安徽省合肥市蜀山区2020年中考数学二模试卷(含解析)

合集下载

(安徽卷) 2020年中考数学第二次模拟考试(参考答案)

(安徽卷) 2020年中考数学第二次模拟考试(参考答案)

2
4
∴3b=5c,∴ b 5 . c3
数学 第 6页(共 6页) 6
2
∴AE=b﹣CE=b﹣ 1 (b+c)= 1 (b﹣c),
2
2
11
1
∴EF=AF﹣AE= b﹣ (b﹣c)= c,
22
2
∴DF=EF;
②过点 A 作 AP⊥BG 于 P,如图 1 所示:
∵DF 是△CAB 的中位线, ∴DF∥AB, ∴∠DFC=∠BAC, ∵∠DFC=∠DEF+∠EDF,EF=DF, ∴∠DEF=∠EDF, ∴∠BAP+∠PAC=2∠DEF, ∵ED⊥BG,AP⊥BG, ∴DE∥AP, ∴∠PAC=∠DEF, ∴∠BAP=∠DEF=∠PAC, ∵AP⊥BG, ∴AB=AG=4, ∴CG=AC﹣AG=6﹣4=2; (2)连接 BE、DG,如图 2 所示:
1
∴S△AOC= 2 ×OC×AD= 2 ×8×3=12;
(2)∵A(3,a),B(1,b)两点在反比例函数 y k (x>0)的图象上, x
∴3a=b.
∵ a2 2ab b2 =4,
∴|a-b|=4.
∵由图象可知 a<b,
∴a-b=-4.
数学 第 3页(共 6页) 3
a b 4
a 2
∴ 3a b ,解得 b 6
∴A(3,2),B(1,6).
把 A 点的坐标代入 y k (x>0)得, 2 k ,
x
3
∴k=6.
∴反比例函数的解析式为 y 6 (x>0); x
设一次函数的解析式为 y=mx+n,
∵一次函数的图象经过点 A,B,
m n 6 ∴ 3m n 2 .
m 2 解得 n 8 .

安徽省合肥市蜀山区中考数学二模试卷含答案解析

安徽省合肥市蜀山区中考数学二模试卷含答案解析

安徽省合肥市蜀山区中考数学二模试卷一、选择题:本大题共10道小题,每小题4分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.﹣的绝对值是()A.﹣3 B.3 C.﹣D.2.下列运算中,正确的是()A.5a﹣2a=3 B.(x+2y)2=x2+4y2C.x8÷x4=x2D.(2a)3=8a33.一种甲型H1N1流感病毒的直径约为0.00000078m,数0.00000078用科学记数法表示为()A.0.78×10﹣5B.7.8×10﹣6C.7.8×10﹣7D.78×10﹣84.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50° B.45°C.35°D.30°5.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:成绩(m) 2.35 2.4 2.45 2.5 2.55次数 1 1 2 5 1则下列关于这组数据的说法中正确的是()A.众数是2.45 B.平均数是2.45 C.中位数是2.5 D.方差是0.486.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A.2πB.C.4πD.8π7.若a、b均为正整数,且a>,b>,则a+b的最小值是()A.6 B.7 C.8 D.98.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD9.在平面直角坐标系中双曲线经过△CDB顶点B,边BC过坐标原点O,点D在x轴的正半轴上,且∠BDC=90°,现将△CDB绕点B顺时针旋转得到对应△AOB如图所示,此时AB∥x轴,OA=.则k的值是()A.B. C.﹣3 D.310.如图,在平行四边形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P、Q同时从顶点A 出发,点P沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x秒,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分11.分解因式:ax2﹣6ax+9a=.12.有依次排列的3个数:2,8,7.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,6,8,﹣1,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,4,6,2,8,﹣9,﹣1,8,7;继续依次操作下去…,那么从数串2,8,7开始操作第100次后所产生的那个新数串的所有数之和是.13.合肥大建设再创新高潮,继“高架时代”后合肥即将迈入“地铁时代”,合肥市投入200亿元用于地下轨道交通建设,并计划、两年累计再投入528亿元用于地下轨道交通建设,若设这两年中投入资金的年平均增长率为x,则可列方程为.14.如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等,设BC=a,AC=b,AB=c,给出以下几个结论:①如果AD是BC边中线,那么CE是AB边中线;②AE的长度为;③BD的长度为;④若∠BAC=90°,△ABC的面积为S,则S=AE•BD.其中正确的结论是(将正确结论的序号都填上)三、本大题共2小题,每小题8分,共16分15.计算: +(﹣)﹣2﹣(﹣1)0﹣2sin60°.16.解方程:.四、本大题共2小题,每小题8分,共16分17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).①画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.18.为加强公路的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2,如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.五、本大题共2小题,每小题10分,共20分19.五一期间,小明同学到滨湖湿地公园参加校无线电测向科技社团组织的实践活动,目标点B在观测点A北偏西30°方向,距观测点A直线距离600米.由于观测点A和目标点B之间被一片湿地分隔,无法直接通行,小明根据地形决定从观测点A出发,沿东北方向走一段距离后,到达位于目标点B南偏东75°方向的C处,求小明还要走多远才能到达目标点B?(结果保留根号)20.小明、小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,经测试三人的运动水平相当,体委权衡再三,决定用抽签的方式决定让谁参加.他做了3张外表完全相同的签,里面分别写了字母A,B,C,规则是谁抽到“A”,谁就去参赛.(1)小亮认为,第一个抽签不合算,因为3个签中只有一个“A”,如果第一个人没抽到“A”,则后面的人抽到“A”的概率会变大.(2)小强认为,最后抽不合算,因为如果前面有人把“A”抽走了,自己就没有机会了.(3)小明认为,无论第几个抽签,抽到A的概率都是相同的.你认为三人谁说的有道理?请说明理由.六、本题满分12分21.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥C,交AC 的延长线于点E.(1)求证:直线DE是⊙O的切线;(1)若AE=8,⊙O的半径为5,求DE的长.七、本题满分12分大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x 天后将这批葡萄一次性出售,设这批葡萄的销售金额为y 元,写出y 关于x 的函数关系式,并说明销售金额y 随存放天数x 的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?八、本题满分14分23.定义:如图1,点M 、N 把线段AB 分割成AM ,MN 和BN 三段,若以AM 、MN 、BN 为边的三角形是一个直接三角形,则称点M 、N 是线段AB 的勾股分割点.(1)如图2所示,已知点C 是线段AB 上的一定点,过C 作直线l ⊥AB ,在直线l 上截取CE=CA ,连接BE ,BE 的垂直平分线交AB 于点D ,求证:点C 、D 是线段AB 的勾股分割点. (2)已知点M 、N 是线段AB 的勾股分割点,若AM=2,NM=3,求BN 的长;(3)如图3,已知点M ,N 是线段AB 的勾股分割点,记AM=a ,BN=b ,MN=c ,且a <c ,b <c ,△AMC ,△MND 和△NBE 均是等边三角形,AE 分别交CM 、DM 、DN 于点F 、G 、H ,若H 是DN 的中点.①证明:a=b ;②试猜想S △AMF ,S BCN 和S 四边形ABCN 的数量关系(不需说明理由)安徽省合肥市蜀山区中考数学二模试卷参考答案与试题解析一、选择题:本大题共10道小题,每小题4分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.﹣的绝对值是()A.﹣3 B.3 C.﹣D.【考点】倒数.【专题】常规题型.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣的绝对值是.故选:D.【点评】负数的绝对值等于它的相反数.2.下列运算中,正确的是()A.5a﹣2a=3 B.(x+2y)2=x2+4y2C.x8÷x4=x2D.(2a)3=8a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的除法;完全平方公式.【分析】根据合并同类项、完全平方公式、同底数幂的除法、积的乘方,即可解答.【解答】解:A、5a﹣2a=3a,故错误;B、(x+2y)2=x2+4xy+4y2,故错误;C、x8÷x4=x4,故错误;D、正确;故选:D.【点评】本题考查了合并同类项、完全平方公式、同底数幂的除法、积的乘方,解决本题的关键是熟记合并同类项、完全平方公式、同底数幂的除法、积的乘方.3.一种甲型H1N1流感病毒的直径约为0.00000078m,数0.00000078用科学记数法表示为()A.0.78×10﹣5B.7.8×10﹣6C.7.8×10﹣7D.78×10﹣8【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000078=7.8×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50° B.45°C.35°D.30°【考点】平行线的性质;直角三角形的性质.【专题】几何图形问题.【分析】根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.【解答】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.【点评】本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.5.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:成绩(m) 2.35 2.4 2.45 2.5 2.55次数 1 1 2 5 1则下列关于这组数据的说法中正确的是()A.众数是2.45 B.平均数是2.45 C.中位数是2.5 D.方差是0.48【考点】方差;算术平均数;中位数;众数.【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.【解答】解:A、如图表所示:众数是2.5,故此选项错误;B、平均数是:(2.35+2.4+2.45×2+2.5×5+2.55)=2.47(m),故此选项错误;C、中位数是: =2.5,故此选项正确;D、方差为: [(2.35﹣2.225)2+(2.4﹣2.225)2+…+(2.55﹣2.225)2]=(0.015625+0.030625+0.050625+0.378125+0.105625)=0.0580625,故此选项错误;故选:C.【点评】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.6.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A.2πB.C.4πD.8π【考点】圆锥的计算;由三视图判断几何体.【专题】计算题.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥.【解答】解:依题意知母线长l=4,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π•1•4=4π.故选C.【点评】本题主要考查三视图的知识和圆锥侧面面积的计算;解决此类图的关键是由三视图得到立体图形;学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,易造成错误.7.若a、b均为正整数,且a>,b>,则a+b的最小值是()A.6 B.7 C.8 D.9【考点】立方根;算术平方根.【分析】先根据平方根和立方根估算出a,b的范围,再确定a,b的最小正整数值,即可解答.【解答】解:∵9<11<16,∴3<<4,而a>,∴正整数a的最小值为4,∵8<9<27,∴2<<3,而b,∴正整数b的最小值为3,∴a+b的最小值是3+4=7.故选:B.【点评】本题考查了立方根、估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根和立方根.8.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD【考点】菱形的判定.【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.【点评】此题考查了中点四边形的性质、菱形的判定以及三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.9.在平面直角坐标系中双曲线经过△CDB顶点B,边BC过坐标原点O,点D在x轴的正半轴上,且∠BDC=90°,现将△CDB绕点B顺时针旋转得到对应△AOB如图所示,此时AB∥x轴,OA=.则k的值是()A.B. C.﹣3 D.3【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】先求得△BOD是等边三角形,即可求得B的坐标,然后根据待定系数法即可求得双曲线的解析式.【解答】解:过A作AE⊥x轴于E,BF⊥x轴于F,∵AB∥x轴,∴∠ABO=∠BOD,∠ABD+∠BDO=180°,∵将△CDB绕点B顺时针旋转得到对应△AOB,∴∠ABO=∠CBD,∴∠BOD=∠OBD,∵OB=BD,∴∠BOD=∠BDO,∴△BOD是等边三角形,∴∠BOD=60°,∠BAO=∠AOE=30°,∵OA=,∴AE=BF=,∴B(1,);∵双曲线y=经过点B,∴k=1×=,故选B.【点评】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,求得△BOD是等边三角形是解题的关键.10.如图,在平行四边形ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P、Q同时从顶点A 出发,点P沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当Q到达点D时,两个点随之停止运动.设运动时间为x秒,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】几何动点问题;压轴题.【分析】当点P在AB上时,易得S△APQ的关系式;当点P在BC上时,高不变,但底边在增大,所以P、Q经过的路径与线段PQ围成的图形的面积关系式为一个一次函数;当P在CD上时,表示出所围成的面积关系式,根据开口方向判断出相应的图象即可.【解答】解:当点P在AB上时,即0≤x≤3时,P、Q经过的路径与线段PQ围成的图形的面积=x×=;当点P在BC上时,即3≤x≤9时,P、Q经过的路径与线段PQ围成的图形的面积=×3×+(2x﹣6+x﹣3)=﹣,y随x的增大而增大;当点P在CD上时,即9≤x≤12时,P、Q经过的路径与线段PQ围成的图形的面积=12×﹣(12﹣x)(﹣+12)=+12x﹣36;综上,图象A符合题意.故选A.【点评】本题主要考查了动点问题的函数图象,考查了学生从图象中读取信息的能力,正确列出表达式,是解答本题的关键.二、填空题:本大题共4小题,每小题5分,共20分11.分解因式:ax2﹣6ax+9a=a(x﹣3)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:ax2﹣6ax+9a=a(x2﹣6x+9)﹣﹣(提取公因式)=a(x﹣3)2.﹣﹣(完全平方公式)故答案为:a(x﹣3)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.有依次排列的3个数:2,8,7.对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,6,8,﹣1,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,4,6,2,8,﹣9,﹣1,8,7;继续依次操作下去…,那么从数串2,8,7开始操作第100次后所产生的那个新数串的所有数之和是517.【考点】规律型:数字的变化类.【专题】压轴题.【分析】根据题意分别求得第一次操作,第二次操作,第三次操作所增加的数,可发现是定值5,从而求得第100次操作后所有数之和为2+8+7+100×5=517.【解答】解:第一次操作:6,﹣1第二次操作:4,2,﹣9,8第三次操作:2,2,﹣4,6,﹣17,8,9,﹣1第一次操作增加6﹣1=5第二次操作增加4+2﹣9+8=5第三次操作增加2+2﹣4+6﹣17+8+9﹣1=5即,每次操作加5,第100次操作后所有数之和为2+8+7+100×5=517.故答案是:517.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求要有一定的解题技巧.解题的关键是能找到所增加的数是定值5.13.合肥大建设再创新高潮,继“高架时代”后合肥即将迈入“地铁时代”,合肥市投入200亿元用于地下轨道交通建设,并计划、两年累计再投入528亿元用于地下轨道交通建设,若设这两年中投入资金的年平均增长率为x,则可列方程为200(1+x)+200(1+x)2=528.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】分别表示出、的额,根据、两年累计再投入528亿元可列方程.【解答】解:设这两年中投入资金的年平均增长率为x,则额为200(1+x),的额为:200(1+x)2,根据、两年累计再投入528亿元,可列方程:200(1+x)+200(1+x)2=528,故答案为:200(1+x)+200(1+x)2=528.【点评】本题主要考查根据实际问题列方程的能力,分析题意准确抓住相等关系是解方程的关键.14.如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等,设BC=a,AC=b,AB=c,给出以下几个结论:①如果AD是BC边中线,那么CE是AB边中线;②AE的长度为;③BD的长度为;④若∠BAC=90°,△ABC的面积为S,则S=AE•BD.其中正确的结论是②③④(将正确结论的序号都填上)【考点】三角形综合题.【分析】由中线的定义,可得到AB=AC,但AB=AC时未必有AC=BC,可判断①;△ABD与△ACD的周长相等,我们可得出:AB+BD=AC+CD,等式的左右边正好是三角形ABC周长的一半,有AB,AC的值,那么就能求出BD的长了,同理可求出AE的长,可判断②③;把AE和BD代入计算,结合勾股定理可求得S,可判断④;则可得出答案.【解答】解:当AD是BC边中线时,则BD=CD,∵△ABD与△ACD的周长相等,∴AB=AC,但此时,不能得出AC=BC,即不能得出CE是AB的中线,故①不正确;∵△ABD与△ACD的周长相等,BC=a,AC=b,AB=c,∴AB+BD+AD=AC+CD+AD,∴AB+BD=AC+CD,∵AB+BD+CD+AC=a+b+c,∴AB+BD=AC+CD=.∴BD=﹣c=,同理AE=,故②③都正确;当∠BAC=90°时,则b2+c2=a2,∴AE•BE=×= [a﹣(c﹣b)][a﹣(c﹣b)]= [a2﹣(c﹣b)2]= [a2﹣(c2+b2﹣2bc)]=×2bc=bc=S,故④正确;综上可知正确的结论②③④,故答案为:②③④.【点评】本题为三角形的综合应用,主要考查了三角形各边之间的关系问题及三角形的面积,在列式子的时候要注意找出等量关系,难度适中.三、本大题共2小题,每小题8分,共16分15.计算: +(﹣)﹣2﹣(﹣1)0﹣2sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+4﹣1﹣2×=+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:.【考点】解分式方程.【分析】首先找出最简公分母,进而去分母求出方程的根即可.【解答】解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.【点评】此题主要考查了解分式方程,正确去分母得出是解题关键.四、本大题共2小题,每小题8分,共16分17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).①画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】①根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出B1点的坐标;②根据网格结构找出点A、B、C绕点O按照逆时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出B2点的坐标.【解答】解:①如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0);②如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).【点评】本题考查了利用旋转变换与轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.为加强公路的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2,如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.【考点】一次函数的应用.【分析】(1)根据图象的信息得出即可;(2)首先设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为2x元/m3,设A(a,30)结合图象可得方程组,解方程组可得a、x的值,再设出解析式,利用待定系数法求出即可.【解答】解:(1)图中B点的实际意义表示当用水25m3时,所交水费为70元;(2)设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为2x元/m3,设A(a,30),则,解得,,∴A(15,30),B(25,70)设线段AB所在直线的表达式为y=kx+b,则,解得,∴线段AB所在直线的表达式为y=4x﹣30.【点评】此题主要考查了一次函数应用以及待定系数法求一次函数解析式,根据题意求出直线AB 是解此题的关键.五、本大题共2小题,每小题10分,共20分19.五一期间,小明同学到滨湖湿地公园参加校无线电测向科技社团组织的实践活动,目标点B在观测点A北偏西30°方向,距观测点A直线距离600米.由于观测点A和目标点B之间被一片湿地分隔,无法直接通行,小明根据地形决定从观测点A出发,沿东北方向走一段距离后,到达位于目标点B南偏东75°方向的C处,求小明还要走多远才能到达目标点B?(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】作AD⊥BC于D,根据方向角可知∠ABD=45°,根据勾股定理求出BD的长,根据题意求出∠C=60°,根据正切的概念求出CD的长,求和即可.【解答】解:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=600米,∴AD=DB=300米,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,tan∠C=,∴CD==100,∴BC=BD+CD=300+100(米).答:小明还要走(300+100)米才能到达目标点B.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.20.小明、小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,经测试三人的运动水平相当,体委权衡再三,决定用抽签的方式决定让谁参加.他做了3张外表完全相同的签,里面分别写了字母A,B,C,规则是谁抽到“A”,谁就去参赛.(1)小亮认为,第一个抽签不合算,因为3个签中只有一个“A”,如果第一个人没抽到“A”,则后面的人抽到“A”的概率会变大.(2)小强认为,最后抽不合算,因为如果前面有人把“A”抽走了,自己就没有机会了.(3)小明认为,无论第几个抽签,抽到A的概率都是相同的.你认为三人谁说的有道理?请说明理由.【考点】列表法与树状图法.【专题】计算题.【分析】不妨设小亮首先抽签,画树状图展示所有6种等可能的结果数,再找出小明、小亮、小强抽到A签的结果数,然后根据概率公式可计算出他们抽到A签的结果数,通过比较概率的大小可判断谁说的正确.【解答】解:小明的说法有道理.理由如下:不妨设小亮首先抽签,画树状图为:共有6种等可能的结果数,其中小明、小亮、小强抽到A签的结果数都是2,所以他们抽到A签的结果数都是,所以无论第几个抽签,抽到A的概率都是相同的.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.六、本题满分12分21.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥C,交AC 的延长线于点E.(1)求证:直线DE是⊙O的切线;(1)若AE=8,⊙O的半径为5,求DE的长.【考点】切线的判定.【分析】(1)连接OD,由角平分线和等腰三角形的性质得出∠ODA=EAD,证出EA∥OD,再由已知条件得出DE⊥OD,即可得出结论.(2)作DF⊥AB,垂足为F,由AAS证明△EAD≌△FAD,得出AF=AE=8,DF=DE,求出OF=3,由勾股定理得出DF,即可得出结果.【解答】(1)证明:连接OD,如图1所示:∵AD平分∠BAC,∴∠EAD=∠OAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=EAD,∴EA∥OD,∵DE⊥EA,∴DE⊥OD,∵点D在⊙O上,∴直线DE与⊙O相切.(2)解:作DF⊥AB,垂足为F,如图2所示:∴∠DFA=∠DEA=90°,在△EAD和△FAD中,,∴△EAD≌△FAD(AAS),∴AF=AE=8,DF=DE,∵OA=OD=5,∴OF=3,在Rt△DOF中,DF===4,∴DE=DF=4.【点评】本题考查圆与直线相切的判定、平行线的判定与性质、三角形全等的判定与性质、勾股定理等知识,熟练掌握切线的判定方法,证明三角形全等是解决问题(2)的关键.七、本题满分12分22.大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x天后将这批葡萄一次性出售,设这批葡萄的销售金额为y元,写出y关于x的函数关系式,并说明销售金额y随存放天数x的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?【考点】二次函数的应用.【分析】(1)销售总金额=x天后的市场价×可售葡萄的总质量;(2)最大利润为:销售总金额﹣x天的总费用﹣成本,进而求得最值即可.【解答】解:(1)根据题意得:y=(2000﹣10x)(0.2x+10),即y=﹣2x2+300x+20000,配方得:y=﹣2(x﹣75)2+31250,(0≤x≤120),则当0≤x<75时,y随x的增大而增大;(2)设将这批葡萄存放x天后出售可获得利润为W,根据题意得:W=(﹣2x2+300x+20000)﹣10×2000﹣20x,即W=﹣2x2+280x,配方得:W=﹣2(x﹣70)2+9800,(0≤x≤60),∵a=﹣2<0,=9600元,∴当0≤x≤60时,W随x的增大而增大,∴当x=60时,W最大∴将这批葡萄存放60天后出售,可获得最大利润,最大利润是9600元.【点评】考查二次函数的应用;理解销售总金额的意义,得到销售总金额的等量关系是解决本题的关键.八、本题满分14分23. 定义:如图1,点M、N把线段AB分割成AM,MN和BN三段,若以AM、MN、BN为边的三角形是一个直接三角形,则称点M、N是线段AB的勾股分割点.。

