21mu qBhqB mu + B.2mu qBhqB muC. 2mu qBhqB muD.12mu qBh qB mu+解析 小球沿管长度方向做匀加速直线运动,加速度quBa m=.小球离开管口时的速度2221qBh v u ah u mu=++21mv mu qBhr qB qB mu ==+,A 选项正确.。

2016领军计划试题

2016领军计划试题

2016领军计划试题第一、工作目标1.深入研究领军计划的特点与需求:我将深入分析领军计划的历史数据、成功案例以及当前的市场需求,以确保我们的试题能够精确地反映出领军计划的考试趋势和重点。

这不仅包括对试题内容的深入研究,还包括对考试形式和评分标准的细致分析。

2.创造高质量的试题:基于对领军计划深入的理解,我将致力于创造高质量、有深度的试题。

这些试题不仅要能够全面考察考生的知识水平,还要能够激发他们的思考能力和创新能力。

3.持续优化试题库:我将持续关注领军计划的最新动态,定期对试题库进行更新和优化,确保我们的试题始终与领军计划的要求保持同步。

第二、工作任务1.组织研究团队:我将招募并组织一个由资深教育专家和领军计划资深考生组成的研究团队。

我们的任务是深入研究领军计划的考试特点和趋势,为试题的创作提供专业的支持。

2.创作试题:在研究团队的支持下,我将开始创作试题。

这个过程不仅包括对试题内容的创作,还包括对试题形式的创新,以期能够创造出一套既全面又有趣味的试题。

3.审核与优化:创作完成后,我将组织团队成员对试题进行严格的审核,确保每一道试题的质量和准确性。

在审核的过程中,我们也会根据反馈对试题进行必要的优化和调整。

4.定期更新试题库:在试题发布后,我将组织团队定期收集用户的反馈和使用数据,以便对试题库进行持续的更新和优化。

第三、任务措施1.开展深入的文献调研:为了确保试题创作的准确性和深度,我将组织团队成员开展深入的文献调研,包括领军计划的官方指南、历年试题、以及相关的教育论文和研究报告。

这将帮助我们准确把握领军计划的考试特点和趋势。

2.进行实地的访谈和调研:除了文献调研,我还计划组织团队成员进行实地的访谈和调研,对象包括领军计划的资深考官、曾经的领军计划考生以及领军计划的培训机构教师。

通过这些访谈,我们希望从一线获取最真实、最直接的信息,以指导我们的试题创作。

3.组织专业的试题评审:在试题创作完成后,我将组织专业的试题评审,邀请领军计划的资深专家和学者对试题进行评审。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年清华大学领军计划机考试试题分析
2016年清华大学领军计划/自主招生笔试举行,今年仍然采用了去年的机考模式,在开考前开通了机考模拟系统,让学生提前熟悉考试形式及操作方法。

2016年通过清华大学自主招生、领军计划及自强计划初审的6000余名考生在全国36个考点参加初试。

物理探究科目中涉及了人类首次探测到引力波。

清华招办主任刘震表示,该题通过介绍相关实验背景和结果,考查学生提取信息、加工信息并利用关键信息进行推理判断的能力。

在考试中其中数学40道题目、语文30道题目、物理35道题目。

阅读与表达:《红楼梦》二次入选、文言文考《左传》
阅读与表达主要从语文基础知识、阅读角度进行考试,阅读与表达考查了《红楼梦》文本解读以及宋词的格律炼字等。

这也是清华连续第二年将《红楼梦》中的内容放入考题当中。

在选择题目中试题涉及到:字音、字形、词语、句子衔接、错别字、文言文等内容外,还考查了汉字书写的笔顺问题、书体知识、传统文化知识等。

文言文则是考查的《左传》的内容。

语文还有一道创新题,大意是让考生翻译民族语言。

物理探究考察内容:引力波、小船说翻就翻、台球等物理知识实际应用
2016年清华大学自主招生的物理与探究对物理学科的基础知识和物理学科的应用进行了科学的地考察,既涉及到物理学科的核心知识,也考察到了物理前沿科学的知识,注重物理学科的社会实际应用:例如大家最熟悉的引力波材料分析、相对论、友谊的小船等,物理学科35道题目中其中有1/3的题目大部分学生是可以做的,剩下的部分相对灵活,涉及面广,试题与大学物理的衔接和部分竞赛内容相似,但是与竞赛不同的是自主招生试题考查学生的知识的应用性
和灵活处理,部分题目可以根据知识和推理等得出答案。

例如高空粒子衰变周期考察,像友谊的小船这个题目考察了浮力问题不需要太深的物理知识就可以选择,还有物理学科基础常识向光学仪器分辨率问题、还有科学普及科学史类关于世界诺贝尔奖关于物理学科的内容及人物。

另外,台球是非常受年轻人欢迎的运动,涉及许多经典力学的规律,试题就以情境设计问题,引导学生学以致用。

2016年清华自主招生物理学科非常注重理论联系实际,紧密联系生产、生活和科技前沿,深入挖掘情境背后的物理内涵,考查学生构建物理模型,灵活运用物理知识解决实际问题的能力。

同时,也强调通过设置一些饶有兴趣的现象,引导学生探究背后的物理原因”这是清华大学招办主任的阐述。

数学与逻辑考察内容:
数学与逻辑和物理探究着重考查学生综合运用所学知
识分析和解决问题的能力,考查学生的逻辑推理能力和基本的数学素养。

为了更好地区分优秀考生,试题不仅引入多选题,而且采用单选题、多选题混合编排的方式,用以区分不同水平的学生,也增加了能力考查的力度。

多选题学生全部选对得满分,选对但不全得部分,有选错的得0分。

在数学考试中还涉及一些大学基础知识部分符号有些同学都没见过。

未来一周,绝大部分高校都将完成自主招生测试。

11
日上午北大普通自主招生和筑梦计划的测试,语文、数学、英语全为客观题,语文主要考查学生的文学知识面、阅读量和理解力;数学难度介于高考和竞赛之间,注重技巧性和灵活性;英语有单选、完形填空和阅读理解,单选侧重词汇和语法,部分词汇来自大学四、六级。

11日下午,北大将举行博雅计划笔试,文科生考语文、数学、英语、历史、政治5科,理科生考语文、数学、英语、物理、化学5科,每科考试时间1小时,满分100分。

12日进行体测。

由于技术上的原因目前大学自主招生笔试系统中只能
采取选择题方式进行考试,由于数学和物理涉及到公式、符号、图形或者实验等,目前采取单项选择和多项选择是一种不错的选择,相信在不久将来会会有学校实验数学和物理等
理科的解答题在线考试,因为目前我国的国家863计划项目scienceword已经完全实现了自然科学信息文档的自由处理和编辑,彻底实现了在互联网端和文档里直接进行在线数理化考试,主要的是实现了在线数学、物理、化学等自然科学的解题答自由输入和便捷答题。

在不久的将来在线机考数理化等自然科学即将到来,本项目已经在部分学校和机构成功推广,中国考试将进入数字化时代和数据分析时代。

(文:北京赛通高考大数据研究中心)。

相关文档
最新文档