2020年安徽省合肥市中考数学二模试卷

2020年安徽省合肥市中考数学二模试卷

2020年安徽省合肥市中考数学二模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)的平方根是()A.B.﹣C.±D.±2.(4分)下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.(4分)一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8 5.(4分)若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.(4分)下列图形中,主视图为图①的是()A.B.C.D.7.(4分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.(4分)在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.(4分)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.(4分)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)一组数据15,20,25,30,20,这组数据的中位数为.12.(5分)分解因式:9x﹣x3=.13.(5分)如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为.14.(5分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的,那么点B'的坐标是.三、(本大题共2小题,每小题0分,满分0分)15.计算:16.先化简,再求值:,其中,a=﹣1.四、(本大题共2小题,每小题0分,满分0分)17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.五、(本大题共2小题,每小题0分,满分0分)19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.六、(本题满分0分)21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.七、(本题满分0分)22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.八、(本题满分0分)23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.。

2020年安徽省合肥市蜀山区中考数学二模试卷

2020年安徽省合肥市蜀山区中考数学二模试卷

2020年安徽省合肥市蜀山区中考数学二模试卷
一、选择题(本题共10小题,每小题4分,满分40分)
1.(4分)﹣2020的倒数是()
A.2020B.﹣2020C.D.﹣
2.(4分)下列运算正确的是()
A.(﹣a)•a2=a3B.2a﹣a=1C.(﹣2)0=1D.3﹣2=﹣
3.(4分)2019年,全国实行地区生产总值统计合算改革,某城区GDP约为1004.2亿元,第一次进入千亿元城区,将数据1004.2亿用科学记数法表示为()
A.1.0042×1011B.1.0042×1012
C.1.0042×107D.10.042×1011
4.(4分)如图是由大小相同的5个小正方体组成的几何体,该几何体的俯视图是()
A.B.
C.D.
5.(4分)一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()
A.众数是8B.中位数是8C.平均数是8D.方差是1。

2020年安徽省合肥市蜀山区中考数学二模试卷 (含答案解析)

2020年安徽省合肥市蜀山区中考数学二模试卷 (含答案解析)

2020年安徽省合肥市蜀山区中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1. −1.5的倒数是( )A. −23B. −32C. 1.5D. −32. 下列计算结果正确的是( )A. 2a 2+a 2=3a 4B. (−a)2·a 2=−a 4C. (−12)−2=4D. (−2)0=−1 3. 2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )A. 5.46×108B. 5.46×109C. 5.46×1010D. 5.46×10114. 如图是由4个大小相同的正方体组合而成的几何体,其俯视图是( )A.B.C.D.5. 某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是( )A. 若这5次成绩的中位数为8,则x =8B. 若这5次成绩的众数是8,则x =8C. 若这5次成绩的方差为8,则x =8D. 若这5次成绩的平均成绩是8,则x =86. 如图,长方形ABCD 中,AB =4,BC =5,AF 平分∠DAE ,EF ⊥AE ,则CF 等于( )A. 23B. 1C. 32D. 27.一元二次方程x2−5x+7=0的根的情况是()A. 两个实根和为5B. 两个实根之积为7C. 有两个相等的实数根D. 没有实数根8.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A. 3×2x+5=2xB. 3×20x+5=10x×2C. 3×20+x+5=20xD. 3×(20+x)+5=10x+29.如图,⊙O是△ABP的外接圆,半径r=2,∠APB=45°,则弦AB的长为()A. √2B. 2C. 2√2D. 410.若二次函数y=mx2−4x+m有最大值−3,则m等于()A. m=4B. m=−1C. m=1D. m=−4二、填空题(本大题共4小题,共20.0分)11.计算1−4a2的结果是______ .2a+112.小明随机调查了全班每人平均每天参加体育锻炼的时间t(单位:小时),将获得的数据分成四组,绘制了如下不完整的统计图(A:0<t≤1.5,B:1.5<t≤2,C:2<t≤2.5,D:t>2.5),根据图中信息,可求得表示A组的扇形统计图的圆心角的度数为______.13.将1,−2,3,−4,5,−6…按一定规律排列如图,则第10行从左到右第9个数是______.14.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,则点D到BC的距离是______.三、解答题(本大题共9小题,共90.0分)15.解不等式:5x−5<2(2+x).16.甲列车从A地开往B地,速度是60千米/时,乙列车同时从B地开往A地,速度是90千米/时,A,B两地相距200千米,问两车相遇的地方离A地多远?17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和直线l,按要求画图.(1)作出四边形ABCD关于直线l成轴对称的四边形A′B′C′D′;(2)以B为位似中心,在点B的下方将四边形ABCD放大2倍得到四边形A1B1C1D1,画出四边形A1B1C1D1.18.某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)求小刚抽到物理实验B和化学实验F的概率.19.如图,在一次户外研学活动中,老师带领学生去测一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之间的垂线段的长度).某同学在河南岸A处观测到河对岸水边有一棵树P,测得P在A北偏东60°方向上,沿河岸向东前行20米到达B处,测得P在B北偏东45°方向上.求河宽(结果保留一位小数.√2≈1.414,√3≈1.732).20.如图,一次函数y=kx+b的图象与反比例函数y=m的图象相交于A(n,3),B(3,−2)两点,过xA作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;(2)若直线AB上有一点M,连接MC,且满足S△AMC=2S△AOC,求点M的坐标.21.如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过点E作EF//BC且EF=BC连接AE、AF.(1)求证:AE=BC;(2)如图2,若∠ADB=90°,求∠FAE的度数;(3)在(2)的条件下,若AB=2,AD:CD=1:2,S△AEF=3S△CDE,求AF的长.【答案与解析】1.答案:A解析:此题主要考查了倒数有关知识,根据倒数定义:乘积是1的两数互为倒数可得答案.)=1,解:∵−1.5×(−23∴−1.5的倒数是−2,3故选A.2.答案:C解析:此题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,根据同底数幂的乘法法则,负整数指数幂,零指数幂,合并同类项的法则,逐项分析判断即可得到答案.解:A.2a2+a2=3a2,故A错误;B.(−a)2·a2=a2·a2=a4,故B错误;)−2=4,故C正确;C.(−12D.(−2)0=1,故D错误;故选C.3.答案:C解析:解:546亿=5.46×1010.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:解:俯视图有3列,从左往右小正方形的个数是1,1,1,故选:B.找到从几何体的上面看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.5.答案:D解析:解:A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15[3×(8−8)2+(9−8)2+(7−8)2]=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则15(8+9+7+8+x)=8,解得x=8,故本选项正确;故选:D.根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为x−,则方差S2=1n[(x1−x−)2+ (x2−x−)2+⋯+(x n−x−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.同时考查了中位数、众数与平均数的定义.6.答案:C解析:本题考查矩形的性质、角平分线的性质及勾股定理,全等三角形的判定与性质,难度中等.先证明△DAF≌△EAF(HL),设CF=x,在Rt△CEF中,利用勾股定理可得方程,解方程求得答案.解:因为AB=4,BC=5,AF平分∠DAE,EF⊥AE,所以DF=EF,在△DAF和△EAF中,△DAF≌△EAF(HL),所以AE=AD=5,在Rt△ABE中,AE=5,AB=4,所以BE=3,CE=2.设CF=x,则在Rt△CEF中,CE2+CF2=EF2,即22+x2=(4−x)2.解得x=3.2故选C.7.答案:D解析:解:∵Δ=(−5)2−4×1×7=−3<0,∴方程没有实数根.故选:D.先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式Δ=b2−4ac.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.8.答案:D解析:【试题解析】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.直接利用表示十位数的方法进而得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.9.答案:C解析:本题考查了三角形的外接圆与外心、圆周角定理、勾股定理;熟练掌握圆周角定理,由勾股定理求出AB是解决问题的关键.连接OA、OB,由圆周角定理得出∠AOB=2∠APB=90°,由勾股定理求出AB即可.解:连接OA、OB,如图所示:则∠AOB=2∠APB=90°,∵OA=OB=r=2,∴AB=√OA2+OB2=√22+22=2√2;故选:C.10.答案:D解析:解:∵二次函数有最大值,∴m<0且4m2−16=−3,4m解得m=−4.故选:D.根据二次函数的最值公式列式计算即可得解.本题考查了二次函数的最值问题,熟记最大(小)值公式是解题的关键.11.答案:1−2a解析:解:原式=(1−2a)(1+2a)2a+1=1−2a.分子是多项式1−4a2,将其分解为(1−2a)(1+2a),然后再约分即可化简.本题考查分式的约分,若分子和分母有多项式,先将其因式分解,然后将相同的因式约去即可.12.答案:108°解析:解:被调查的总人数为19÷38%=50(人),=108°.表示A组的扇形统计图的圆心角的度数为360°×1550故答案为108°.根据B组的人数和所占的百分比,求出这次被调查的总人数,再用360乘以A组所占的百分比,求出A组的扇形统计图的圆心角的度数.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13.答案:−90解析:解:结合数字排列图可知:第1行1个数,第2行2+1个数,第3行2×2+1个数,第4行3×2+1个数,…,第n行2(n−1)+1个数,且奇数为正,偶数为负.∴第n行有2(n−1)+1=2n−1个数.=81.前9行一共有1+3+5+⋯+15+17=9×(1+17)2∴第10行从左到右第9个数的绝对值为81+9=90,由于90为偶数,故应为负号.故答案为:−90.根据数字的排列图,发现后一行比上一行多2个数,结合第一行只有1个数即可得出:第n行有2(n−1)+1=2n−1个数.找出前9行数的个数,再加9即可得出第10行从左到右第9个数的绝对值,再根据数字排列图中偶数均为负即可得出结论.本题考查了数字的变化类,解题的规律是找出“第n行有2(n−1)+1=2n−1个数”.本题属于基础题,难度不大,解决该题型题目时,根据数字的变化找出变化规律是关键.14.答案:2cm解析:本题考查了角平分线的性质,勾股定理,作辅助线,根据角平分线上的点到角的两边的距离相等得到点D到△ABC三边的距离相等是解题的关键.利用勾股定理求出AB的长,再根据角平分线上的点到角的两边的距离相等可得点D到△ABC三边的距离相等,然后利用△ABC的面积列式计算即可得解.解:∵∠C=90°,AC=6cm,BC=8cm,∴AB=√AC2+BC2=√62+82=10cm,过点D作DE⊥AB、DF⊥BC、DG⊥AC,垂足分别为E、F、G,∵AD和BD分别是∠BAC和∠ABC的平分线,∴DE=DF=DG,∴S△ABC=12AC⋅BC=12(AB+BC+AC)⋅DF,即12×6×8=12(10+8+6)⋅DF,解得DF=2,即点D到BC的距离为2cm.故答案为:2cm.15.答案:解:5x−5<2(2+x),5x−5<4+2x5x−2x<4+5,3x<9,x<3.解析:去括号,移项、合并同类项,系数化为1求得即可.本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.16.答案:解:设两车x小时相遇,由题意得:60x+90x=200,解得:x=43,两车相遇的地方离A地:60×43=80(千米),答:两车相遇的地方离A地80千米.解析:首先设两车x小时相遇,根据题意可得等量关系:甲车x小时行驶的距离+乙车x小时行驶的距离=200千米,根据等量关系,列出方程即可.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出等量关系,设出未知数,列出方程.17.答案:解:(1)如图中四边形A′B′C′D′(2)如图中四边形A1B1C1D1.解析:本题考查了作图−位似变换,作图−轴对称变换,属于中档题.(1)分别作出点A、B、C、D关于直线l的对称点,顺次连接即可得;(2)延长AB到A1,使BA1=2BA,同理分别作出点D、C的对应点,顺次连接即可得.18.答案:解:(1)方法一:列表格如下:化学实验D E F物理实验A(A,D)(A,E)(A,F)B(B,D)(B,E)(B,F)C(C,D)(C,E)(C,F)方法二:画树状图如下:所有可能出现的结果AD,AE,AF,BD,BE,BF,CD,CE,CF;(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M出现了一次,所以P(M)=1.9解析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果;(2)根据概率公式求出该事件的概率即可.19.答案:解:过P作PC⊥AB于点C,∴∠ACP=90°.由题意可知,∠PAC=30°,∠PBC=45°.∴∠BPC=45°.∴BC=PC.=√3PC.在Rt△ACP中,AC=PCtan∠PAC∵AB=20,∴20+PC=AC=√3PC.≈27.3.∴PC=20√3−1答:河流宽度约为27.3米.解析:过P作PC⊥AB于点C,根据题意得到∠PAC=30°,∠PBC=45°,根据正切的定义得到AC=√3PC,根据题意列方程,解方程即可.本题考查的是解直角三角形的应用−方向角问题,正确作出辅助线、熟记锐角三角函数的定义、正确标注方向角是解题的关键.20.答案:解:(1)将点B(3,−2)代入y=m,得:m=3×(−2)=−6,x则反比例函数解析式为y =−6x .∵反比例函数y =m x 的图象过A(n,3),∴3=−6n,∴n =−2, ∴A(−2,3),将点A(−2,3)、B(3,−2)代入y =kx +b , 得:{−2k +b =33k +b =−2,解得:{k =−1b =1, 则一次函数解析式为y =−x +1;(2)设点M 的坐标为(m,−m +1),过M 作ME ⊥AC 于E .∵y =−6x, ∴S △AOC =12×|−6|=3, ∴S △AMC =2S △AOC =6,∴12AC ⋅ME =12×3×|m +2|=6,解得m =2或−6.当m =2时,−m +1=−1;当m =−6时,−m +1=7,∴点M 的坐标为(2,−1)或(−6,7).解析:本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,正确求出函数的解析式是解题的关键.(1)将点B 的坐标代入y =m x 可得反比例函数解析式,据此求得点A 的坐标,再根据A 、B 两点的坐标可得一次函数的解析式;(2)设点M 的坐标为(m,−m +1),过M 作ME ⊥AC 于E.根据S △AMC =2S △AOC ,列出方程12×3×|m +2|=6,解方程即可. 21.答案:解:(1)作线段AB 的垂直平分线MN 交AB 于点E ,点E 即为所求.(2)∵四边形ABCD 是平行四边形的面积为8,AE =EB ,∴S △ADE =14S 四边形ABCD =2,∴S 四边形EBCD =8−2=6.解析:本题考查作图−复杂作图,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)作线段AB 的垂直平分线MN 交AB 于点E ,点E 即为所求.(2)求出△ADE 的面积即可. 22.答案:解:(1)设y 与x 的函数关系式为y =kx +b ,根据题意,得:{20k +b =30030k +b =280, 解得:{k =−2b =340, ∴y 与x 的函数解析式为y =−2x +340,(20≤x ≤40).(2)由已知得:W =(x −20)(−2x +340)=−2x 2+380x −6800=−2(x −95)2+11250,∵−2<0,∴当x ≤95时,W 随x 的增大而增大,∵20≤x ≤40,∴当x =40时,W 最大,最大值为−2(40−95)2+11250=5200元.解析:本题主要考查待定系数法求一次函数解析式与二次函数的应用.(1)利用待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.23.答案:(1)证明:∵∠ADB =∠CDE∴∠ADB +∠BDE∠CDE +∠BDE ,即∠ADE =∠BDC ,在△ADE 和△BDC 中,{AD =BD∠ADE =∠BDC CD =DE∴△ADE≌△BDC∴AE =BC ;(2)解:如图2,设AE 交BC 于点G ,DE 交BC 于点H由(1)得△ADE≌△BDC∴∠AED =∠BCD ,AE =BC∴AE =EF∵∠DHC =∠GHE∴∠GHE =∠HDC∵EF//BC∴∠GEF =∠EGH∴∠AEF =∠EDC =∠ADB =90°∴△AEF 是等腰直角三角形,∠FAE =45°,(3)解:由(2)知∠AEF =∠ADB =∠CDE =90°∵AD =BD ,CD =DE , ∵AD BD =CDDE∵∠ADB =∠CDE∴△ABD~△CED∴ABCE=ADCD=12∵AB=2,∴CE=4,∵∠AEF=∠CDE,AEAD =EFDE.∴△AEF~△CDE∴S△AEFS△CDE =(AFCE)2,即(AF4)2=3解得AF=4√3.解析:(1)判断出∠ADE=∠BDC,进而得出△ADE≌△BDC,即可得出结论;(2)先判断出AE=EF,再判断出∠AEF=∠EDC=∠ADB=90°,即可得出结论;(3)先判断出△ABD~△CED,求出CE=4,再判断出△AEF~△CDE,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,等腰直角三角形的判定和性质,判断出△ABD~△CED是解本题的关键.。

2020年安徽省合肥市蜀山区中考数学二模试卷 (解析版)

2020年安徽省合肥市蜀山区中考数学二模试卷 (解析版)

2020年安徽省合肥市蜀山区中考数学二模试卷一、选择题1.﹣2020的倒数是()A.2020B.﹣2020C.D.﹣2.下列运算正确的是()A.(﹣a)•a2=a3B.2a﹣a=1C.(﹣2)0=1D.3﹣2=﹣3.2019年,全国实行地区生产总值统计合算改革,某城区GDP约为1004.2亿元,第一次进入千亿元城区,将数据1004.2亿用科学记数法表示为()A.1.0042×1011B.1.0042×1012C.1.0042×107D.10.042×10114.如图是由大小相同的5个小正方体组成的几何体,该几何体的俯视图是()A.B.C.D.5.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()A.众数是8B.中位数是8C.平均数是8D.方差是16.如图,在矩形ABCD中放置了一个直角三角形EFG,∠EFG被AD平分,若∠CEF=35°,则∠EHF的度数为()A.55°B.125°C.130°D.135°7.关于方程(x﹣2)2﹣1=0根的情况,下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客m万人,四月比三月旅游人数增加了15%,五月比四月游客人数增加了a%,已知三月至五月徽园的游客人数平均月增长率为20%,则可列方程为()A.(1+15%)(1+a%)=1+20%×2B.(1+15%)(1+20%)=2(1+a%)C.(1+15%)(1+20%)=1+a%×2D.(1+15%)(1+a%)=(1+20%)29.如图,⊙O是△ABC的外接圆,⊙O的半径r=2,tan A=,则弦BC的长为()A.2.4B.3.2C.3D.510.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关二、填空题(本题共4小题,每小题5分,满分20分)11.化简:=.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为度.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为.三、(本题共2小题,每小题8分,满分16分)15.解不等式:2(x﹣1)+4>0.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.四、(本题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B 均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?五、(本题共2小题,每小题10分,满分20分)19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=﹣x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q的上方,请结合函数图象直接写出此时t的取值范围.六、(本题满分12分)21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.七、(本题满分12分)22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y(千克)与售价x(元/千克)的函数图象关系如图所示:(1)求y关于x的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m元/千克(m>0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m的值.八、(本题满分14分)23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.参考答案一、选择题(本题共10小题,每小题4分,满分40分)1.﹣2020的倒数是()A.2020B.﹣2020C.D.﹣【分析】乘积是1的两数互为倒数.依据倒数的定义回答即可.解:﹣2020的倒数是,故选:D.2.下列运算正确的是()A.(﹣a)•a2=a3B.2a﹣a=1C.(﹣2)0=1D.3﹣2=﹣【分析】直接利用单项式乘以单项式以及合并同类项法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案.解:A、(﹣a)•a2=﹣a3,故此选项错误;B、2a﹣a=a,故此选项错误;C、(﹣2)0=1,正确;D、3﹣2=,故此选项错误;故选:C.3.2019年,全国实行地区生产总值统计合算改革,某城区GDP约为1004.2亿元,第一次进入千亿元城区,将数据1004.2亿用科学记数法表示为()A.1.0042×1011B.1.0042×1012C.1.0042×107D.10.042×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:将数据1004.2亿=100420000000用科学记数法表示为:1.0042×1011.故选:A.4.如图是由大小相同的5个小正方体组成的几何体,该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.解:从上面看有三层,底层和中层均为一个正方形,上层两个正方形,左齐.故选:C.5.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()A.众数是8B.中位数是8C.平均数是8D.方差是1【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得出答案.解:由图可得,数据8出现4次,次数最多,所以众数为8,故A正确;10次成绩排序后为:6,7,7,8,8,8,8,9,9,10,所以中位数是(8+8)=8,故B正确;平均数为(6+7×2+8×4+9×2+10)=8,故C正确;方差为[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2]=1.08,故D不正确;不正确的有1个;故选:D.6.如图,在矩形ABCD中放置了一个直角三角形EFG,∠EFG被AD平分,若∠CEF=35°,则∠EHF的度数为()A.55°B.125°C.130°D.135°【分析】根据矩形的性质得到AD∥BC,根据平行线的性质得到∠AFE=∠CEF=35°,根据角平分线的定义得到∠GFH=∠CEF=35°,根据平角的定义即可得到结论.解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠CEF=35°,∵∠EFG被AD平分,∴∠GFH=∠CEF=35°,∵∠G=90°,∴∠GHF=90°﹣35°=55°,∴∠EHF=180°﹣55°=125°,故选:B.7.关于方程(x﹣2)2﹣1=0根的情况,下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=﹣4,c=3代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.解:∵一元二次方程(x﹣2)2﹣1=0可化为x2﹣4x+3=0,∴△=(﹣4)2﹣4×1×3=4>0,∴方程有两个不相等的实数根.故选:A.8.“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客m万人,四月比三月旅游人数增加了15%,五月比四月游客人数增加了a%,已知三月至五月徽园的游客人数平均月增长率为20%,则可列方程为()A.(1+15%)(1+a%)=1+20%×2B.(1+15%)(1+20%)=2(1+a%)C.(1+15%)(1+20%)=1+a%×2D.(1+15%)(1+a%)=(1+20%)2【分析】直接利用增长率表示方法进而表示出4,5月游客人数进而得出等式.解:设三月旅游人数为x,由题意可得:(1+15%)(1+a%)x=(1+20%)2x,故(1+15%)(1+a%)=(1+20%)2.故选:D.9.如图,⊙O是△ABC的外接圆,⊙O的半径r=2,tan A=,则弦BC的长为()A.2.4B.3.2C.3D.5【分析】连接CO并延长交⊙O上一点A′,连接BA′,则A′C是⊙O的直径,A′C =4,∠A′BC=90°,由圆周角定理得∠A=∠A′,得出tan A=tan A′==,设BC=a,则A′B=a,由勾股定理解得a=3.2,即可得出结果.解:连接CO并延长交⊙O上一点A′,连接BA′,如图所示:由题意可得:A′C是⊙O的直径,A′C=2×2=4,则∠A′BC=90°,∵∠A=∠A′,∴tan A=tan A′==,设BC=a,则A′B=a,由勾股定理得:A′C2=BC2+A′B2,即:42=a2+(a)2,解得:a=3.2,∴BC=3.2,故选:B.10.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关【分析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再分别进行讨论,即可得出函数y的最大值与最小值即可得到结论.解:∵二次函数y=x2+px+q=(x+)2﹣,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=0时,二次函数有最小值为:q,∴当x=1时,二次函数有最大值为:1+p+q,∴函数最大值与最小值的差为1+p;当x=﹣>1,∴当x=0时,二次函数有最大值为:q,∴当x=1时,二次函数有最小值为:1+p+q,∴函数最大值与最小值的差为﹣1﹣p;综上所述,此函数最大值与最小值的差与p有关,但与q无关,故选:D.二、填空题(本题共4小题,每小题5分,满分20分)11.化简:=x+2.【分析】分子利用平方差公式进行因式分解,然后约分即可.解:原式==x+2.故答案是:x+2.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为18度.【分析】利用360°×不合格人数占抽取的人数的百分数即可得到结论.解:不合格人数在扇形统计图对应的圆心角为×360°=18°,故答案为:18.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是4851.【分析】观察数字的变化写出第3行开始的每一行的左边第3个数,寻找规律即可求出第100行的左边第3个数.解:观察数字的变化发现:第3行的左边第3个数是1=,第4行的左边第3个数是3=,第5行的左边第3个数是6=,第6行的左边第3个数是10=,…所以第100行的左边第3个数是=4851.故答案为:4851.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为3或.【分析】作CH⊥AB于H,如图,利用平行线的性质得到CH⊥EF,利用对称的性质得到点D在CH上,利用勾股定理和面积法分别计算出AB=10,CH=,AH=,当点D为∠BAC的平分线AM与CH的交点时,如图1,作MN⊥AB于N,根据角平分线的性质得到MC=MN,则AN=AC=6,所以BN=4,设MC=MN=x,则BM=8﹣x,利用勾股定理得到得到x2+42=(8﹣x)2,解得x=3,接着利用平行线分线段成比例定理计算出HD=,从而得到此时CD的长;当点D为∠ABC的平分线AG与CH的交点时,如图2,利用同样方法求解.解:过点C作CH⊥AB于H,如图,∵EF∥AB,∴CH⊥EF,∵点D与点C关于EF对称,∴点D在CH上,在Rt△ABC中,AB==10,∵CH•AB=AC•BC,∴CH==,∴AH==,当点D为∠BAC的平分线AM与CH的交点时,如图1,过点M作MN⊥AB于N,∴MC=MN,∴AN=AC=6,∴BN=4,设MC=MN=x,则BM=8﹣x,在Rt△BMN中,x2+42=(8﹣x)2,解得x=3,∵DH∥MN,∴=,即=,解得HD=,∴CD=﹣=3;当点D为∠ABC的平分线AG与CH的交点时,如图2,BH=AB﹣AH=,过点G作GQ⊥AB于Q,则GQ=GC,∴BQ=BC=8,∴AQ=2,设GQ=GC=t,则AG=6﹣t,在Rt△AGQ中,22+t2=(6﹣t)2,解得t=,∵DH∥GQ,∴=,即=,解得DH=,∴CD=﹣=,综上所述,CD的长为3或.故答案为3或.三、(本题共2小题,每小题8分,满分16分)15.解不等式:2(x﹣1)+4>0.【分析】直接去括号进而移项合并同类项解不等式即可.解:2x﹣2+4>0,2x>﹣2,解得:x>﹣1.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.【分析】首先设经过x天相遇,根据题意可得等量关系:野鸭x天的路程+大雁x天的路程=1,再根据等量关系列出方程,再解即可.解:设经过x天相遇,由题意得:+=1,解得:x=,答:经过天相遇.四、(本题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B 均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).【分析】(1)连接AO,延长AO到A′,使得OA′=2OA,同法作出点B′,连接A′B′即可.(2)以A′B′为边构造矩形即可(答案不唯一).解:(1)如图,线段A′B′即为所求.(2)如图,矩形A′B′CD即为所求(答案不唯一).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?【分析】(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.解:(1)明抽到化学实验的概率为,故答案为:.(2)画树状图如下:由树状图知,共有9种等可能结果,其中小明和小丽抽到不同科目的有6种结果,∴小明和小丽抽到不同科目的概率为=.五、(本题共2小题,每小题10分,满分20分)19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)【分析】(1)如图,延长CA于点D,交直线CE于点D,于是得到∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,根据角的和差即可得到结论;(2)解直角三角形即可得到结论.解:(1)如图,延长CA于点D,交直线CE于点D,则BD⊥CD,∴∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,∴∠ACB=∠CAD﹣∠B=15°;(2)∵∠ACD=45°,∠BCD=30°,AB=20,∴在Rt△ACD中,AD=CD,在Rt△CBD中,tan∠BCD==,即=,解得AD≈30(m).答:这段河的宽度约为30米.20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=﹣x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q的上方,请结合函数图象直接写出此时t的取值范围.【分析】(1)利用三角形面积公式计算OC,从而得到B(4,1),再把B点坐标代入y=中求出k得到反比例函数解析式为y=;接着把B点坐标代入y=﹣x+b中求出b得到直线AB的解析式,然后利用直线解析式确定E点坐标;(2)先确定A(1,4),然后写出在第一象限内,一次函数图象在反比例函数图象上方所对应的自变量的范围即可.解:(1)∵△OBC的面积为2,B点的纵坐标为1.∴×OC×1=2,解得OC=4,∴B(4,1),把B(4,1)代入y=得k=4×1=4,∴反比例函数解析式为y=;把B(4,1)代入y=﹣x+b得﹣4+b=1,解得b=5,∴直线AB的解析式为y=﹣x+5;当y=0时,﹣x+5=0,解2得x=5,∴E(5,0);(2)当y=4时,=4,解得x=1,∴A(1,4),当点P位于点Q的上方,此时t的取值范围为1<t<4.六、(本题满分12分)21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.【分析】(1)作线段AC的垂直平分线即可解决问题.(2)首先证明DE∥AB,利用平行线的性质解决问题即可.(3)过点C作CG⊥OD于G.证明△ODC是等边三角形即可解决问题.【解答】(1)解:如图,点O即为所求.(2)证明:连接DO延长DO交AB于F.∵DE是⊙O的切线,∴OD⊥DF,∵=,∴DF⊥AB,∴DE∥AB,∴∠E+∠B=180°,∵AC是直径,∴∠ABC=90°,∴∠E=90°,∴DE⊥BE.(3)过点C作CG⊥OD于G.∵∠E=∠EDG=∠DGC=90°,∴四边形DECG是矩形,∴DG=CE,∵OD=OC=2CE=4,∴CE=DG=OG=2,∵CG⊥OD,∴CD=CO=OD,∴△DOC是等边三角形,∴∠DOC=60°,∴S阴=S扇形ODC﹣S△ODC=﹣×42=π﹣4.七、(本题满分12分)22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y(千克)与售价x(元/千克)的函数图象关系如图所示:(1)求y关于x的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m元/千克(m>0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m的值.【分析】(1)依题意设y=kx+b,解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(2)根据题意得列函数解析式,根据二次函数的性质即可得到结论.解:(1)设y=kx+b(k,b为常数,k≠0)根据题意得:,解得:,∴y关于x的函数解析式为y=﹣2x+160;(2)设当该商品的售价是x元/件时,月销售利润为w元,根据题意得:w=(﹣2x+160)(x﹣20)=﹣2x2+200 x﹣3200=﹣2(x﹣50)2+1800∴当x=50时w有最大值,最大值为1800(元),答:当该商品的售价是50元/件时,月销售利润最大,最大利润是1800元;(3)根据题意得,w=(x﹣20﹣m)(﹣2x+160)=﹣2x2+(200+2m)x﹣3200﹣160m,∵对称轴x=,∴①当=<40时(舍),②当=≥40时,x=40时,w取最大值为1280,解得:m=4,八、(本题满分14分)23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.【分析】(1)得出∠FCG=∠BEG=90°,∠CGF=∠EGB,则结论得证;(2)证明△CGE∽△FGB,得出∠EFB=∠ECG=∠ACB=45°;(3)过点F作FH⊥CD交DC的延长线于点H,证明△FEH≌△EBD(AAS),得出FH=ED,则CH=FH,得出CF=DE,则得出答案.【解答】(1)证明:∵∠ACB=90°,EF⊥BE,∴∠FCG=∠BEG=90°,又∵∠CGF=∠EGB,∴△CFG∽△EBG;(2)解:由(1)得△CFG∽△EBG,∴,∴,又∵∠CGE=∠FGB,∴△CGE∽△FGB,∴∠EFB=∠ECG=∠ACB=45°;(3)解:过点F作FH⊥CD交DC的延长线于点H,由(2)知,△BEF是等腰直角三角形,∴EF=BE,∵∠FEH+∠DEB=90°,∠EBD+∠DEB=90°,∴∠FEH=∠EBD,在△FEH和△EBD中,,∴△FEH≌△EBD(AAS),∴FH=ED,∵∠FCH=∠ACD=45°,∠CHF=90°,∴∠CFH=∠CFH=45°,∴CH=FH,在Rt△CFH中,CF==FH,∴CF=DE,∴.。

2020年安徽省合肥市蜀山区中考数学二模试卷

2020年安徽省合肥市蜀山区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.-2020的倒数是()A. 2020B. -2020C.D. -2.下列运算正确的是()A. (-a)•a2=a3B. 2a-a=1C. (-2)0=1D. 3-2=-3.2019年,全国实行地区生产总值统计合算改革,某城区GDP约为1004.2亿元,第一次进入千亿元城区,将数据1004.2亿用科学记数法表示为()A. 1.0042×1011B. 1.0042×1012C. 1.0042×107D. 10.042×10114.如图是由大小相同的5个小正方体组成的几何体,该几何体的俯视图是()A.B.C.D.5.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()A. 众数是8B. 中位数是8C. 平均数是8D. 方差是16.如图,在矩形ABCD中放置了一个直角三角形EFG,∠EFG被AD平分,若∠CEF=35°,则∠EHF的度数为()A. 55°B. 125°C. 130°D. 135°7.关于方程(x-2)2-1=0根的情况,下列判断正确的是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8.“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客m万人,四月比三月旅游人数增加了15%,五月比四月游客人数增加了a%,已知三月至五月徽园的游客人数平均月增长率为20%,则可列方程为()A. (1+15%)(1+a%)=1+20%×2B. (1+15%)(1+20%)=2(1+a%)C. (1+15%)(1+20%)=1+a%×2D. (1+15%)(1+a%)=(1+20%)29.如图,⊙O是△ABC的外接圆,⊙O的半径r=2,tan A=,则弦BC的长为()A. 2.4B. 3.2C. 3D. 510.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A. 与p、q的值都有关B. 与p无关,但与q有关C. 与p、q的值都无关D. 与p有关,但与q无关二、填空题(本大题共4小题,共20.0分)11.化简:=______.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为______度.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是______.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为______.三、解答题(本大题共9小题,共90.0分)15.解不等式:2(x-1)+4>0.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为______.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=-x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=-x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q的上方,请结合函数图象直接写出此时t的取值范围.21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y(千克)与售价x(元/千克)的函数图象关系如图所示:(1)求y关于x的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m元/千克(m>0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m的值.23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.答案和解析1.【答案】D【解析】解:-2020的倒数是,故选:D.乘积是1的两数互为倒数.依据倒数的定义回答即可.本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.【答案】C【解析】解:A、(-a)•a2=-a3,故此选项错误;B、2a-a=a,故此选项错误;C、(-2)0=1,正确;D、3-2=,故此选项错误;故选:C.直接利用单项式乘以单项式以及合并同类项法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案.此题主要考查了单项式乘以单项式以及合并同类项、零指数幂的性质、负整数指数幂的性质,正确掌握相关运算法则是解题关键.3.【答案】A【解析】解:将数据1004.2亿=100420000000用科学记数法表示为:1.0042×1011.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题主要考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:从上面看有三层,底层和中层均为一个正方形,上层两个正方形,左齐.故选:C.找到从上面看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.5.【答案】D【解析】解:由图可得,数据8出现4次,次数最多,所以众数为8,故A正确;10次成绩排序后为:6,7,7,8,8,8,8,9,9,10,所以中位数是(8+8)=8,故B正确;平均数为(6+7×2+8×4+9×2+10)=8,故C正确;方差为[(6-8.2)2+(7-8.2)2+(7-8.2)2+(8-8.2)2+(8-8.2)2+(8-8.2)2+(8-8.2)2+(9-8.2)2+(9-8.2)2+(10-8.2)2]=1.08,故D不正确;不正确的有1个;故选:D.根据众数、中位数、平均数以及方差的算法进行计算,即可得出答案.本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.6.【答案】B【解析】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠CEF=35°,∵∠EFG被AD平分,∴∠GFH=∠CEF=35°,∵∠G=90°,∴∠GHF=90°-35°=55°,∴∠EHF=180°-55°=125°,故选:B.根据矩形的性质得到AD∥BC,根据平行线的性质得到∠AFE=∠CEF=35°,根据角平分线的定义得到∠GFH=∠CEF=35°,根据平角的定义即可得到结论.本题考查了矩形的性质,角平分线的定义,平行线的性质,三角形的内角和,正确的识别图形是解题的关键.7.【答案】A【解析】解:∵一元二次方程(x-2)2-1=0可化为x2-4x+3=0,∴△=(-4)2-4×1×3=4>0,∴方程有两个不相等的实数根.故选:A.把a=1,b=-4,c=3代入判别式△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0,方程没有实数根.8.【答案】D【解析】解:设三月旅游人数为x,由题意可得:(1+15%)(1+a%)x=(1+20%)2x,故(1+15%)(1+a%)=(1+20%)2.故选:D.直接利用增长率表示方法进而表示出4,5月游客人数进而得出等式.此题主要考查了由实际问题抽象出一元一次方程,正确得出等量关系是解题关键.9.【答案】B【解析】解:连接CO并延长交⊙O上一点A′,连接BA′,如图所示:由题意可得:A′C是⊙O的直径,A′C=2×2=4,则∠A′BC=90°,∵∠A=∠A′,∴tan A=tan A′==,设BC=a,则A′B=a,由勾股定理得:A′C2=BC2+A′B2,即:42=a2+(a)2,解得:a=3.2,∴BC=3.2,故选:B.连接CO并延长交⊙O上一点A′,连接BA′,则A′C是⊙O的直径,A′C=4,∠A′BC=90°,由圆周角定理得∠A=∠A′,得出tan A=tan A′==,设BC=a,则A′B=a,由勾股定理解得a=3.2,即可得出结果.本题考查了三角形外接圆与外心、圆周角定理、三角函数、勾股定理等知识;熟练掌握三角形外接圆与外心的性质是解题的关键.10.【答案】D【解析】解:∵二次函数y=x2+px+q=(x+)2-,∴该抛物线的对称轴为x=-,且a=1>0,当x=-<0,∴当x=0时,二次函数有最小值为:q,∴当x=1时,二次函数有最大值为:1+p+q,∴函数最大值与最小值的差为1+p;当x=->1,∴当x=0时,二次函数有最大值为:q,∴当x=1时,二次函数有最小值为:1+p+q,∴函数最大值与最小值的差为-1-p;综上所述,此函数最大值与最小值的差与p有关,但与q无关,故选:D.先根据二次函数的已知条件,得出二次函数的图象开口向上,再分别进行讨论,即可得出函数y的最大值与最小值即可得到结论.本题考查了考查了二次函数的最值问题,在本题中分类讨论思想运用是解题的关键.11.【答案】x+2【解析】解:原式==x+2.故答案是:x+2.分子利用平方差公式进行因式分解,然后约分即可.本题考查了约分.约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.12.【答案】18【解析】解:不合格人数在扇形统计图对应的圆心角为×360°=18°,故答案为:18.利用360°×不合格人数占抽取的人数的百分数即可得到结论.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.13.【答案】4851【解析】解:观察数字的变化发现:第3行的左边第3个数是1=,第4行的左边第3个数是3=,第5行的左边第3个数是6=,第6行的左边第3个数是10=,…所以第100行的左边第3个数是=4851.故答案为:4851.观察数字的变化写出第3行开始的每一行的左边第3个数,寻找规律即可求出第100行的左边第3个数.本题考查了规律型-数字的变化类,解决本题的关键是观察数字的变化寻找规律.14.【答案】3或【解析】解:过点C作CH⊥AB于H,如图,∵EF∥AB,∴CH⊥EF,∵点D与点C关于EF对称,∴点D在CH上,在Rt△ABC中,AB==10,∵CH•AB=AC•BC,∴CH==,∴AH==,当点D为∠BAC的平分线AM与CH的交点时,如图1,过点M作MN⊥AB于N,∴MC=MN,∴AN=AC=6,∴BN=4,设MC=MN=x,则BM=8-x,在Rt△BMN中,x2+42=(8-x)2,解得x=3,∵DH∥MN,∴=,即=,解得HD=,当点D为∠ABC的平分线AG与CH的交点时,如图2,BH=AB-AH=,过点G作GQ⊥AB于Q,则GQ=GC,∴BQ=BC=8,∴AQ=2,设GQ=GC=t,则AG=6-t,在Rt△AGQ中,22+t2=(6-t)2,解得t=,∵DH∥GQ,∴=,即=,解得DH=,∴CD=-=,综上所述,CD的长为3或.故答案为3或.作CH⊥AB于H,如图,利用平行线的性质得到CH⊥EF,利用对称的性质得到点D在CH上,利用勾股定理和面积法分别计算出AB=10,CH=,AH=,当点D为∠BAC的平分线AM与CH的交点时,如图1,作MN⊥AB于N,根据角平分线的性质得到MC=MN,则AN=AC=6,所以BN=4,设MC=MN=x,则BM=8-x,利用勾股定理得到得到x2+42=(8-x)2,解得x=3,接着利用平行线分线段成比例定理计算出HD=,从而得到此时CD的长;当点D为∠ABC的平分线AG与CH的交点时,如图2,利用同样方法求解.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质、勾股定理和相似三角形的判定与性质.15.【答案】解:2x-2+4>0,2x>-2,解得:x>-1.【解析】直接去括号进而移项合并同类项解不等式即可.此题主要考查了解一元一次不等式,正确掌握解题方法是解题关键.16.【答案】解:设经过x天相遇,由题意得:+=1,解得:x=,答:经过天相遇.【解析】首先设经过x天相遇,根据题意可得等量关系:野鸭x天的路程+大雁x天的路程=1,再根据等量关系列出方程,再解即可.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.17.【答案】解:(1)如图,线段A′B′即为所求.(2)如图,矩形A′B′CD即为所求(答案不唯一).【解析】(1)连接AO,延长AO到A′,使得OA′=2OA,同法作出点B′,连接A′B′即可.(2)以A′B′为边构造矩形即可(答案不唯一).本题考查作图-位似变换,作图-轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【答案】【解析】解:(1)明抽到化学实验的概率为,故答案为:.(2)画树状图如下:由树状图知,共有9种等可能结果,其中小明和小丽抽到不同科目的有6种结果,∴小明和小丽抽到不同科目的概率为=.(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.本题主要考查列表法与树状图法,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】解:(1)如图,延长CA于点D,交直线CE于点D,则BD⊥CD,∴∠ACB=∠CAD-∠B=15°;(2)∵∠ACD=45°,∠BCD=30°,AB=20,∴在Rt△ACD中,AD=CD,在Rt△CBD中,tan∠BCD==,即=,解得AD≈30(m).答:这段河的宽度约为30米.【解析】(1)如图,延长CA于点D,交直线CE于点D,于是得到∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,根据角的和差即可得到结论;(2)解直角三角形即可得到结论.本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.20.【答案】解:(1)∵△OBC的面积为2,B点的纵坐标为1.∴×OC×1=2,解得OC=4,∴B(4,1),把B(4,1)代入y=得k=4×1=4,∴反比例函数解析式为y=;把B(4,1)代入y=-x+b得-4+b=1,解得b=5,∴直线AB的解析式为y=-x+5;当y=0时,-x+5=0,解2得x=5,∴E(5,0);(2)当y=4时,=4,解得x=1,∴A(1,4),当点P位于点Q的上方,此时t的取值范围为1<t<4.【解析】(1)利用三角形面积公式计算OC,从而得到B(4,1),再把B点坐标代入y=中求出k得到反比例函数解析式为y=;接着把B点坐标代入y=-x+b中求出b得到直线AB的解析式,然后利用直线解析式确定E点坐标;(2)先确定A(1,4),然后写出在第一象限内,一次函数图象在反比例函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.21.【答案】(1)解:如图,点O即为所求.(2)证明:连接DO延长DO交AB于F.∵DE是⊙O的切线,∴OD⊥DF,∵=,∴DF⊥AB,∴DE∥AB,∴∠E+∠B=180°,∵AC是直径,∴∠ABC=90°,∴∠E=90°,∴DE⊥BE.(3)过点C作CG⊥OD于G.∵∠E=∠EDG=∠DGC=90°,∴四边形DECG是矩形,∴DG=CE,∵OD=OC=2CE=4,∴CE=DG=OG=2,∵CG⊥OD,∴CD=CO=OD,∴△DOC是等边三角形,∴∠DOC=60°,∴S阴=S扇形ODC-S△ODC=-×42=π-4.【解析】(1)作线段AC的垂直平分线即可解决问题.(2)首先证明DE∥AB,利用平行线的性质解决问题即可.(3)过点C作CG⊥OD于G.证明△ODC是等边三角形即可解决问题.本题属于作图-复杂作图,矩形的判定和性质,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)设y=kx+b(k,b为常数,k≠0)根据题意得:,解得:,∴y关于x的函数解析式为y=-2x+160;(2)设当该商品的售价是x元/件时,月销售利润为w元,根据题意得:w=(-2x+160)(x-20)=-2x2+200 x-3200=-2(x-50)2+1800∴当x=50时w有最大值,最大值为1800(元),答:当该商品的售价是50元/件时,月销售利润最大,最大利润是1800元;(3)根据题意得,w=(x-20-m)(-2x+160)=-2x2+(200+2m)x-3200-160m,∵对称轴x=,∴①当=<40时(舍),②当=≥40时,x=40时,w取最大值为1280,解得:m=4,【解析】(1)依题意设y=kx+b,解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(2)根据题意得列函数解析式,根据二次函数的性质即可得到结论.本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.23.【答案】(1)证明:∵∠ACB=90°,EF⊥BE,∴∠FCG=∠BEG=90°,又∵∠CGF=∠EGB,∴△CFG∽△EBG;(2)解:由(1)得△CFG∽△EBG,∴,∴,又∵∠CGE=∠FGB,∴△CGE∽△FGB,∴∠EFB=∠ECG=∠ACB=45°;(3)解:过点F作FH⊥CD交DC的延长线于点H,由(2)知,△BEF是等腰直角三角形,∴EF=BE,∵∠FEH+∠DEB=90°,∠EBD+∠DEB=90°,∴∠FEH=∠EBD,在△FEH和△EBD中,,∴△FEH≌△EBD(AAS),∴FH=ED,∵∠FCH=∠ACD=45°,∠CHF=90°,∴∠CFH=∠CFH=45°,∴CH=FH,在Rt△CFH中,CF==FH,∴CF=DE,∴.【解析】(1)得出∠FCG=∠BEG=90°,∠CGF=∠EGB,则结论得证;(2)证明△CGE∽△FGB,得出∠EFB=∠ECG=∠ACB=45°;(3)过点F作FH⊥CD交DC的延长线于点H,证明△FEH≌△EBD(AAS),得出FH=ED,则CH=FH,得出CF=DE,则得出答案.本题是三角形综合题,考查了等腰直角三角形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定与性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。

安徽省合肥市2020年中考数学模拟试卷(二)及答案

安徽省合肥市2020年中考数学模拟试卷(二)及答案

2020年安徽省合肥市中考数学模拟试卷(二)一.选择题(共12小题,满分36分,每小题3分)1.若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.2.135×1011 B.2.135×107C.2.135×1012 D.2.135×1033.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)4.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.5.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球6.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上7.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福土最高楼顶点F的仰角为45°,此时他头项正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为()(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米8.定义“取整函数”[x]为不超过x的最大整数,例如[4.5]=4,[5]=5,若整数x、y满足:,则有序数对(x、y)共有()对.A.12B.8C.6D.49.如图,矩形AOBC的面积为4,反比例函数y=(k≠0)的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A.y=B.y=C.y=﹣D.y=﹣10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.211.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃B.28℃C.30℃D.37℃12.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S=AB2.△ADEA.1个B.2个C.3个D.4个二.填空题(共4小题,满分12分,每小题3分)13.若tan(α﹣15°)=,则锐角α的度数是.14.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围.15.如图,AB和CD是圆柱ABCD的两条高,现将它过点A用尽可能大的刀切一刀,截去图中阴影部分所示的一块立体图形,截面与CD的交点为P,连结AP,已知该圆柱的底面半径为2,高为6,截去部分的体积是该圆柱体积的,则tan∠BAP的值为.16.已知二次函数y=ax2+bx+c的图象如图所示,以下关于a,b,c的不等式中正确的序号是.①abc>0 ②b2﹣4ac>0 ③2a+b>0 ④4a﹣2b+c<0.三.解答题(共7小题,满分52分)17.先化简,再求值:﹣,其中a=﹣5.18.解不等式组19.某中学为了相应国家发展足球的战略方针,激发学生对足球的兴趣,特举办全员参与的“足球比赛”,赛后,全校随机抽查部分学生,其成绩(百分制)整理分为5组,并制成频数分布表和扇形统计图,请根据所提供的信总解答下列问题:组成绩(分)频数A50<x<606B60<x<70mC70<x<8020D80<x<9036E90<x<100n (1)频数分布表中的m=,n=.(2)样本中位数所在成绩的级别是,扇形统计图中,E组所对应的扇形圆心角的度数是.(3)若该校共有2000名学生,请你估计“足球比赛”成绩不少于80分的大约有多少人?20.如图,已知AB是OD的直径,AM和BN是⊙O的两条切线,点E是⊙O上一点,点D 是AM上一点,连接DE并延长交BN于点C,连接OD、BE,且OD∥BE.(1)求证:DE是⊙O的切线;(2)若AD=1,BC=4,求直径AB的长.21.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.22.(10分)已知Rt△ABC中,AC=BC=2.一直角的顶点P在AB上滑动,直角的两边分别交线段AC,BC于E.F两点(1)如图1,当=且PE⊥AC时,求证:=;(2)如图2,当=1时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF绕点P旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF的周长等于2+时,请直接写出α的度数.23.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据绝对值的定义,绝对值等于它的相反数的数是负数或零.【解答】解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:D.【点评】本题主要考查了绝对值的定义,属于基础题型.注意不要忽略零.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2135亿=213500000000=2.135×1011,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即(∠1+∠2)=90°;而∠1的余角为90°﹣∠1,可将上式代入90°﹣∠1中,即可求得结果.【解答】解:由图知:∠1+∠2=180°;∴(∠1+∠2)=90°;∴90°﹣∠1=(∠1+∠2)﹣∠1=(∠2﹣∠1).故选:C.【点评】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.【分析】直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、a3•a3=a6,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.6.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.【分析】根据已知角的三角函数构造直角三角形即可求解.【解答】解:如图所示:延长AC 和FE 交于点G ,过点B 作BM ⊥FE 于点M ,作DH ⊥AG 于点H ,得矩形ABMG 、DHEG ,设DH =x ,则HC =2x ,BM =AG =160+120+2x =280+2x .EG =DH =x ,∵∠FAG =45°,∠FGA =90°,∴∠AFG =45°,∴FG =AG ,EF =FG ﹣EG =AG ﹣EG =280+2x ﹣x =280+x ,∴FM =FG ﹣MG =280+2x ﹣146=134+2x ,在Rt △FBM 中,tan31°=,即=0.6, 解得x =42.5,则EF =280+x =322.5.故选:B .【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决本题的关键是添加适当的辅助线构造直角三角形.8.【分析】由取整函数定义列出关于x 、y 的不等式组,解之求得x 、y 的值,从而得到整数x 、y 的值,据此可得答案.【解答】解:由题意知,解得:,∵x 、y 均为整数, ∴x =4、5,y =5、6,则有序数对(x ,y )有(4,5)、(4,6)、(5,5)、(5,6),故选:D .【点评】本题主要考查解一元一次不等式组,解题的关键是根据取整函数的定义列出关于x 、y 的不等式组.9.【分析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得S 矩形OEPF =S 矩形OACB =1,然后根据反比例函数的比例系数k 的几何意义求解.【解答】解:过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图,∵四边形OACB 为矩形,点P 为对角线的交点,∴S 矩形OEPF =S 矩形OACB =×4=1.∴k =﹣1,故该反比例函数的解析式是:y =﹣.故选:D .【点评】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 10.【分析】首先设⊙O 的半径是r ,则OF =r ,根据AO 是∠EAF 的平分线,求出∠COF =60°,在Rt △OIF 中,求出FI 的值是多少;然后判断出OI 、CI 的关系,再根据GH ∥BD ,求出GH 的值是多少,再用EF 的值比上GH 的值,求出的值是多少即可.【解答】解:如图,连接AC 、BD 、OF ,,设⊙O 的半径是r ,则OF =r ,∵AO 是∠EAF 的平分线,∴∠OAF =60°÷2=30°,∵OA =OF ,∴∠OFA =∠OAF =30°,∴∠COF =30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.11.【分析】根据黄金比的值知,身体感到特别舒适的温度应为37度的0.618倍.【解答】解:根据黄金比的值得:37×0.618≈23℃.故选:A.【点评】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.618.12.【分析】由条件可判定△ABD为等边三角形,可得出DE⊥AB、BF⊥AD,可求得∠FGE,可判断①;由条件可证得△DCG≌△BCG,可判断②;在△BDF和△CGB中可得出BD=AB2可判断④.可得出答案.≠CG,可判断③;由等边三角形的面积可知S△ABD【解答】解:∵四边形ABCD为菱形,∴AD=AB,且∠A=60°,∴△ABD为等边三角形,又∵E、F分别是AB、AD的中点,∴DE⊥AB,BF⊥AD,∴∠GFA =∠GEA =90°,∴∠BGD =∠FGE =360°﹣∠A ﹣∠GFA ﹣∠GEA =120°,∴①正确;∵四边形ABCD 为菱形,∴AB ∥CD ,AD ∥BC ,∴∠CDG =∠CBG =90°,在Rt △CDG 和Rt △CBG 中,,∴Rt △CDG ≌Rt △CBG (HL ),∴DG =BG ,∠DCG =∠BCG =∠DCB =30°,∴DG =BG =CG ,∴DG +BG =CG ,∴②正确;在Rt △BDF 中,BD 为斜边,在Rt △CGB 中,CG 为斜边,且BD =BC ,在Rt △CGB 中,显然CG >BC ,即CG >BD ,∴△BDF 和△CGB 不可能全等,∴③不正确;∵△ABD 为等边三角形,∴S △ABD =AB 2,∴S △ADE =S △ABD =AB 2, ∴④不正确;综上可知正确的只有两个,故选:B .【点评】本题主要考查菱形的性质及等边三角形的性质,熟练掌握菱形的四边相等、对边平行及等边三角形的性质是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】直接利用特殊角的三角函数值计算得出答案.【解答】解:∵tan (α﹣15°)=,∴α﹣15°=60°,∴α=75°.故答案为:75°.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14.【分析】因为关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,所以k≠0且△=b2﹣4ac>0,建立关于k的不等式组,解得k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴k≠0,且△=b2﹣4ac=36﹣36k>0,解得k<1且k≠0.故答案为k<1且k≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.【分析】根据题意得出线段PE上面部分的体积是该圆柱体积的,线段PE下面部分的体积是该圆柱体积的,即可得出AE的长,进而求出即可.【解答】解:过点P作PE⊥AB于点E,∵如图所示:截去部分的体积是该圆柱体积的,∴线段PE上面部分的体积是该圆柱体积的,∴线段PE下面部分的体积是该圆柱体积的,∴PC=DC=6×=2,∴AE=DP=6﹣2=4,∵圆柱的底面半径为2,则PE=4,∴tan∠BAP===1.故答案为:1.【点评】此题主要考查了圆柱体的计算以及锐角三角函数应用等知识,根据题意得出各部分的体积比是解题关键.16.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵图象开口向上,∴a>0,∵图象与y轴交于负半轴,∴c<0,∵对称轴在y轴右侧,∴﹣>0,∴b<0,∴abc>0;故①正确,∵图象和x轴交于两点,∴△>0,∵对称轴在1的左边,∴﹣<1,又a>0,∴2a+b>0,当x=﹣2时,y=4a﹣2b+c,且根据图象可知4a﹣2b+c>0,∴①对;②对;③对;④错.故正确的序号是①②③.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三.解答题(共7小题,满分52分)17.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=•﹣=﹣=﹣,当a=﹣5时,原式=﹣=1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.【点评】本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)由统计图表可得A组的有6人,占调查人数的6%,可求出调查人数,E 组的占30%,可求出E组人数,确定n的值,从调查总人数中减去其它各组的人数,可得B组的人数,即可确定m的值,(2)从样本的100个数据中,从小到大排列后处在第50、51位的两个数在D组,E组占30%,因此圆心角的度数占周角的30%即可,(3)样本估计总体,用样本中成绩不少于80分的所占的百分比估计总体的百分比.【解答】解:(1)6÷6%=100人,n=100×30%=30人,m=100﹣6﹣20﹣36﹣30=8人,故答案为:8,30.(2)样本中处在第50、51位的两个数都落在D组,因此中位数落在D组,360°×30%=108°,故答案为:D,108°.(3)2000×=1320人,答:该校2000名学生中“足球比赛”成绩不少于80分的大约有1320人.【点评】考查扇形统计图、频率分布表以及中位数的意义,理清统计图表中各个数量之间的关系式解决问题的关键,样本估计总体是统计中常用的方法.20.【分析】(1)连接OE,由OE=OB,利用等边对等角得到一对角相等,再由OD与BE平行,得到一对同位角及一对内错角相等,等量代换得到∠AOD=∠OBE=∠OEB=∠EOD,再由OA=OE,OD=OD,利用SAS得到三角形AOD与三角形EOD全等,由全等三角形对应角相等得到∠OAD=∠OED,根据AM为圆O的切线,利用切线的性质得到∠OAD=∠OED=90°,即可得证;(2)过点D作BC的垂线,垂足为H,由BN与圆O切线于点B,得到∠ABC=90°=∠BAD=∠BHD,利用三个角为直角的四边形为矩形得到ADHB为矩形,利用矩形的对边相等得到BH=AD=1,AB=DH,由BC﹣BH求出HC的长,AD、CB、CD分别切⊙O 于点A、B、E,利用切线长定理得到AD=DE=1,EC=BC=4,在直角三角形DHC中,利用勾股定理求出DH的长,即为AB的长.【解答】(1)证明:连接OE,在⊙O中,OA=OE=OB,∴∠OBE=∠OEB,∵OD∥BE,∴∠AOD=∠OBE=∠OEB=∠EOD,在△AOD和△EOD中,,∴△AOD≌△EOD(SAS),∴∠OAD=∠OED,∵AM是⊙O的切线,切点为A,∴BA⊥AM,∴∠OAD=∠OED=90°,∴OE⊥DE,∵OE是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作BC的垂线,垂足为H,∵BN切⊙O于点B,∴∠ABC=90°=∠BAD=∠BHD,∴四边形ABHD是矩形,∴AD=BH=1,AB=DH,∴CH=BC﹣BH=4﹣1=3,∵AD、CB、CD分别切⊙O于点A、B、E,∴AD=ED=1,BC=CE=4,∴DC=DE+CE=1+4=5,在Rt△DHC中,DC2=DH2+CH2,∴AB=DH==4.【点评】此题考查了切线的判定与性质,全等三角形的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.21.【分析】(1)根据题意,可以列出相应的方程,从而可以求得A、B两市各需救灾物资多少吨;(2)根据题意,可以写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)根据题意,可以得到w与x的函数关系式,然后根据一次函数的性质和分类讨论的方法可以解答m的取值范围.【解答】解:(1)设A市需救灾物资a吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变,∴w=10x+10200﹣mx=(10﹣m)x+10200,①当10﹣m>0,m>0时,即0<m<10时,则w随x的增大而增大,∴x=60时,w有最小值,w最小值是(10﹣m)×60+10200,∴(10﹣m)×60+10200≥10320,解得m≤8,又∵0<m<10,∴0<m≤8;②当10﹣m=0,即m=10时无论如何调运,运费都一样.w=10200<10320,不合题意舍去;③当10﹣m<0,即m>10时,则w随x的增大而减小,∴x=260时,w有最小值,此时最小值是(10﹣m)×260+10200,∴(10﹣m)×260+10200≥10320,解得,m≤,又∵m>10,∴m≤不合题意,舍去.综上所述,0<m≤8,即m的取值范围是0<m≤8.【点评】本题考查一次函数的应用、一元一次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.22.【分析】(1)如图1,易证△AEP∽△PFB,然后运用相似三角形的性质即可解决问题;(2)连接CP,如图2,易证△APE≌△CPF,从而得到PE=PF,故(1)的结论不成立;(3)在(2)的条件下可得AE=CF,由此可得EC+CF=2,EF=,设CF=x,在Rt△CEF中运用勾股定理可求出CF的值.由于CF的值有两个,需分以下两种情况讨论:①若CF=,如图3,过点P作PH⊥BC于H,先求出PH、FH,然后在Rt△PHF中运用三角函数可求出∠FPH的度数,由此可求出α的值;②若CF=,如图4,过点P作PG⊥AC于G,同理可求出∠APE度数,由此可求出α的值.【解答】解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF,=,∴==;(2)(1)的结论不成立,理由如下:连接PC,如图2.∵=1,∴点P是AB的中点.又∵∠ACB=90°,CA=CB,∴CP=AP=AB.∠ACP=∠BCP=∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE和△CPF中,,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论=不成立;(3)当△CEF的周长等于2+时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+,∴EF=.设CF=x,则有CE=2﹣x,在Rt△CEF中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1=,x2=.①若CF=,如图3,过点P作PH⊥BC于H,易得PH=HB=CH=1,FH=1﹣=,在Rt△PHF中,tan∠FPH==,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;②若CF=,如图4,过点P作PG⊥AC于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.【点评】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的判定与性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义、特殊角的三角函数值、勾股定理等知识,有一定的综合性,得到EC+CF=2是解决第(3)小题的关键.23.【分析】(1)设抛物线解析式为y=a(x﹣h)2+k,将顶点及原点坐标代入即可;(2)求出点A的坐标,直线AC的解析式,过点D作DF∥y轴交AC于点F,设,则,可用含m的代数式表示出△ACD的面积,由二次函数的图象及性质可求出S取最大值时对应的m值,即可求出点D的坐标;(3)证△AOC为等边三角形,分两种情况讨论:①当点P在C时,可直接写出点P的坐标;②作点C关于x轴的对称点C',当点A'与点C'重合时,点P是∠AOA'的角平分线与对称轴的交点,记为P2,在Rt△OBP2中由勾股定理可求出BP2的长,即可写出P2的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,∴当m=3时,S有最大值,△ACD当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.【点评】本题考查了待定系数法求解析式,函数的思想求极值,菱形的性质与判定等,解题关键是注意分类讨论思想在解题中的运用.。

安徽省合肥市蜀山区2020年中考数学二模试卷(含解析)

安徽省合肥市蜀山区2020年中考数学二模试卷(含解析)

安徽省合肥市蜀山区2020年中考数学二模试卷一、选择题1.在﹣3、0、、3中,最大的数是()A.﹣3 B.0 C.D.32.下列计算正确的是()A.2×32=36B.(﹣2a2b3)3 =﹣6a6b9C.﹣5a5b3c÷15a4b=﹣3ab2c D.(a﹣2b)2 =a2﹣4ab+4b23.某集成电路制造有限公司已于2019年第三季度成功量产了第一代14纳米FinFET工艺,这是国内第一条14nm工艺生产线,已知14nm为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣94.下列图形都是由大小相同的正方体搭成的,其三视图都相同的是()A.B.C.D.5.如图,点A、B分别在直线a、b上,且直线a∥b,以点A为圆心,AB长为半径画弧交直线a于点C,连接BC,若∠2=67°,则∠1=()A.78°B.67°C.46°D.23°6.如表是某班所有同学一周体育锻炼时间的统计情况,请通过表格中的数据可得该班级同学一周参加体育锻炼时间的众数与中位数分别是()锻炼时间(小时)7 8 9 10人数(人) 3 16 14 7A.8与9 B.8与8.5 C.16与8.5 D.16与10.57.已知点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,则()A.m>n B.m<nC.m=n D.m、n的大小无法确定8.在边长为2的正方形ABCD中,点E是AD边上的中点,BF平分∠EBC交CD于点F,过点F作FG⊥AB交BE于点H,则GH的长为()A.B.C.D.9.如图所示,在△ABC中,AB=AC,动点D在折线段BAC上沿B→A→C方向以每秒1个单位的速度运动,过D垂直于BC的直线交BC边于点E.如果AB=5,BC=8,点D运动的时间为t秒,△BDE的面积为S,则S关于t的函数图象的大致形状是()A.B.C.D.10.如图,菱形ABCD的边长为2,∠ABC=60°,点E、F在对角线BD上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4 B.4+C.2+2D.6二、填空题(本题共4小题,每小题5分,满分20分)11.化简:=.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为度.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为.三、(本题共2小题,每小题8分,满分16分)15.解不等式:2(x﹣1)+4>0.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.四、(本题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?五、(本题共2小题,每小题10分,满分20分)19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=﹣x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q 的上方,请结合函数图象直接写出此时t的取值范围.六、(本题满分12分)21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC 的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.七、(本题满分12分)22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y(千克)与售价x(元/千克)的函数图象关系如图所示:(1)求y关于x的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m元/千克(m>0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m的值.八、(本题满分14分)23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.参考答案一、选择题(本题共10小题,每小题4分,满分40分)1.在﹣3、0、、3中,最大的数是()A.﹣3 B.0 C.D.3【分析】直接利用有理数的比较方法得出答案.解:在﹣3、0、、3中,最大的数是:3.故选:D.2.下列计算正确的是()A.2×32=36B.(﹣2a2b3)3 =﹣6a6b9C.﹣5a5b3c÷15a4b=﹣3ab2c D.(a﹣2b)2 =a2﹣4ab+4b2【分析】直接利用有理数的混合运算法则以及整式的除法运算法则、积的乘方运算法则分别计算得出答案.解:A、2×32=18,故此选项错误;B、(﹣2a2b3)3 =﹣8a6b9,故此选项错误;C、﹣5a5b3c÷15a4b=﹣ab2c,故此选项错误;D、(a﹣2b)2 =a2﹣4ab+4b2,正确.故选:D.3.某集成电路制造有限公司已于2019年第三季度成功量产了第一代14纳米FinFET工艺,这是国内第一条14nm工艺生产线,已知14nm为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000014=1.4×10﹣8.故选:B.4.下列图形都是由大小相同的正方体搭成的,其三视图都相同的是()A.B.C.D.【分析】根据三视图的概念逐一判断即可得.解:A.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项不合题意;B.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项不合题意;C.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项符合题意;D.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项不合题意.故选:C.5.如图,点A、B分别在直线a、b上,且直线a∥b,以点A为圆心,AB长为半径画弧交直线a于点C,连接BC,若∠2=67°,则∠1=()A.78°B.67°C.46°D.23°【分析】在△ABC中,利用等腰三角形的性质及三角形内角和定理可求出∠BAC的度数,由直线a∥b,利用“两直线平行,内错角相等”可求出∠1的度数.解:在△ABC中,AB=AC,∠ACB=67°,∴∠ABC=∠ACB=67°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣67°﹣67°=46°.又∵直线a∥b,∴∠1=∠BAC=46°.故选:C.6.如表是某班所有同学一周体育锻炼时间的统计情况,请通过表格中的数据可得该班级同学一周参加体育锻炼时间的众数与中位数分别是()锻炼时间(小时)7 8 9 10人数(人) 3 16 14 7A.8与9 B.8与8.5 C.16与8.5 D.16与10.5【分析】根据众数和中位数定义进行解答即可.解:众数:8小时;中位数:9小时,故选:A.7.已知点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,则()A.m>n B.m<nC.m=n D.m、n的大小无法确定【分析】根据a、b与0的大小关系利用反比例函数的性质确定答案即可.解:∵反比例函数y=﹣中k=﹣2<0,∴在每一象限内y随着x的增大而增大,∵点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,∴当a>b>0时,m>n>0,当0>a>b时,m>n>0,当a>0>b时,m<0<n,∴m、n的大小无法确定,故选:D.8.在边长为2的正方形ABCD中,点E是AD边上的中点,BF平分∠EBC交CD于点F,过点F作FG⊥AB交BE于点H,则GH的长为()A.B.C.D.【分析】将△ABE绕B点旋转,使AB和BC重合,设△BCG是旋转后的△ABE,证明BE=AE+CF,由勾股定理得BE==,则CF=BE﹣AE=﹣1,易证四边形BCFG 与四边形ADFG都是矩形,得出CF=BG=﹣1,GH∥AE,则△BGH∽△BAE,得出=,即可得出结果.解:∵四边形ABCD是正方形,∴AB=BC,∠BAE=∠BCD=90°,将△ABE绕B点旋转,使AB和BC重合,如图所示:设△BCG是旋转后的△ABE,∴△ABE≌△CBG,∴AE=CG,BE=BG,∠ABE=∠CBG,∠BAE=∠BCG=90°,∴G、C、F三点共线,∵BF是∠EBC的角平分线,∴∠EBF=∠FBC,∴∠ABE+∠EBF=∠GBC+∠FBC,∴∠ABF=∠FBG,∵四边形ABCD是正方形,∴AB=AD=2,AB∥CD,∴∠ABF=∠BFG,∴∠GBF=∠BFG,∴BG=GF,∵GF=CG+CF=AE+CF,BG=BE,∴BE=AE+CF,∵点E是AD边上的中点,∴AE=AD=1,由勾股定理得:BE===,∴CF=BE﹣AE=﹣1,∵四边形ABCD是正方形,FG⊥AB,∴四边形BCFG与四边形ADFG都是矩形,∴CF=BG=﹣1,GH∥AE,∴△BGH∽△BAE,∴=,即=,∴GH=,故选:A.9.如图所示,在△ABC中,AB=AC,动点D在折线段BAC上沿B→A→C方向以每秒1个单位的速度运动,过D垂直于BC的直线交BC边于点E.如果AB=5,BC=8,点D运动的时间为t秒,△BDE的面积为S,则S关于t的函数图象的大致形状是()A.B.C.D.【分析】分点D在AB上、点D在BC上运动时两种情况,分别求出函数表达式,进而求解.解:过点A作AH⊥BC,∵AB=AC,∴HB=HC=BC=4,∴cos B==,则sin B=;当点D在AB上时,S=×AE×DE=AD sin B•AD cos B=t2,该函数为开口向上的抛物线;当点D在BC上时,同理可得:S=12﹣(18﹣t)2;该函数为开口向下的抛物线,故选:B.10.如图,菱形ABCD的边长为2,∠ABC=60°,点E、F在对角线BD上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4 B.4+C.2+2D.6【分析】如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,进而得出△AEF周长的最小值即可.解:如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,即△AEF 的周长最小.∵AH=EF,AH∥EF,∴四边形EFHA是平行四边形,∴EA=FH,∵FA=FC,∴AE+AF=FH+CF=CH,∵菱形ABCD的边长为2,∠ABC=60°,∴AC=AB=2,∵四边形ABCD是菱形,∴AC⊥BD,∵AH∥DB,∴AC⊥AH,∴∠CAH=90°,在Rt△CAH中,CH=,∴AE+AF的最小值4,∴△AEF的周长的最小值=4+2=6,故选:D.二、填空题(本题共4小题,每小题5分,满分20分)11.化简:=x+2 .【分析】分子利用平方差公式进行因式分解,然后约分即可.解:原式==x+2.故答案是:x+2.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为18 度.【分析】利用360°×不合格人数占抽取的人数的百分数即可得到结论.解:不合格人数在扇形统计图对应的圆心角为×360°=18°,故答案为:18.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是4851 .【分析】观察数字的变化写出第3行开始的每一行的左边第3个数,寻找规律即可求出第100行的左边第3个数.解:观察数字的变化发现:第3行的左边第3个数是1=,第4行的左边第3个数是3=,第5行的左边第3个数是6=,第6行的左边第3个数是10=,…所以第100行的左边第3个数是=4851.故答案为:4851.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为3或.【分析】作CH⊥AB于H,如图,利用平行线的性质得到CH⊥EF,利用对称的性质得到点D在CH上,利用勾股定理和面积法分别计算出AB=10,CH=,AH=,当点D为∠BAC的平分线AM与CH的交点时,如图1,作MN⊥AB于N,根据角平分线的性质得到MC =MN,则AN=AC=6,所以BN=4,设MC=MN=x,则BM=8﹣x,利用勾股定理得到得到x2+42=(8﹣x)2,解得x=3,接着利用平行线分线段成比例定理计算出HD=,从而得到此时CD的长;当点D为∠ABC的平分线AG与CH的交点时,如图2,利用同样方法求解.解:过点C作CH⊥AB于H,如图,∵EF∥AB,∴CH⊥EF,∵点D与点C关于EF对称,∴点D在CH上,在Rt△ABC中,AB==10,∵CH•AB=AC•BC,∴CH==,∴AH==,当点D为∠BAC的平分线AM与CH的交点时,如图1,过点M作MN⊥AB于N,∴MC=MN,∴AN=AC=6,∴BN=4,设MC=MN=x,则BM=8﹣x,在Rt△BMN中,x2+42=(8﹣x)2,解得x=3,∵DH∥MN,∴=,即=,解得HD=,∴CD=﹣=3;当点D为∠ABC的平分线AG与CH的交点时,如图2,BH=AB﹣AH=,过点G作GQ⊥AB于Q,则GQ=GC,∴BQ=BC=8,∴AQ=2,设GQ=GC=t,则AG=6﹣t,在Rt△AGQ中,22+t2=(6﹣t)2,解得t=,∵DH∥GQ,∴=,即=,解得DH=,∴CD=﹣=,综上所述,CD的长为3或.故答案为3或.三、(本题共2小题,每小题8分,满分16分)15.解不等式:2(x﹣1)+4>0.【分析】直接去括号进而移项合并同类项解不等式即可.解:2x﹣2+4>0,2x>﹣2,解得:x>﹣1.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.【分析】首先设经过x天相遇,根据题意可得等量关系:野鸭x天的路程+大雁x天的路程=1,再根据等量关系列出方程,再解即可.解:设经过x天相遇,由题意得:+=1,解得:x=,答:经过天相遇.四、(本题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).【分析】(1)连接AO,延长AO到A′,使得OA′=2OA,同法作出点B′,连接A′B′即可.(2)以A′B′为边构造矩形即可(答案不唯一).解:(1)如图,线段A′B′即为所求.(2)如图,矩形A′B′CD即为所求(答案不唯一).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?【分析】(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.解:(1)明抽到化学实验的概率为,故答案为:.(2)画树状图如下:由树状图知,共有9种等可能结果,其中小明和小丽抽到不同科目的有6种结果,∴小明和小丽抽到不同科目的概率为=.五、(本题共2小题,每小题10分,满分20分)19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)【分析】(1)如图,延长CA于点D,交直线CE于点D,于是得到∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,根据角的和差即可得到结论;(2)解直角三角形即可得到结论.解:(1)如图,延长CA于点D,交直线CE于点D,则BD⊥CD,∴∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,∴∠ACB=∠CAD﹣∠B=15°;(2)∵∠ACD=45°,∠BCD=30°,AB=20,∴在Rt△ACD中,AD=CD,在Rt△CBD中,tan∠BCD==,即=,解得AD≈30(m).答:这段河的宽度约为30米.20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=﹣x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q 的上方,请结合函数图象直接写出此时t的取值范围.【分析】(1)利用三角形面积公式计算OC,从而得到B(4,1),再把B点坐标代入y =中求出k得到反比例函数解析式为y=;接着把B点坐标代入y=﹣x+b中求出b 得到直线AB的解析式,然后利用直线解析式确定E点坐标;(2)先确定A(1,4),然后写出在第一象限内,一次函数图象在反比例函数图象上方所对应的自变量的范围即可.解:(1)∵△OBC的面积为2,B点的纵坐标为1.∴×OC×1=2,解得OC=4,∴B(4,1),把B(4,1)代入y=得k=4×1=4,∴反比例函数解析式为y=;把B(4,1)代入y=﹣x+b得﹣4+b=1,解得b=5,∴直线AB的解析式为y=﹣x+5;当y=0时,﹣x+5=0,解2得x=5,∴E(5,0);(2)当y=4时,=4,解得x=1,∴A(1,4),当点P位于点Q的上方,此时t的取值范围为1<t<4.六、(本题满分12分)21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC 的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.【分析】(1)作线段AC的垂直平分线即可解决问题.(2)首先证明DE∥AB,利用平行线的性质解决问题即可.(3)过点C作CG⊥OD于G.证明△ODC是等边三角形即可解决问题.【解答】(1)解:如图,点O即为所求.(2)证明:连接DO延长DO交AB于F.∵DE是⊙O的切线,∴OD⊥DF,∵=,∴DF⊥AB,∴DE∥AB,∴∠E+∠B=180°,∵AC是直径,∴∠ABC=90°,∴∠E=90°,∴DE⊥BE.(3)过点C作CG⊥OD于G.∵∠E=∠EDG=∠DGC=90°,∴四边形DECG是矩形,∴DG=CE,∵OD=OC=2CE=4,∴CE=DG=OG=2,∵CG⊥OD,∴CD=CO=OD,∴△DOC是等边三角形,∴∠DOC=60°,∴S阴=S扇形ODC﹣S△ODC=﹣×42=π﹣4.七、(本题满分12分)22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y(千克)与售价x(元/千克)的函数图象关系如图所示:(1)求y关于x的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m元/千克(m>0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m的值.【分析】(1)依题意设y=kx+b,解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(2)根据题意得列函数解析式,根据二次函数的性质即可得到结论.解:(1)设y=kx+b(k,b为常数,k≠0)根据题意得:,解得:,∴y关于x的函数解析式为y=﹣2x+160;(2)设当该商品的售价是x元/件时,月销售利润为w元,根据题意得:w=(﹣2x+160)(x﹣20)=﹣2x2+200 x﹣3200=﹣2(x﹣50)2+1800 ∴当x=50时w有最大值,最大值为1800(元),答:当该商品的售价是50元/件时,月销售利润最大,最大利润是1800元;(3)根据题意得,w=(x﹣20﹣m)(﹣2x+160)=﹣2x2+(200+2m)x﹣3200﹣160m,∵对称轴x=,∴①当=<40时(舍),②当=≥40时,x=40时,w取最大值为1280,解得:m=4,八、(本题满分14分)23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.【分析】(1)得出∠FCG=∠BEG=90°,∠CGF=∠EGB,则结论得证;(2)证明△CGE∽△FGB,得出∠EFB=∠ECG=∠ACB=45°;(3)过点F作FH⊥CD交DC的延长线于点H,证明△FEH≌△EBD(AAS),得出FH=ED,则CH=FH,得出CF=DE,则得出答案.【解答】(1)证明:∵∠ACB=90°,EF⊥BE,∴∠FCG=∠BEG=90°,又∵∠CGF=∠EGB,∴△CFG∽△EBG;(2)解:由(1)得△CFG∽△EBG,∴,∴,又∵∠CGE=∠FGB,∴△CGE∽△FGB,∴∠EFB=∠ECG=∠ACB=45°;(3)解:过点F作FH⊥CD交DC的延长线于点H,由(2)知,△BEF是等腰直角三角形,∴EF=BE,∵∠FEH+∠DEB=90°,∠EBD+∠DEB=90°,∴∠FEH=∠EBD,在△FEH和△EBD中,,∴△FEH≌△EBD(AAS),∴FH=ED,∵∠FCH=∠ACD=45°,∠CHF=90°,∴∠CFH=∠CFH=45°,∴CH=FH,在Rt△CFH中,CF==FH,∴CF=DE,∴.。

2020年安徽省合肥市中考数学二模试卷 (含答案解析)

2020年安徽省合肥市中考数学二模试卷 (含答案解析)

2020年安徽省合肥市中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.√8116的平方根是()A. 94B. 32C. ±94D. ±322.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.下列各选项中因式分解正确的是()A. x2−1=(x−1)2B. a3−2a2+a=a2(a−2)C. −2y2+4y=−2y(y+2)D. m2n−2mn+n=n(m−1)24.某种病毒的直径约为0.000000029米,将0.000000029用科学记数法表示为()A. 2.9×10−8B. 29×10−8C. 2.9×10−9D. 29×10−95.如果不等式组{x>ax<2恰有3个整数解,则a的取值范围是A. a≤−1B. a<−1C. −2≤a<−1D. −2<a<−16.下面的几何体中,主视图为三角形的是()A. B.C. D.7.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A. 50(1+x)2=60B. 50(1+x)2=120C. 50+50(1+x)+50(1+x)2=120D. 50(1+x)+50(1+x)2=1208.函数y=ax2−a与y=ax−a(a≠0)在同一坐标系中的图象可能是()A. B.C. D.9.用一个圆心角为90°,半径为4的扇形作一个圆锥的侧面,则圆锥的高为()A. √17B. √15C. 2√3D. √710.如图,在矩形ABCD中(AD>AB),E是BC上的一点,且DE=DA,AF⊥DE于点F.下列结论不一定正确的是()A. △AFD≌△DCEB. AF=ADC. AB=AFD. BE=AD−DF二、填空题(本大题共4小题,共20.0分)11.一组数据:2,5,3,1,6,则这组数据的中位数是.12.分解因式:4x3−x=______ .13.如图,点A,B分别在反比例函数y=1x ,y=kx的图象上,OA⊥OB,若tan∠ABO=12,则k的值为______.14.在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),D(0,6),已知矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为12,则点B1的坐标是____.三、解答题(本大题共9小题,共72.0分)15.√16+(2−√2)0−(−12)−2+|−1|16.先化简,再求值:a2−4a−3÷(1+1a−3),其中a=3√5−2.17.如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.x+1的18.如图,一次函数y=kx+b的图像为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=12图像为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;S▵ABC,求点P的坐标.(3)若直线l2上有一点P,满足S▵PAC=13(4)如图2,点E为线段CD上一点,∠DBE=∠BCD,点Q为射线CD上一点,且点Q到直线BC、BE的距离相等,求点Q的坐标.19.如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l 的距离为多少千米?(参考数据:√3≈1.732,结果保留小数点后一位)20.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=√3,求劣弧BD与弦BD所围图形的面积.(3)若AC=4,BD=6,求AE的长.21.为培养学生良好的学习习惯,某校九年级年级组举行“整理错题集“的征集展示活动,并随机对部分学生三年“整理题集”中收集的错题数x进行了抽样调查,根据收集的数据绘制了下面不完整的统计图表.分组频数频率第一组(0≤x<120)30.15第二组(120≤x<160)8a第三组(160≤x<200)70.35第四组(200≤x<240)b0.1请你根据图表中的信息完成下列问题:(1)频数分布表中a=______,b=______,并将统计图补充完整;(2)如果该校九年级共有学生360人,估计整理的错题数在160或160题以上的学生有多少人?(3)已知第一组中有两个是甲班学生,第四组中有一个是甲班学生,老师随机从这两个组中各选一名学生谈整理错题的体会,则所选两人正好都是甲班学生的概率是多少?22.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;面销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?23.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A、B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【答案与解析】1.答案:D解析:此题主要考查了平方根以及算术平方根,正确把握相关定义是解题关键.首先化简算术平方根,进而利用平方根的定义得出答案.解:√8116=94,它的平方根是:±32.故选:D.2.答案:A解析:本题主要考查了中心对称图形与轴对称图形的定义.根据轴对称图形与中心对称图形的概念求解即可.解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,也不是中心对称图形,不符合题意;C.不是轴对称图形,也不是中心对称图形,不符合题意;D.是轴对称图形,也是中心对称图形,不符合题意.故选A.3.答案:D解析:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.直接利用公式法以及提取公因式法分解因式,进而判断即可.解:A.x2−1=(x+1)(x−1),故此选项错误;B.a3−2a2+a=a(a2−2a+1)=a(a−1)2,故此选项错误;C.−2y2+4y=−2y(y−2),故此选项错误;D.m2n−2mn+n=n(m2−2m+1)=n(m−1)2,故此选项正确.故选D.4.答案:A解析:解:0.000000029=2.9×10−8.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.答案:C解析:此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.首先根据不等式恰好有3个整数解求出不等式组的解集为−1≤x<2,继而可得a的取值范围.解:∵不等式恰好有3个整数解,∴−1≤x<2,∴−2≤a<−1.故选C.6.答案:C解析:解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.7.答案:D解析:本题主要考查由实际问题抽象问题出一元二次方程,涉及增长率问题,可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.根据相等关系:增长后的量=增长前的量×(1+增长率)2,如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产120台”,即可列出方程.解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.8.答案:D解析:本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键.分a>0与a<0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论.解:①当a>0时,二次函数y=ax2−a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax−a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2−a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax−a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.9.答案:B解析:解:设圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅4,解得r=1,180所以圆锥的高=√42−12=√15.故选B.设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,然后求出r后利用勾股定理计算圆锥的高.和弧长公式得到2πr=90⋅π⋅4180本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.答案:B解析:本题主要考查了矩形的性质和全等三角形的判定与性质,直角三角形的性质,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.解:A.∵四边形ABCD是矩形,AF⊥DE,∴∠C=∠AFD=90°,AD//BC,∴∠ADF=∠DEC,又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵AF⊥DE,∴∠AFD=90°,∴直角三角形ADF中,直角边AF一定不等于斜边AD,故B错误;C.∵△AFD≌△DCE,∴AF=CD,∵四边形ABCD是矩形,∴AB=CD,∴AB=AF,故C正确;D.∵△AFD≌△DCE,∴CE=DF,∵四边形ABCD是矩形,∴BC=AD,又∵BE=BC−EC,∴BE=AD−DF,故D正确;故选B.11.答案:3解析:本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.根据中位数的定义求解可得.解:将这5个数据按从小到大的顺序排列为1,2,3,5,6,故这组数据的中位数是3.12.答案:x(2x+1)(2x−1)解析:此题主要考查了提取公因式法、公式法分解因式,正确找出公因式是解题关键.首先直接提取公因式x,进而利用平方差公式分解因式得出答案.解:4x3−x=x(4x2−1)=x(2x+1)(2x−1).故答案为:x(2x+1)(2x−1).13.答案:−4解析:本题考查了反比例函数系数k的几何意义、相似三角形的判定与性质以及解直角三角形,根据反比例函数系数k的几何意义结合相似三角形的性质找出关于k的分式方程是解题的关键.过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,根据角与角之间的关系即可得出△AOC∽△OBD,由此即可得出,再根据反比例函数系数k的几何意义以及tan∠ABO=12,即可得出关于k的分式方程,解之即可得出结论.解:过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,如图所示.∵AC⊥y轴,BD⊥y轴,OA⊥OB,∴∠ACD=∠ODB=90°,∠AOB=90°.∵∠OAC+∠AOC=90°,∠BOD+∠OBD=90°,∠AOC+∠BOD=180°−90°=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴S△AOCS△OBD =(AOBO)2,∵反比例函数y=kx在第四象限有图象,∴k<0.∵tan∠ABO=12,S△AOC=12×1=12,S△OBD=12|k|=−12k,∴12−12k=14,解得:k=−4,经检验:k=−4是该方程的解.故答案为:−4.14.答案:(4,3)或(−4,−3)解析:解:∵矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为12,∴点B1的坐标是:(4,3)或(−4,−3).故答案为:(4,3)或(−4,−3).由矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为12,又由点B的坐标为(8,6),即可求得答案.此题考查了位似图形的性质,注意位似图形是特殊的相似图形,注意数形结合思想的应用. 15.答案:解:√16+(2−√2)0−(−12)−2+|−1|=4+1−4+1=2.解析:本题考查了绝对值以及算术平方根、负整数指数幂的运算,属于基础题.根据绝对值、算术平方根和负整数指数幂计算即可. 16.答案:解:原式=(a+2)(a−2)a−3⋅a−3a−2=a +2,当a =3√5−2时, 原式=3√5−2+2=3√5.解析:把分式化简后,再把分式中a 的值代入求出分式的值.本题考查了分式的混合运算,熟练分解因式是解题的关键.17.答案:解:△POQ 如图所示;解析:利用数形结合的思想,构造直角三角形即可解决问题;本题考查作图−应用与设计、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.答案:解:(1)(1)把A(0,4)和D(4,0)分别代入y =kx +b 得{b =44k +b =0, 解得{k =−1b =4; (2)解方程组{y =−x +4y =12x +1得{x =2y =2,所以点B 的坐标为(2,2);(3)S ΔABC =12×3×2+12×3×2=6, ∴S ΔPAC =13S ΔABC =2,∴S ΔPAE =3−2=1或S △PAE =3+2=5,∴32|x P |=1或32|x P |=5,∵x P <0,∴x P =−23或x P =−103, ∴y p =23或y p =−23,∴P(−23,23)或P(−103,−23); (4)由题意得Q(4−2√2,0)或Q(4+2√2,0).解析:本题考查的是一次函数的图象,一次函数解析式的求法,三角形的面积,点的坐标的确定等有关知识.(1)把点A 和点D 的坐标分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 、b 的值;(2)根据两直线相交的问题,通过解方程组{y =−x +4y =12x +1得到点B 的坐标; (3)直接用三角形的面积公式即可得出结论;(4)根据题意直接求解即可.19.答案:解:过点C 作CD ⊥AB 于点D ,根据题意得:∠CAD =90°−60°=30°,∠CBD =90°−30°=60°,∴∠ACB =∠CBD −∠CAD =30°,∴∠CAB =∠ACB ,∴BC =AB =2km ,在Rt △CBD 中,CD =BC ⋅sin60°=2×√32=√3≈1.7(km),答:船C到海岸线l的距离约为1.7km.解析:过点C作CD⊥AB于点D,然后根据含30度角的直角三角形的性质即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.20.答案:(1)证明:连接OD,如图1所示:∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°−(∠2+∠3)=90°,∴OD⊥AD,则AD为⊙O的切线;(2)解:连接OD,作OF⊥BD于F,如图2所示:∵OB=OD,∠B=30°,∴∠ODB=∠B=30°,∴∠DOB=120°,∵∠C=90°,∠CAD=∠B=30°,∴CD=√3AC=1,BC=√3AC=3,3∴BD=BC−CD=2,∵OF⊥BD,∴DF=BF=12BD=1,OF=√33BF=√33,∴OB=2OF=2√33,∴劣弧BD与弦BD所围图形的面积=扇形ODB的面积−△ODB的面积=120π×(2√33)2360−12×2×√33=4 9π−√33;(3)解:∵∠CAD=∠B,∠C=∠C,∴△ACD∽△BCA,∴ACBC =CDAC=ADAB,∴AC2=CD×BC=CD(CD+BD),即42=CD(CD+6),解得:CD=2,或CD=−8(舍去),∴CD=2,∴AD=√AC2+CD2=2√5,∵CDAC =ADAB,∴24=2√5AB,∴AB=4√5,∵AD是⊙O的切线,连接DE,OD,∵∠ADE+∠ODE=∠B+∠ODE=90°,∴∠B=∠ADE,∠A=∠A,∴△ADE∽△ABD,∴AD2=AE×AB,∴AE=AD2AB =√5)24√5=√5.解析:本题是圆的综合题目,考查了切线的判定与性质、等腰三角形的性质、直角三角形的性质、相似三角形的判定与性质、勾股定理、扇形面积公式、切割线定理、三角形面积公式等知识;本题综合性强,证明三角形相似是解决问题(3)的关键.(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可证AD是⊙O的切线;(2)连接OD,作OF⊥BD于F,由直角三角形的性质得出CD,BC,得出BD,由直角三角形的性质得出DF,OF,OB,由扇形面积公式和三角形面积公式即可得出结果;(3)证明△ACD∽△BCA,得出ACBC =CDAC=ADAB,求出CD,由勾股定理得出AD,求出AB,再由切割线定理即可得出AE的长.21.答案:(1)0.4,2,统计图补充为:(2)360×(0.35+0.1)=162,所以估计整理的错题数在160或160题以上的学生有162人;(3)画树状图为:共有6种等可能的结果数,其中所选两人正好都是甲班学生的结果数为2,所以所选两人正好都是甲班学生的概率=26=13.解析:解:(1)3÷0.15=20,=0.4;a=820b=20×0.1=2;故答案为0.4,2;统计图见答案;(2)见答案;(3)见答案.(1)先利用第一组的频数和频率计算出调查的总人数,然后计算a、b的值,最后补全统计图;(2)用360乘以样本中第三、四的频率和,则可估计出整理的错题数在160或160题以上的学生数;(3)画树状图展示所有6种等可能的结果数,找出所选两人正好都是甲班学生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.22.答案:解:(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600−10(x−40)=−10x+1000,获得利润w(元)与销售单价x(元)之间的函数关系为:w=y⋅(x−30)=(1000−10x)(x−30)=−10x2+1300x−30000;(2)根据题意得,x≥44时且1000−10x≥540,解得:44≤x≤46,w=−10x2+1300x−30000=−10(x−65)2+12250,∵a=−10<0,对称轴x=65,∴当44≤x≤46时,y随x的增大而增大,∴当x=46时,w最大值=8640元,即商场销售该品牌玩具获得的最大利润是8640元.解析:此题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−b时取得.2a(1)根据销售利润=销售量×(售价−进价),建立函数关系式即可;(2)根据题意得,x≥14时且1000−10x≥540,解得:44≤x≤46,则此时w=−10(x−65)2+ 12250,而a<0,则得当44≤x≤46时,y随x的增大而增大,即在x=46j时,可取得最大值.23.答案:解:(1)在Rt△ABC中,∠A=30°,AB=8,∴AC=4√3,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×√32=√3t,∴CD=AC−AD=4√3−√3t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=∠DPQ=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴2×√3t=4√3,∴t=2(3)∵∠APD=∠DPQ=60°,∠PDA=∠PDQ,DP=DP∴△APD≌△QPD(ASA)∴DQ=AD=√3t,∠A=∠DQP=30°当点Q在线段AC上时,即0<t≤2S=12×DQ×DP=√32t2.当点Q在线段AC延长线上,即2<t<4∵CQ=DQ−DC∴CQ=√3t−(4√3−√3t)=2√3t−4√3∵∠DQP=30°∴CE=2t−4∵S=S△DPQ−S△CEQ.∴S=√32t2−12CE×CQ=−3√32t2+8√3t−8√3(4)如图:当PQ的垂直平分线过AB的中点F时,∴∠PGF=90°,PG=12PQ=12AP=t,AF=12AB=4,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=4,∴t=1如图:当PQ的垂直平分线过AC的中点M时,∴∠QMN=90°,AN=12AC=2√3,QM=12PQ=12AP=t,在Rt△NMQ中,NQ=MQcos30∘=2√33t,∵AN+NQ=AQ,∴2√3+2√33t=2√3t∴t=3 2如图:当PQ的垂直平分线过BC的中点时,∴BF=12BC=2,PE=12PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=2,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=10,∴t=5 2综上所述:t=1,32,5 2.解析:(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.。

安徽省合肥市2020年中考数学二模试卷(含解析)

安徽省合肥市2020年中考数学二模试卷(含解析)

安徽省合肥市2020年中考数学二模试卷一、选择题(共10小题).1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共4小题,每小题5分,满分20分)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三、(本大题共2小题,每小题0分,满分0分)15.计算:16.先化简,再求值:,其中,a=﹣1.四、(本大题共2小题,每小题0分,满分0分)17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.五、(本大题共2小题,每小题0分,满分0分)19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.六、(本题满分0分)21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m 不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m =;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.七、(本题满分0分)22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.八、(本题满分0分)23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH 和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC ﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x ﹣x 3=x (3+x )(3﹣x ).【分析】首先提取公因式x ,金进而利用平方差公式分解因式得出答案.解:原式=x (9﹣x 2)=x (3﹣x )(3+x ).故答案为:x (3﹣x )(3+x ).13.如图,Rt△AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数y =(x >0)与y =(x <0)的图象上,则tan∠BAO 的值为.【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO =∠ACO =90°,根据反比例函数的性质得到S △BDO =,S △AOC =,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,则∠BDO =∠ACO =90°,∵顶点A ,B 分别在反比例函数y =(x >0)与y =(x <0)的图象上,∴S △BDO =,S △AOC =,∵∠AOB =90°,∴∠BOD +∠DBO =∠BOD +∠AOC =90°,∴∠DBO =∠AOC ,∴△BDO ∽△OCA ,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三、(本大题共2小题,每小题0分,满分0分)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.解:原式=,当时,原式=.四、(本大题共2小题,每小题0分,满分0分)17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.五、(本大题共2小题,每小题0分,满分0分)19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD =22.5°,∴∠CBE =∠BED ﹣∠BCD =22.5°,∴∠CBE =∠BCE ,∴BE =CE =2,∴DE =BE =,∴CD +DE +CE =2+,答:船C 离海岸线l 的距离为(2+)km .20.如图,在Rt△ABC 中,∠B =90°,∠BAC 的平分线AD 交BC 于点D ,点E 在AC 上,以AE 为直径的⊙O 经过点D .(1)求证:①BC 是⊙O 的切线;②CD 2=CE •CA ;(2)若点F 是劣弧AD 的中点,且CE =3,试求阴影部分的面积.【分析】(1)①证明DO ∥AB ,即可求解;②证明CDE ∽△CAD ,即可求解;(2)证明△OFD 、△OFA 是等边三角形,S 阴影=S 扇形DFO ,即可求解.解:(1)①连接OD ,∵AD 是∠BAC 的平分线,∴∠DAB =∠DAO ,∵OD =OA ,∴∠DAO =∠ODA ,则∠DAB =∠ODA ,∴DO ∥AB ,而∠B =90°,∴∠ODB =90°,∴BC 是⊙O 的切线;②连接DE ,∵BC 是⊙O 的切线,∴∠CDE =∠DAC ,∠C =∠C ,∴△CDE ∽△CAD ,∴CD 2=CE •CA ;(2)连接DE 、OD 、DF 、OF ,设圆的半径为R ,∵点F 是劣弧AD 的中点,∴是OF 是DA 中垂线,∴DF =AF ,∴∠FDA =∠FAD ,∵DO ∥AB ,∴∠ODA =∠DAF ,∴∠ADO =∠DAO =∠FDA =∠FAD ,∴AF =DF =OA =OD ,∴△OFD 、△OFA 是等边三角形,则DF ∥AC ,故S 阴影=S 扇形DFO ,∴∠C =30°,∴OD =OC =(OE +EC ),而OE =OD ,∴CE =OE =R =3,S 阴影=S 扇形DFO =×π×32=.六、(本题满分0分)21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m =52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m 的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m =200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.七、(本题满分0分)22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,=1000元,当x=35时,w最大故当单价为35元时,该计算器每天的利润最大;(3)B 方案利润高.理由如下:A 方案中:∵25×24%=6,此时w A =6×(150﹣10)=840元,B 方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B =960元,∵w B >w A ,∴B 方案利润更高.八、(本题满分0分)23.如图,在△ABC 中,AC =,tan A =3,∠ABC =45°,射线BD 从与射线BA 重合的位置开始,绕点B 按顺时针方向旋转,与射线BC 重合时就停止旋转,射线BD 与线段AC 相交于点D ,点M 是线段BD 的中点.(1)求线段BC 的长;(2)①当点D 与点A 、点C 不重合时,过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F ,连接ME ,MF ,在射线BD 旋转的过程中,∠EMF 的大小是否发生变化?若不变,求∠EMF 的度数;若变化,请说明理由.②在①的条件下,连接EF ,直接写出△EFM 面积的最小值.【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,证明△CHB 是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF 是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF 是等腰直角三角形,当ME 的值最小时,△MEF 的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。

2020年中考数学模拟试卷(安徽)(二)(解析版)

2020年中考数学模拟试卷(安徽)(二)(解析版)

2020年中考数学全真模拟试卷(安徽)(二)(考试时间:120分钟;总分:150分)班级:___________姓名:___________座号:___________分数:___________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.[2019安徽省宿州市泗县一模]﹣2的倒数是()A.2 B.C.﹣2 D.﹣【分析】根据倒数定义求解即可.【解答】解:﹣2的倒数是﹣.故选:D.【点睛】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.[2019安徽省铜陵市一模]化简x6÷x2的结果是()A.x8B.x4C.x3D.x【分析】同底数幂的除法法则:底数不变,指数相减.【解析】解:x6÷x2=x6﹣2=x4.故选:B.【点睛】本题主要考查的是同底数幂的除法,熟练掌握同底数幂的除法法则是解题的关键.3.[2020安徽省六安市霍邱县一模]用百度搜索关键词“十九大”,百度为我们找到相关结果约18 600000个,把18 600 000这个数用科学记数法表示为()A.0.186×108B.1.86×107C.18.6×106D.186×105【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:18 600 000=1.86×107,故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.[2019安徽省合肥市瑶海区一模]如图所示,圆柱的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:圆柱由上向下看,看到的是一个圆.故选:C.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.[2019安徽省芜湖市二十九中一模]如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.10【分析】根据切线长定理得到AF=AD=2,BD=BE,CE=CF,根据BC=5,于是得到△ABC 的周长=2+2+5+5=14,【解答】解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.6.[2019浙江丽水真题]一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A.B.C.D.【分析】让白球的个数除以球的总数即为摸到白球的概率.【解答】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.【点睛】本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.[2019湖北省鄂州市真题]如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和直角的定义解答即可.【解答】解:如图,作EF∥AB∥CD,∴∠2=∠AEF=35°,∠1=∠FEC,∵∠AEC=90°,∴∠1=90°﹣35°=55°,故选:B.【点睛】此题考查平行线的性质,关键是根据平行线的性质得出∠2=∠AEF=35°,∠1=∠FE C.8.[2019年安徽省六安市霍邱一模]股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【解答】解:假设股票的原价是1,设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,故选:B.【点睛】此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x%后是原来价格的(1+x)倍.9.[2019年安徽省芜湖市一模]如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A. 2:1B. √2:1C. 3:√3D. 3:2【分析】根据折叠性质得到AF=12AB=12a,再根据相似多边形的性质得到ABAD=ADAF,即ab=b12a,然后利用比例的性质计算即可.【解析】解:∵矩形纸片对折,折痕为EF,∴AF=12AB=12a,∵矩形AFED与矩形ABCD相似,∴ABAD =ADAF,即ab=b12a,∴(ab)2=2,∴ab=√2.故选:B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.10.[2019年安徽省六安市霍邱一模]如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;当2≤t<4时,S=×4××(4﹣t)=﹣t+4;只有选项D的图形符合.故选:D.【点睛】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.[安徽省铜陵市一模]因式分解:x2y﹣y=.【分析】首先提公因式y,再利用平方差进行二次分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点睛】此题主要考查了提公因式法和公式法分解因式,关键是掌握提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.[安徽省合肥市168中学一模]如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x >0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点睛】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.13.[安徽省合肥市168中学一模]如图,已知AB 是⊙O 的直径,PA =PB ,∠P =60°,则弧CD 所对的圆心角等于 度.【分析】先利用PA =PB ,∠P =60°得出△PAB 是等边三角形,再求出△COA ,△DOB 也是等边三角形,得出∠COA =∠DOB =60°,可求∠COD .【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.【点睛】本题利用了:有一角等于60度的等腰三角形是等边三角形的判定方法和等边三角形的性质求解.14.[安徽省宿州市泗县一模]已知在矩形ABCD中,AB=6,BC=10,沿着过矩形顶点的一条直线将∠B折叠,使点B的对应点B′落在矩形的边上,则折痕长为.【分析】分两种情形分别画出图形解决问题即可.【解答】解:①如图1中,当折痕为直线AM时,易知AB=BM=6,AM=6.②如图2中,当直线CM为折痕时,在Rt△CDB′中,DB′==8,∴AB′=10﹣8=2,设BM=MB′=x,在Rt△AMB′中,x2=(6﹣x)2+22,∴x=,∴CM==,∴满足条件的折痕的长为6和.故答案为6和.【点睛】本题考查翻折变换,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、(本大题共2小题,每小题8分,满分16分)15.[安徽省合肥市十校联考一模]用适当的方法解方程:(x+1)(x﹣2)=x+1;【分析】利用因式分解法求解可得;【解答】解:(1)∵(x+1)(x﹣2)﹣(x+1)=0,则(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.[安徽省合肥市瑶海区一模]下列每一幅图都是由白色小正方形和和黑色小正方形组成.(1)第10幅图中有个白色正方形,个黑色正方形;(2)第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.【解答】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.(1)第10幅图中有100个白色正方形,40个黑色正方形;故答案为:100,40;(2)第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.故答案为:n2+4n.【点睛】本题是对图形变化规律的考查,把小正方形分成黑、白两个部分求出变化规律是解题的关键,要注意个数与序数的关系.四、(本大题共2小题,每小题8分,共16分)17.[2019合肥市庐江县一模]如图是某款篮球架的示意图,支架AC与底座BC所成的∠ACB=65°,支架AB⊥BC,篮球支架HE∥BC,且篮板DF⊥HE于点E,已知底座BC=1米,AH=米,HF=米,HE=1米.(1)求∠FHE的度数;(参(2)已知该款篮球架符合国际篮联规定的篮板下沿D距地面2.90米的规定,求DE的长度.考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.41,≈1.41)【分析】(1)解Rt△EFH,便可求得结果;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,在Rt △ABC中求出AB,在Rt△ANH中求出HN,进而求得结果.【解答】解:(1)在Rt△EFH中,∵cos∠FHE=,∴∠FHE=45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC•tan65°=1×2.41=2.41,∴GM=AB=2.41,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH•sin45°=,∴EM=EG+GM=HN+GM=+2.41=2.91,∴DE=EM﹣DM=2.91﹣2.9=0.01(米),答:DE的长度为0.01米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.18.[2019合肥市六区联考一模]如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且△ABC的面积为6.(2)在方格纸中画出△ABC的中线BD,并将△BCD向右平移1个单位长度得到△EFG(点B、C、D的对应点分别为E、F、G),画出△EFG,并直接写出△BCD和△EFG重叠部分图形的面积.【分析】(1)利用等腰三角形的性质结合三角形面积求法得出答案;(2)利用平移的性质得出对应点位置,再利用相似三角形的性质得出S △MNG =S △BCD ,进而得出答案.【解答】解:(1)如图所示:△ABC ,即为所求;(2)如图所示:△EFG ,即为所求,△BCD 和△EFG 重叠部分图形的面积为:××2×3=.【点睛】此题主要考查了平移变换以及三角形面积求法等知识,根据题意正确把握平移的性质是解题关键.五、(本大题共2小题,每小题10分,共20分)19.[2019合肥市肥东县一模]矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中点,点E 在线段AB 上,当△CDE 的周长最小时,求点E 的坐标.【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【解答】解:如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (,0),A (3,0), ∴H (,0),∴直线CH 解析式为y =﹣x +4, ∴x =3时,y =,∴点E坐标(3,).【点睛】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.20.[安徽省滁州市定远县一模]如图,在⊙O中,AB是弦,DE是直径,且DE经过AB的中点C,连接AE.(1)用尺规作图作出弦AE的垂直平分线OF,并标出OF与AE的交点F;(保留作图痕迹,不写作法)(2)在(1)的条件下,若⊙O的半径为5,AB=8,求OF的长.【分析】(1)作OM⊥AE交AE于点F,直线OF即为所求.(2)在Rt△AOF中,求出AF即可解决问题.【解答】解:(1)如图,直线OF即为所求.(2)连接OA.∵DE是直径,AC=CB,∴DE⊥AB,∴OC==3,∴CE=8,∴AE===4,∴AF=EF=AE=2,∴OF==.【点睛】本题考查作图﹣基本作图,线段的垂直平分线,勾股定理,垂径定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.六、(本大题共2小题,每小题12分,共24分)21.[2019年安徽省二十所初中名校联盟一模]为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:节目人数(名)百分比最强大脑 5 10%朗读者15 b%中国诗词大会a40%出彩中国人10 20%(1)x=,a=,b=;(2)补全上面的条形统计图;(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)列表得出所有等可能结果,然后利用概率的计算公式即可求解.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)∵5﹣2=3(名),∴喜爱最强大脑的5名同学中,有3名男同学,2名女同学,男1男2男3女1女2男1﹣﹣﹣男2,男1男3,男1女1,男1女2,男1男2男1,男2﹣﹣﹣男3,男2女1,男2女2,男2男3男1,男3男2,男3﹣﹣﹣女1,男3女2,男3女1男1,女1男2,女1男3,女1﹣﹣﹣女2,女1女2男1,女2男2,女2男3,女2女1,女2﹣﹣﹣所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,==.则P(一男一女)【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.22.[2018秋•洪山区期中]如图,ABCD是一块边长为8米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在A的延长线上,2,设BE的长为xDG BE 米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)若改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,此时BE的长为米.(3)当x为何值时改造后的矩形苗圃AEFG的最大面积?并求出最大面积.【分析】(1)根据题意可得DG=2x,再表示出AE和AG,然后利用面积可得y与x之间的函数关系式;(2)根据题意可得正方形苗圃ABCD的面积为64,进而可得矩形苗圃AEFG的面积为64,进而可得:﹣2x2+8x+64=64再解方程即可;(3)根据二次函数的性质即可得到结论.【解答】解:(1)y=(8﹣x)(8+2x)=﹣2x2+8x+64,故答案为:y=﹣2x2+8x+64;(2)根据题意可得:﹣2x2+8x+64=64,解得:x1=4,x2=0(不合题意,舍去),答:BE的长为4米;故答案为:y=﹣2x2+8x+64(0<x<8);(3)解析式变形为:y=﹣2(x﹣2)2+72,所以当x=2时,y有最大值,∴当x为2时改造后的矩形苗圃AEFG的最大面积,最大面积为72平方米.【点睛】此题主要考查了二次函数的应用,关键是正确理解题意,找出题目中的等量关系.七、(本大题共1小题,每小题14分,共14分)23.[2019年安徽省合肥市肥东县中考数学模拟试卷]已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF =10,EG=6,求线段CF的长.【分析】(1)利用线段的垂直平分线的性质证明AB=AC,再利用等腰三角形的性质即可解决问题;(2)如图2中,连接EC.首先证明△EBC是等边三角形,推出∠BED=30°,再由∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°解决问题;(3)如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.首先证明∠AFE =∠BFE=60°,在Rt△EFM中,∠FEM=90°﹣60°=30°,推出EF=2FM,设FM=m,则EF =2m,推出FG=EG﹣EF=6﹣2m,FN=EF=m,CF=2FG=12﹣4m,再证明Rt△EMB≌Rt△ENC(HL),推出BM=CN,由此构建方程即可解决问题;【解答】(1)证明:如图1中,∵BD=CD,AD⊥BC,∴AB=AC,∴∠BAD=∠CAD.(2)解:如图2中,连接EC.∵BD⊥BC,BD=CD,∴EB=EC,又∵EB=BC,∴BE=EC=BC,∴△BCE是等边三角形,∴∠BEC=60°,∴∠BED=30°,由翻折的性质可知:∠ABE=∠A′BE=∠ABF,∴∠ABF=2∠ABE,由(1)可知∠FAB=2∠BAE,∴∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°.(3)解:如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.∵∠BAD=∠CAD,∠ABE=∠A′BE,∴EH=EN=EM,∴∠AFE=∠EFB,∵∠BFC=60°,∴∠AFE=∠BFE=60°,在Rt△EFM中,∵∠FEM=90°﹣60°=30°,∴EF=2FM,设FM=m,则EF=2m,∴FG=EG﹣EF=6﹣2m,易知:FN=EF=m,CF=2FG=12﹣4m,∵∠EMB=∠ENC=90°,EB=EC,EM=EN,∴Rt△EMB≌Rt△ENC(HL),∴BM=CN,∴BF﹣FM=CF+FN,∴10﹣m=12﹣4m+m,∴m=1,∴CF=12﹣4=8.【点睛】本题属于几何变换综合题,考查了等腰三角形的判定和性质,线段的垂直平分线的性质,全等三角形的判定和性质,勾股定理,角平分线的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2020届安徽省中考数学二模试卷(有解析)

2020届安徽省中考数学二模试卷(有解析)

2020届安徽省中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=23,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,利用这个规律可得a2016等于()A. −12B. 23C. 2D. 32.用科学记数法表示−9600000正确的是()A. −9.6×106B. −0.96×107C. −96×105D. 9.6×1063.下列计算正确的是()A. a4⋅a2=a6B. (−a3)2=−a6C. a2+a2=a4D. a2+a3=a54.如图是由5个相同的正方体组成的一个立体图形,它的三视图是()A.B.C.D.5.下列运算一定正确的是()A. a+3a=3a2B. √x2=|x|C. (−2a2b)3=−2a6b3D. x2+2x−1=(x+1)26.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. x2−4x+6=0C. x2+x+3=0D. x2+2x−1=07.某男子篮球队在10场比赛中,投球所得的分数如下:80,86,95,86,79,65,98,86,90,81.则该球队10场比赛得分的众数与中位数分别为()A. 86,86B. 86,81C. 81,86D. 81,818.制造某种产品成本100元,计划经过两年成本降低为64元,则平均每年降低()A. 18%B. 20%C. 36%D. 以上答案均错9.如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中阴影部分的概率为()A. 116B. 112C. 18D. 1610.如图,已知:正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设AE的长为x(x>0),四边形EFGH的面积为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(本大题共4小题,共20.0分)11.关于x的不等式−2x+a≥3的解集如图所示,则a的值是______.12.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD⏜的中点.若∠A=40°,则∠B=______ 度.13.设函数y=−x+5与y=3x 的图象的两个交点的横坐标为a、b,则1a+1b的值是______ .14.如图,D、E分别是△ABC的边AC、BC上的点,且△ADB≌△EDB≌△EDC,则∠C的度数为.三、计算题(本大题共1小题,共8.0分)15.计算:√12−(π−4)0−√83+|2√3−4|.四、解答题(本大题共8小题,共82.0分)16.某年级共有学生246人,男生人数比女生的人数的2倍少12人,求男、女生各多少人.17.在平面直角坐标系中,一只蜗牛从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示:(1)填写下列各点的坐标:A5(______,______),A9(______,______),A13(______,______);(2)写出点A4n+1的坐标(n是正整数);(3)指出蜗牛从点A2020到点A2021的移动方向.18.如图,P点是某海域内的一座灯塔,船A停泊在灯塔的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距20√3海里.求两船的距离.(参考数据:sin53°=0.8,cos53°=0.6,tan53°≈1.33,√2≈1.414,√3≈1.732)(结果保留整数)19.我们都知道无限不循环小数是无理数,而无限循环小数是可以化成分数的,例如0.333 (3)循环节)是可以化成分数的,方法如下:令a=0.333……①则10a=3.333……②②−①得:10a−a=3,即9a=3,解得a=13请你阅读上面材料完成下列问题:(1)0.7⋅化成分数是______.(2)0.2⋅3⋅化成分数是______.(3)请你将3.32⋅6⋅化成分数(写出过程)20.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(−4,1),点B的坐标为(−1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程以及Rt△A1B1C1扫过的面积.21.某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是______;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.22.某商场经营某种品牌的童装,购进时的单价是50元.根据市场调查,在一段时间内,销售单价是80元时,销售量是280件.而销售单价每降低1元,就可多售出20件.(1)写出销售该品牌童装获得的利润元与销售单价元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于75元,且商场要完成不少于340件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?23. 从①AB=DC;②BE=CE;③∠B=∠C;④∠BAD=∠CDA四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).【答案与解析】1.答案:A解析:本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.解:当a1=23时,a2=11−a1=11−23=3,a3=11−a2=11−3=−12,a4=11−a3=11+12=23,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=−12,故选A.2.答案:A解析:解:−9600000=−9.6×10−6,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:A解析:解:A、正确;B、(−a3)2=a6,选项错误;C、a2+a2=2a2,选项错误;D、不是同类项,不能合并,则选项错误.故选A.利用同底数的幂的乘法以及幂的乘方,合并同类项的法则即可判断.本题考查了合并同类项,同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.4.答案:B解析:解:从几何体的正面看可得2层小正方形,上面右侧有1个,下面有3个;从几何体的左面看可得2层小正方形,上面左侧有1个,下面有2个;从几何体的上面看可得2层小正方形,上面有3个,下面右侧有1个;故选:B.找到从正面、左面、上面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.本题考查了三视图的知识,关键是掌握三视图所看的位置.5.答案:D解析:解:A.a+3a=4a,故本选项不合题意;B.√x2=|x|,故本选项不合题意;C.(−2a2b)3=−8a6b3,故本选项不合题意;D.x2+2x−1=(x+1)2,故本选项符合题意.故选:D.分别根据合并同类项法则,二次根式的性质,积的乘方运算法则以及完全平方公式解答即可.本题主要考查了合并同类项,二次根式的非负性,积的乘方以及完全平方公式,熟记相关运算法则是解答本题的关键.6.答案:D解析:解:A、移项得x2=−4,负数没有平方根;B、△=b2−4ac=16−24=−8<0,方程没有实数根;C、△=b2−4ac=1−12=−11<0,方程没有实数根;D、△=b2−4ac=4+4=8>0,方程有两个不相等的实数根.故选D.分别计算各选项的判别式△值,然后和0比较大小,再根据一元二次方程根与系数的关系就可以找出符合题意的选项.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.答案:A解析:解:在这一组数据中86是出现次数最多的,故众数是86;将这组数据从小到大的顺序排列(65,79,80,81,86,86,86,90,95,98),处于中间位置的数是86,86,那么由中位数的定义可知,这组数据的中位数是86.故选:A.根据中位数和众数的定义求解.本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.答案:B解析:解:设平均每年降低x,依题意,得:100(1−x)2=64,解得:x1=0.2=20%,x2=−1.8(不合题意,舍去).故选:B.设平均每年降低x,根据该产品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.答案:B解析:解:∵E为BC的中点,∴BEAD =12,∴BOOD =OEAO=12,BOBD=13∴S△BOE=12S△AOB,S△AOB=13S△ABD,∴S△BOE=16S△ABD=112S▱ABCD,∴米粒落在图中阴影部分的概率为112,故选:B.随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.本题考查了概率,熟练掌握概率公式与平行四边形的性质以及相似三角形的性质是解题的关键.10.答案:B解析:解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1−x,根据勾股定理,得EH2=AE2+AH2=x2+(1−x)2即y=x2+(1−x)2.y=2x2−2x+1,∴所求函数是一个开口向上,对称轴是直线x=1.2∴自变量的取值范围是大于0小于1.故选:B.根据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,则AH=1−x,根据勾股定理EH2= AE2+AH2=x2+(1−x)2,进而可求出函数解析式,求出答案.本题考查了二次函数的综合运用.关键是根据题意,列出函数关系式,判断图形的自变量取值范围,开口方向及对称轴.11.答案:1解析:解:−2x+a≥3,−2x≥3−a,x≤a−3,2由数轴知x≤−1,=−1,则a−32解得a=1,故答案为:1.,结合数轴得出a的根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得x≤a−32方程,解之即可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.答案:70解析:解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠A=40°,∴∠ABD=90°−∠A=50°,∠C=180°−∠A=140°,∵点C为BD⏜的中点,∴CD=CB,∴∠CBD=∠CDB=20°,∴∠ABC=∠ABD+∠CBD=70°.故答案为:70°.此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB的度数,继而求得∠ABD的度数,由圆的内接四边形的性质,求得∠C的度数,然后由点C为BD⏜的中点,可得CB=CD,即可求得∠CBD的度数,继而求得答案.13.答案:53解析:解:根据题意得−x+5=3x,则x2−5x+3=0,则a+b=5,ab=3,∴1a +1b=a+bab=53,故答案为:53.图象的两个交点的横坐标为a、b,则a、b是方程−x+5=3x的解,把方程化成一元二次方程,利用根与系数的关系求解即可.本题考查了反比例函数与一次函数的交点以及一元二次方程根与系数的关系,理解a 、b 是方程−x +5=3x的解是关键.14.答案:30°解析:∵△ADB≌△EDB≌△EDC∴∠A =∠BED =∠CED ,∠ABD =∠EBD =∠C∵∠BED +∠CED =180° ∴∠A =∠BED =∠CED =90°在△ABC 中,∠C +2∠C +90°=180° ∴∠C =30° 故答案为30°。

2020年安徽省合肥市中考数学二模试卷(解析版)

2020年安徽省合肥市中考数学二模试卷(解析版)

2020年安徽省合肥市中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。

【真题】2020届初中初三中考数学二诊模拟真题卷带参考答案 (安徽)

【真题】2020届初中初三中考数学二诊模拟真题卷带参考答案 (安徽)

2020届初三中考模拟二诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如果a﹣b2b aaa a b⎛⎫-⋅⎪+⎝⎭的值为()A B C.3D.2.如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论中不一定成立的是()A.∠BAC=∠DAC B.AC=BD C.AC⊥BD D.OA=OC3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°4.﹣17的倒数是()A.7 B.﹣7 C.﹣17D.175.下列成语描述的事件为随机事件的是()A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼6.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B 分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°7.如图1,在菱形ABCD中,∠BAD=120°,点Q是BC边的中点,点P为AB边上的一个动点,设AP=x,图1中线段PQ的长为y,若表示y与x的函数关系的图象如图2所示,则菱形ABCD的面积为()A.43B.23C.83D.128.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分图形的面积为()A.4πB.2πC.πD.2 3π9.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.1051-是一个很奇妙的数,大量应用于艺术、建筑和统计决策51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间二、填空题(共4题,每题4分,共16分)11.若反比例函数13kyx-=的图象经过第一、三象限,则k的取值范围是_____.12.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为______.13.“五一黄金周”期间李师傅一家开车去旅游,出发前查看了油箱里有50升油,下面的两幅图分别描述了行驶里程及耗油情况,行驶130公里时,油箱里剩油量为_____升.1492x-x的取值范围是_____.三、解答题(共6题,总分54分)15.2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付(1)某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数. (2)小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).16.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?17.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:GD为⊙O切线;(2)求证:DE2=EF·AC;(3)若tan∠C=2,AB=5,求AE的长.18.已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52,请求出该抛物线的顶点坐标.19.在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.20.在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B 两个凉亭之间的距离(结果精确到12≈1.414,3≈1.732)--------------参考答案,仅供参考使用-------------------一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.A解析:A【点拨】先化简分式,然后将a﹣b3【详解】解:原式=22b a aa a b⋅-+=()()a b a b aa ab -+-⋅+=﹣(a﹣b),∵a﹣b3,3,故选:A.【小结】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.2.B解析:B【点拨】根据菱形的性质逐项分析即可得到问题答案.【详解】解:由菱形的性质:菱形具有平行四边形的一切性质可知OA=OC,故选项D 成立;由菱形的性质:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角可知选项A,C成立;所以B不一定正确.故选:B.【小结】本题考查菱形的性质,属于基础题,比较容易解答,关键是掌握菱形的定义与性质.3.D解析:D分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选:D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.4.B解析:B【点拨】根据倒数的定义求解.【详解】﹣17的倒数为﹣7.故选:B.【小结】本题考查了倒数:a(a≠0)的倒数为1a.5.B解析:B试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.6.A解析:A【点拨】如图,过点C作CD∥a,再由平行线的性质即可得出结论.【详解】如图,过点C作CD∥a,则∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故选A.【小结】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.7.C解析:C【点拨】根据题意和函数图象可以求得BC的长和点A到BC的距离,从而可以解答本题.【详解】∵在菱形ABCD中,∠BAD=120°,点Q是BC边的中点,∴∠ABC=60°,AB=BC=CD=DA,设AB=2a,则BQ=a,由图象可得,点Q到AB=2,∴BC=4,∴点A到BC的距离为:AB•sin60°=4×2∴菱形ABCD的面积为:4×故选:C.【小结】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.D解析:D如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=√3,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE•cot60°=1,OC=2OE=2,∴S阴影=S扇形OCB -S△COE+S△BED=23故选D.点睛:本题考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.9.B解析:B试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.10.B解析:B【点拨】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选:B .【小结】是解题关键.二、填空题(共4题,每题4分,共16分)11.k <13由题意得:130k -> ,则13k < . 12.9π . 【点拨】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=2360ar π在△ABC 中,D 为BC 的中点∴BD=DCBD 长为半径画一弧交AC 于E 点∴BD=DE∠A =60°,∠B =100°∴∠C =20°=∠DEC∴∠BDE=∠C +∠DEC=40°=aBC =2 r=1∴S=24013603609ar πππ=⨯︒⨯= 故答案为:9π 【小结】 此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键 13.37【点拨】找准几个关键点进行分析解答即可.【详解】解:由图象可知:当用时1小时时,油量剩余45升,行驶了30公里, 当用时在1﹣2.5小时之间时,可得, 每小时行驶的里程为180302.51--=100公里,每小时耗油量为45332.51--=8升, ∴当用时1+1=2小时时,此时刚好行驶了130公里,此时油箱里的剩油量为:45﹣8×1=37升.故答案为:37.【小结】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.14.92 x【点拨】因为当函数表达式是二次根式时,被开放数为非负数,所以9-2x≥0,解不等式可求x的范围.【详解】9﹣2x≥0,解得:92 x.故答案为:92 x.【小结】函数自变量的取值范围.三、解答题(共6题,总分54分)15.(1)600人(2)1 3【点拨】(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【详解】(1)120200600(36090110)⨯=--(人),∴最喜欢方式A的有600人(2)列表法:A B CA A,A A,B A,CB B,A B,B B,CC C,A C,B C,C 树状法:∴P(同一种购票方式)1 3 =【小结】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.16.(1)共有12个等可能的结果,见解析;(2)小明、小利获胜的概率一样大.【点拨】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有6种等可能的结果数,再找出数字之积能被2整除的结果数,然后根据概率公式求解.【详解】解:(1)树状图如图所示:(2)∵m,n都是方程x2﹣5x+6=0的解,∴m=2,n=3,或m=3,n=2,由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有2个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,小明获胜的概率为21126=,小利获胜的概率为21126=,∴小明、小利获胜的概率一样大.【小结】本题考查了列表法与树状图法、一元二次方差的解法以及概率公式;画出树状图是解题的关键.17.(1)见解析;(2)见解析;(3)AE =3.【点拨】(1)欲证明FG 是⊙O 的切线,只要证明OD ⊥FG ;(2) 连接AD ,然后求证Rt △CDF ∽Rt △CAD,即可解答;(3)由题意得出∠ABC=∠C ,tan ∠ABC=tan ∠C=2AD BD,根据直角三角形的三角函数得出CF=1,即可解答.【详解】解:(1)如答图1,连接OD ,∵OD=OB ,∴∠ODB=∠OBD ,∵AB=AC ,∴∠ABC=∠C ,∴∠ODB=∠C ,∴OD ∥AC ,∵DG ⊥AC ,∴OD ⊥DF ,∴GD 为⊙O 切线;(2)如答图2,连接AD ,∵AB 为直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴CD=BD ,∠EAD=∠BAD ,∴BD=DE=CD ,∵DF ⊥AC ,∴CF=EF ,∵Rt △CDF ∽Rt △CAD , ∴CD CF AC CD =,即CD 2=CF·AC ,∴DE 2=EF·AC ; (3)如答图2,∵AB=AC ,∴∠ABC=∠C ,tan ∠ABC=tan ∠C=2AD BD=,∵AB=5, ∴BD=DC=5,在Rt △CDF 中,∵tan ∠C=2,∴CF=1,由(2)知,,EF=CF ,∴EF=CF=1,CE=2,所以AE=AC-CE=AB-CE=5-2=3.答图1 答图2【小结】此题考查切线的判定,相似三角形的判定与性质,三角函数值的应用,解题关键在于作辅助线.18.(1)见解析;(2)顶点为(52,﹣14)【点拨】(1)根据题意,由根的判别式△=b 2﹣4ac >0得到答案;(2)结合题意,根据对称轴x =﹣2b a得到m =2,即可得到抛物线解析式为y =x 2﹣5x +6,再将抛物线解析式为y =x 2﹣5x +6变形为y =x 2﹣5x +6=(x ﹣52)2﹣14,即可得到答案. 【详解】(1)证明:a =1,b =﹣(2m +1),c =m 2+m ,∴△=b 2﹣4ac =[﹣(2m +1)]2﹣4×1×(m 2+m )=1>0,∴抛物线与x 轴有两个不相同的交点.(2)解:∵y =x 2﹣(2m +1)x +m 2+m ,∴对称轴x =﹣2b a =(21)21m -+⨯=212m +, ∵对称轴为直线x =52, ∴212m +=52, 解得m =2,∴抛物线解析式为y =x 2﹣5x +6,∵y =x 2﹣5x +6=(x ﹣52)2﹣14, ∴顶点为(52,﹣14 ).【小结】本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.19.(1) 两数和共有12种等可能结果;(2) 李燕获胜的概率为12;刘凯获胜的概率为14.【点拨】(1)根据题意列表,把每一种情况列举.(2)按照(1)中的表格数据,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,可计算二人获胜概率.【详解】(1)根据题意列表如下:(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴小明获胜的概率,61 122,小红获胜的概率为31124=. 20.A 、B 两个凉亭之间的距离约为283米.试题分析:过点A 作AD ⊥BC ,交BC 延长线于点D ,根据∠ABC=30°、∠CBA=15°求得∠CAD=45°,RT △ACD 中由AC=200米知AD=ACcos ∠CAD ,再根据AB=sin AD B∠可得答案. 试题解析:过点A 作AD ⊥BC ,交BC 延长线于点D ,∵∠B=30°,∴∠BAD=60°,又∵∠BAC=15°,∴∠CAD=45°,在RT △ACD 中,∵AC=200米,∴AD=ACcos ∠CAD=200×22=1002(米), ∴AB=sin AD B ∠=100212=2002≈283(米),答:A 、B 两个凉亭之间的距离约为283米.考点:解直角三角形的应用.。

2020届中考复习安徽省合肥市蜀山区中考数学二模试题((有配套答案))

2020届中考复习安徽省合肥市蜀山区中考数学二模试题((有配套答案))

安徽省合肥市蜀山区中考数学二模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)如图,在数轴上点A所表示的数的绝对值为()A.1 B.﹣1 C.0 D.2【解答】解:由数轴可得,点A表示的数是﹣1,∵|﹣1|=1,∴数轴上点A所表示的数的绝对值为1.故选:A.2.(4分)下列计算正确的是()A.a3+a3=2a6B.(﹣a2)3=a6C.a6÷a2=a3D.a5•a3=a8【解答】解:A、a3+a3=2a3,故原题计算错误;B、(﹣a2)3=﹣a6,故原题计算错误;C、a6÷a2=a4,故原题计算错误;D、a5•a3=a8,故原题计算正确;故选:D.3.(4分)安徽电网今年来新能源装机发展迅速,截止2018年3月,全省新能源总装机达1190万千瓦,那么1190万用科学记数法可表示为()A.1190×104B.11.9×106C.1.19×107D.1.190×108【解答】解:数字1190万用科学记数法可简洁表示为:1.19×107.故选:C.4.(4分)一元一次不等式2(1+x)>1+3x的解集在数轴上表示为()A. B.C.D.【解答】解:2(1+x)>1+3x,2+2x>1+3x,2x﹣3x>1﹣2,﹣x>﹣1,x<1,在数轴上表示为:,故选:B.5.(4分)下列几何体的左视图既是中心对称又是轴对称图形的是()A.B.C. D.【解答】解:A、左视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;B、左视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、左视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、左视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选:D.6.(4分)如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC 的度数是()A.20°B.25°C.30°D.50°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∠C=∠A=130°,∴∠ABE=∠CEB,∵∠ABE=∠CBE,∴∠BEC=∠CBE,∴∠BEC=(180°﹣130°)=25°,故选:B.7.(4分)为了解班级学生参加体育锻炼的情况,现将九年级(1)班同学一周的体育锻炼情况绘制如图所示的统计图,那么,关于该班同学一周参加体育锻炼时间的说法错误的是()A.中位数是8小时B.众数是8小时C.平均数是8.5小时D.锻炼时间超过8小时的有20人【解答】解:A、中位数是=8小时,此选项正确;B、众数是8小时,此选项正确;C、平均数为=8.3小时,此选项错误;D、锻炼时间超过8小时的有15+5=20人,此选项正确;故选:C.8.(4分)如图,点E是矩形ABCD边AD上的一个动点,且与点A、点D不重合,连结BE、CE,过点B作BF∥CE,过点C作CF∥BE,交点为F点,连接AF、DF分别交BC于点G、H,则下列结论错误的是()A .GH=BCB .S △BGF +S △CHF =S △BCFC .S 四边形BFCE =AB •ADD .当点E 为AD 中点时,四边形BECF 为菱形 【解答】解:连接EF 交BC 于O .∵BF ∥CE ,CF ∥BE ,∴四边形BECF 是平行四边形, ∴EO=OF , ∵GH ∥AD , ∴AG=GF ,HD=FH ,∴GH=AD ,故选项A 正确, ∵BG+CH=GH ,∴S △BGF +S △CHF =S △BCF 故选项B 错误,∵S 四边形BFCE =2S △EBC =2××BC ×AB=BC ×ABAB •AD ,故选项C 正确, ∵当点E 为AD 中点时,易证EB=EC ,所以四边形BECF 为菱形, 故选:B .9.(4分)观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是( ) A .1008+1009+…+3025=20162 B .1009+1010+…+3026=20172 C .1009+1010+…+3027=20182 D .1010+1011+…+3029=20192【解答】解:由题意可得, 1008+1009+…+3025=()2+3025=20162+3025,故选项A 错误, 1009+1010+…+3026=()2+3026=20172+3026,故选项B 错误,1009+1010+…+3027=()2=20182,故选项C正确,1010+1011+…+3029=()2+3029=20192+3029故选项D错误,故选:C.10.(4分)如图,在平面直角坐标系中,抛物线y=﹣x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为()A. B. C.3 D.2【解答】解:连接AO、AB,PB,作PH⊥OA于H,BC⊥AO于C,如图,当y=0时,﹣x2+2x=0,解得x1=0,x2=2,则B(2,0),y=﹣x2+2x=﹣(x﹣)2+3,则A(,3),∴OA==2,而AB=AO=2,∴AB=AO=OB,∴△AOB为等边三角形,∴∠OAP=30°,∴PH=AP,∵AP垂直平分OB,∴PO=PB,∴OP+AP=PB+PH,当H、P、B共线时,PB+PH的值最小,最小值为BC的长,而BC=AB=×2=3,∴OP+AP的最小值为3.故选:C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)分解因式:m2n﹣2mn+n= n(m﹣1)2.【解答】解:原式=n(m2﹣2m+1)=n(m﹣1)2.故答案为:n(m﹣1)212.(5分)《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.【解答】解:设每只雀、燕的重量分别为x两,y两,由题意得:,故答案为:.13.(5分)关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为a≥﹣1且a ≠0 .【解答】解:根据题意得a≠0且△=(﹣1)2﹣4a•(﹣)≥0,解得a≥﹣1且a≠0;故答案为a≥﹣1且a≠0.14.(5分)如图,已知点A(0,4),B(8,0),C(8,4),连接AC,BC得到四边形AOBC,点D在边AC上,连接OD,将边OA沿OD折叠,点A的对应点为点P,若点P到四边形AOBC 较长两边的距离之比为1:3,则点P的坐标为(,3)或(,1)或(2,﹣2)【解答】解∵点A(0,4),B(8,0),C(8,4),∴BC=OA=4,OB=AC=8,分两种情况:(1)当点P在矩形AOBC的内部时,过P作OB的垂线交OB于F,交AC于E,如图1所示:①当PE:PF=1:3时,∵PE+PF=BC=4,∴PE=1,PF=3,由折叠的性质得:OP=OA=4,在Rt△OPF中,由勾股定理得:OF===,∴P(,3);②当PE:PF=3:1时,同理得:P(,1);(2)当点P在矩形AOBC的外部时,此时点P在第四象限,过P作OB的垂线交OB于F,交AC 于E,如图2所示:∵PF:PE=1:3,则PF:EF=1:2,∴PF=EF=BC=2,由折叠的性质得:OP=OA=4,在Rt△OA'F中,由勾股定理得:OF==2,∴P(2,﹣2);综上所述,点P的坐标为(,3)或(,1)或(2,﹣2);故答案为:(,3)或(,1)或(2,﹣2).(对一个得(1分),对两个得(3分),有错误答案不得分)三、解答题(共9小题,满分90分)15.(8分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.【解答】解:原式=•=•=,∵由题意,x不能取1,﹣1,﹣2,∴x取0,当x=0时,原式===1.16.(8分)“低碳环保,绿色出行”,自行车逐渐成为人们喜爱的交通工具.某品牌共享自行车在某区域的投放量自2018年逐月增加,据统计,该品牌共享自行车1月份投放了1600辆,3月份投放了2500辆.若该品牌共享自行车前4个月的投放量的月平均增长率相同,求4月份投放了多少辆?【解答】解:设月平均增长率为x,根据题意得1600(1+x)2=2500,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去), ∴月平均增长率为25%,∴4月份投放了2500(1+x )=2500×(1+25%)=3125. 答:4月份投放了3125辆.17.(8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点都在格点上. (1)在所给的网格中画出与△ABC 相似(相似比不为1)的△A 1B 1C 1(画出一个即可); (2)在所给的网格中,将△ABC 绕点C 顺时针旋转90°得到△A 2B 2C ,画出△A 2B 2C ,并直接写出在此旋转过程中点A 经过的路径长.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C ,即为所求, 点A 经过的路径长为:=π.18.(8分)如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B 处时,发现灯塔C 在它的东北方向,轮船继续向北航行,30分钟后到达A 处,此时发现灯塔C 在它的北偏东75°方向上,求此时轮船与灯塔C 的距离.(结果保留根号)【解答】解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sinB=,∴AD=AB•sinB=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.19.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.(1)分别求出一次函数与反比例函数的解析式;(2)求△OAB的面积.【解答】解:(1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n.∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b.得:,解得,∴一次函数的解析式为y=﹣x+4.(2)如图,设直线y=﹣x+4与x轴交于C,则C(8,0).S△AOB =S△AOC﹣S△BOC=×8×3﹣×8×1=12﹣4=8.20.(10分)为进一步促进“美丽校园”创建工作,某校团委计划对八年级五个班的文化建设进行检查,每天随机抽查一个班级,第一天从五个班级随机抽取一个进行检查,第二天从剩余的四个班级再随机抽取一个进行检查,第三天从剩余的三个班级再随机抽取一个进行检查…,以此类推,直到检查完五个班级为止,且每个班级被选中的机会均等(1)第一天,八(1)班没有被选中的概率是;(2)利用网状图或列表的方法,求前两天八(1)班被选中的概率【解答】解:(1)第一天,八(1)班没有被选中的概率是.故答案为.(2)由树状图可知,一共有20种可能,八(1)班被选中的可能有8种可能,∴前两天八(1)班被选中的概率为=.21.(12分)如图,BC为⊙O的直径,点D在⊙O上,连结BD、CD,过点D的切线AE与CB的延长线交于点A,∠BCD=∠AEO,OE与CD交于点F.(1)求证:OF∥BD;(2)当⊙O的半径为10,sin∠ADB=时,求EF的长.【解答】(1)证明:连接OD,如图,∵AE与ʘO相切,∴OD⊥AE,∴∠ADB+∠ODB=90°,∵BC为直径,∴∠BDC=90°,即∠ODB+∠ODC=90°,∴∠ADB=∠ODC,∵OC=OD,∴∠ODC=∠C,而∠BCD=∠AEO,∴∠ADB=∠AEO,∴BD∥OF;(2)解:由(1)知,∠ADB=∠E=∠BCD,∴sin∠C=sin∠E=sin∠ADB=,在Rt△BCD中,sin∠C==,∴BD=×20=8,∵OF∥BD,∴OF=BD=4,在Rt△EOD中,sin∠E==,∴OE=25∴EF=OE﹣OF=25﹣4=21.22.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.(1)求这个二次函数的解析式及顶点D的坐标;(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为y的取值范围,若没有,请说明理由.p【解答】解:(1)∵B(0,﹣3),∴OB=3,∵OB=OC,∴OC=3,∴C(0,﹣3),∴,∴,∴二次函数的解析式为y=x2+2x﹣3=﹣(x﹣1)2﹣4,∴D(﹣1,﹣4);(2)如图,过点P作PQ⊥x轴于点Q,设P(﹣1,p),∵∠COP+∠OPQ=90°,∠CPQ+∠OPQ=90°,∴∠COP=∠CPQ,∴tan∠COP=tan∠CPQ,在Rt△QOP中,tan∠COP=,在Rt△CPQ中,tan∠CPQ=,∴,∴PQ2=CQ×OQ=2(此处可以用射影定理,也可以判断出△CPQ∽△POQ),∵PQ>0,∴PQ=,∴p=或p=﹣,∴P(﹣1,)或(﹣1,﹣);(3)存在这样的点P,=时,理由:如图,由(2)知,yP∠OPC=90°,∵y=0时,∠OPC是平角,P≠0时,∠OPC是钝角.∴当﹣<yP<且yP23.(14分)如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【解答】解:(1)结论:BE=CD,BE⊥CD;理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°∴∠CAD=∠BAE.在△CAD和△BAE中,,∴△CAD≌△BAE.∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°.∴∠CGF=90°.∴BE⊥CD.(2)①证明:设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴==2,∴△BAE∽△CAD,②∵△BAE∽△CAD,∴∠AEB=∠CDA,∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°.∴DG⊥BE.∴∠AGD=∠BGD=90°.∴CE2=CG2+EG2,BD2=BG2+DG2.∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.。

(安徽卷) 2020年中考数学第二次模拟考试(全解全析)

(安徽卷) 2020年中考数学第二次模拟考试(全解全析)

2020年中考数学第二次模拟考试【安徽卷】数学·全解全析1 2 3 4 5 6 7 8 9 10B C C B A B B D D C 1.【答案】B【解析】7的相反数是−7,故选B.2.【答案】C【解析】原式=x4,故选C.3.【答案】C【解析】这个立体图形的左视图为:故选C.4.【答案】B【解析】∵16<23<25,∴4235<<,∴32314<<故选B.5.【答案】A【解析】∵AB∥CD,∠EFC=50°,∴∠BAF=∠EFC=50°,∵∠EAB+∠BAF=180°,∴∠EAB=130°,∵AG平分∠EAB,∴∠BAG=12∠EAB=65°,故选A . 6.【答案】B【解析】原式=22222mn m n nn n m n⎛⎫++⋅⎪+⎝⎭, =()22m n n nm n+⋅+,=2m n+, ∵m +n =2, ∴原式=22=1, 故选B . 7.【答案】B【解析】∵赛程计划安排6天,每天安排6场比赛, ∴共6×6=36场比赛, 设比赛组织者应邀请x 队参赛, ∵2队之间只有1场比赛, ∴可列方程为:12x (x –1)=36. 故选B . 8.【答案】D 【解析】如图,∵BE ⊥CD ,BF ⊥AD , ∴∠BEC =∠BFD =90°, ∵∠EBF =60°,∵∠D +∠BED +∠BFD +∠EBF =360°, ∴∠D =120°, ∵平行四边形ABCD ,∴DC∥AB,AD∥BC,∠A=∠C∴∠A=∠C=180°–120°=60°,∴∠ABF=∠EBC=30°,∴AD=BC=2EC=4在△BEC中由勾股定理得:BE在△ABF中AF=4–1=3,∵∠ABF=30,∴AB=6,∴平行四边形ABCD的面积是AB•BE=6×故选D.9.【答案】D【解析】∵函数kyx=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k<1,∴k>﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称轴为x=﹣422k-⨯=1k,﹣1<1k<0,∴对称轴在﹣1与0之间,∵当x=0时,y=k2>1.故选D.10.【答案】C【解析】∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在Rt△ADE和Rt△GDE中,DE=DE,DA=DG∴AED≌△GED(HL),故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理△AEF≌△GEF,可得EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=2AE,∴BE>AE,∴AE<12,∴CB+FG<1.5,故④错误.故选C.11.【答案】1×106【解析】1000000=1×106,故答案为:1×106.12.【答案】4 9【解析】共有9个小球,其中蓝球有4个,且每个球被取出的可能性相等,则一个蓝球被取出的概率p=4 9 .故填4 9 .13.【答案】115°【解析】连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D +∠ABC =180°, ∴∠D =115°, 故答案为:115°. 14.【答案】1【解析】∵y =x 2–2x +2=(x –1)2+1, ∴抛物线的顶点坐标为(1,1), ∵四边形ABCD 为矩形, ∴BD =AC , 而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1, ∴对角线BD 的最小值为1. 故答案为1.15.【解析】(﹣13)﹣2|﹣(π﹣3.14)0+2sin60°=﹣43+2=﹣13 =﹣1316.【解析】(1)(n +1)2﹣n 2=2n +1,故答案为:(n +1)2﹣n 2=2n +1; (2)∵22﹣12=2×1+1①, 32﹣22=2×2+1②, 42﹣32=2×3+1③, ……,(n +1)2﹣n 2=2n +1,∴将①+②+③+…,得(n +1)2﹣12=2(1+2+3+…+n )+nn 2+2n =2S 1+n ,∴S 1=22n n +.17.【解析】由题意知∠CAD=45°,∠CBD=60°设BD=x米,在Rt△CBD中,∵BD=x,∠CBD=60o∴CD=3x在Rt△CAD中,∠CAD=45°,∴∠ACD=∠CAD=45°,∴AD=CD,∴200+x=3x,=100(3+1)x∴=31-≈,又3 1.732∴x≈273,答:还要沿绿道走约273m才能到达桥头.18.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).19.【解析】(1)∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴DE DF AC FC=,∴326 AC=,解得:AC=9,即⊙O的直径为9.20.【解析】(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60(人).故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18(人);(3)这部分学生的平均睡眠时间的众数是7人,平均数1262778189360⨯+⨯+⨯+⨯==7.2(小时);(4)1200名睡眠不足(少于8小时)的学生数122760+=⨯1200=780(人).21.【解析】(1)过点A作AD⊥y轴于点D,如图,∵C(0,8),A(3,a),∴AD=3,OC=8.∴S△AOC=12×OC×AD=12×8×3=12;(2)∵A (3,a ),B (1,b )两点在反比例函数ky x=(x >0)的图象上, ∴3a =b ., ∴|a -b |=4.∵由图象可知a <b , ∴a -b =-4. ∴43a b a b -=-⎧⎨=⎩,解得26a b =⎧⎨=⎩∴A (3,2),B (1,6). 把A 点的坐标代入k y x=(x >0)得,23k=,∴k =6.∴反比例函数的解析式为6y x=(x >0); 设一次函数的解析式为y =mx +n , ∵一次函数的图象经过点A ,B ,∴632m n m n +=⎧⎨+=⎩. 解得28m n =-⎧⎨=⎩.∴一次函数的解析式为y =-2x +8.22.【解析】(1)①当150x ≤<时,()()22002403021802000w x x x x =-+-=-++.②当5090x ≤≤时,()()2002903012012000w x x =--=-+.所以()221802000(150)120120005090x x x x x ⎧-++≤<⎪⎨-+≤≤⎪⎩(2)①当150x ≤<时,二次函数图象开口向下,对称轴为直线45x =, 那么当45x =时,22451804520006050w =-⨯+⨯+=最大. ②当5090x ≤≤时,w 随x 的增大而减小,综上,销售该商品第45天时,当天销售利润最大,最大利润是6050元.(3)①当150x ≤<时,2218020004800w x x =-++≥,解得2070x ≤≤, 因此利润不低于4800元的天数是2050x ≤<,共30天. ②当5090x ≤≤时,120120004800w x =-+≥,解得60x ≤. 因此利润不低于4800元的天数是5060x ≤≤,共11天.所以该商品在销售过程中,共有41天每天销售利润不低于4800元. 23.【解析】(1)①∵F 为AC 中点,DE 是△ABC 在BC 边上的中分线段,∴DF 是△CAB 的中位线,∴DF =12AB =12c ,AF =12AC =12b ,CE =12(b +c ), ∴AE =b ﹣CE =b ﹣12(b +c )=12(b ﹣c ),∴EF =AF ﹣AE =12b ﹣12(b ﹣c )=12c ,∴DF =EF ;②过点A 作AP ⊥BG 于P ,如图1所示:∵DF 是△CAB 的中位线, ∴DF ∥AB , ∴∠DFC =∠BAC ,∵∠DFC =∠DEF +∠EDF ,EF =DF , ∴∠DEF =∠EDF , ∴∠BAP +∠PAC =2∠DEF , ∵ED ⊥BG ,AP ⊥BG , ∴DE ∥AP , ∴∠PAC =∠DEF , ∴∠BAP =∠DEF =∠PAC , ∵AP ⊥BG ,∴AB=AG=4,∴CG=AC﹣AG=6﹣4=2;(2)连接BE、DG,如图2所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE∥DG,∵DF∥AB,∴△ABE∽△FDG,∴AB AE2 DF FG1==,∴FG=12AE=12×12(b﹣c)=14(b﹣c),∵AB=AG=c,∴CG=b﹣c,∴CF=12b=FG+CG=14(b﹣c)+(b﹣c),∴3b=5c,∴53bc=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省合肥市蜀山区2020年中考数学二模试卷一、选择题1.﹣2020的倒数是()A.2020B.﹣2020C.D.﹣2.下列运算正确的是()A.(﹣a)•a2=a3B.2a﹣a=1C.(﹣2)0=1D.3﹣2=﹣3.2019年,全国实行地区生产总值统计合算改革,某城区GDP约为1004.2亿元,第一次进入千亿元城区,将数据1004.2亿用科学记数法表示为()A.1.0042×1011B.1.0042×1012C.1.0042×107D.10.042×10114.如图是由大小相同的5个小正方体组成的几何体,该几何体的俯视图是()A.B.C.D.5.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()A.众数是8B.中位数是8C.平均数是8D.方差是16.如图,在矩形ABCD中放置了一个直角三角形EFG,∠EFG被AD平分,若∠CEF=35°,则∠EHF的度数为()A.55°B.125°C.130°D.135°7.关于方程(x﹣2)2﹣1=0根的情况,下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客m万人,四月比三月旅游人数增加了15%,五月比四月游客人数增加了a%,已知三月至五月徽园的游客人数平均月增长率为20%,则可列方程为()A.(1+15%)(1+a%)=1+20%×2B.(1+15%)(1+20%)=2(1+a%)C.(1+15%)(1+20%)=1+a%×2D.(1+15%)(1+a%)=(1+20%)29.如图,⊙O是△ABC的外接圆,⊙O的半径r=2,tan A=,则弦BC的长为()A.2.4B.3.2C.3D.510.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关二、填空题(本题共4小题,每小题5分,满分20分)11.化简:=.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为度.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为.三、(本题共2小题,每小题8分,满分16分)15.解不等式:2(x﹣1)+4>0.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.四、(本题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?五、(本题共2小题,每小题10分,满分20分)19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=﹣x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q 的上方,请结合函数图象直接写出此时t的取值范围.六、(本题满分12分)21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC 的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.七、(本题满分12分)22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y(千克)与售价x(元/千克)的函数图象关系如图所示:(1)求y关于x的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m元/千克(m>0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m的值.八、(本题满分14分)23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.参考答案一、选择题(本题共10小题,每小题4分,满分40分)1.﹣2020的倒数是()A.2020B.﹣2020C.D.﹣【分析】乘积是1的两数互为倒数.依据倒数的定义回答即可.解:﹣2020的倒数是,故选:D.2.下列运算正确的是()A.(﹣a)•a2=a3B.2a﹣a=1C.(﹣2)0=1D.3﹣2=﹣【分析】直接利用单项式乘以单项式以及合并同类项法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案.解:A、(﹣a)•a2=﹣a3,故此选项错误;B、2a﹣a=a,故此选项错误;C、(﹣2)0=1,正确;D、3﹣2=,故此选项错误;故选:C.3.2019年,全国实行地区生产总值统计合算改革,某城区GDP约为1004.2亿元,第一次进入千亿元城区,将数据1004.2亿用科学记数法表示为()A.1.0042×1011B.1.0042×1012C.1.0042×107D.10.042×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:将数据1004.2亿=100420000000用科学记数法表示为:1.0042×1011.故选:A.4.如图是由大小相同的5个小正方体组成的几何体,该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.解:从上面看有三层,底层和中层均为一个正方形,上层两个正方形,左齐.故选:C.5.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是()A.众数是8B.中位数是8C.平均数是8D.方差是1【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得出答案.解:由图可得,数据8出现4次,次数最多,所以众数为8,故A正确;10次成绩排序后为:6,7,7,8,8,8,8,9,9,10,所以中位数是(8+8)=8,故B正确;平均数为(6+7×2+8×4+9×2+10)=8,故C正确;方差为[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2]=1.08,故D不正确;不正确的有1个;故选:D.6.如图,在矩形ABCD中放置了一个直角三角形EFG,∠EFG被AD平分,若∠CEF=35°,则∠EHF的度数为()A.55°B.125°C.130°D.135°【分析】根据矩形的性质得到AD∥BC,根据平行线的性质得到∠AFE=∠CEF=35°,根据角平分线的定义得到∠GFH=∠CEF=35°,根据平角的定义即可得到结论.解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠CEF=35°,∵∠EFG被AD平分,∴∠GFH=∠CEF=35°,∵∠G=90°,∴∠GHF=90°﹣35°=55°,∴∠EHF=180°﹣55°=125°,故选:B.7.关于方程(x﹣2)2﹣1=0根的情况,下列判断正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=﹣4,c=3代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.解:∵一元二次方程(x﹣2)2﹣1=0可化为x2﹣4x+3=0,∴△=(﹣4)2﹣4×1×3=4>0,∴方程有两个不相等的实数根.故选:A.8.“半日走遍江淮大地,安徽风景尽在徽园”,位于省会合肥的徽园景点某年三月共接待游客m万人,四月比三月旅游人数增加了15%,五月比四月游客人数增加了a%,已知三月至五月徽园的游客人数平均月增长率为20%,则可列方程为()A.(1+15%)(1+a%)=1+20%×2B.(1+15%)(1+20%)=2(1+a%)C.(1+15%)(1+20%)=1+a%×2D.(1+15%)(1+a%)=(1+20%)2【分析】直接利用增长率表示方法进而表示出4,5月游客人数进而得出等式.解:设三月旅游人数为x,由题意可得:(1+15%)(1+a%)x=(1+20%)2x,故(1+15%)(1+a%)=(1+20%)2.故选:D.9.如图,⊙O是△ABC的外接圆,⊙O的半径r=2,tan A=,则弦BC的长为()A.2.4B.3.2C.3D.5【分析】连接CO并延长交⊙O上一点A′,连接BA′,则A′C是⊙O的直径,A′C=4,∠A′BC=90°,由圆周角定理得∠A=∠A′,得出tan A=tan A′==,设BC =a,则A′B=a,由勾股定理解得a=3.2,即可得出结果.解:连接CO并延长交⊙O上一点A′,连接BA′,如图所示:由题意可得:A′C是⊙O的直径,A′C=2×2=4,则∠A′BC=90°,∵∠A=∠A′,∴tan A=tan A′==,设BC=a,则A′B=a,由勾股定理得:A′C2=BC2+A′B2,即:42=a2+(a)2,解得:a=3.2,∴BC=3.2,故选:B.10.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关【分析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再分别进行讨论,即可得出函数y的最大值与最小值即可得到结论.解:∵二次函数y=x2+px+q=(x+)2﹣,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=0时,二次函数有最小值为:q,∴当x=1时,二次函数有最大值为:1+p+q,∴函数最大值与最小值的差为1+p;当x=﹣>1,∴当x=0时,二次函数有最大值为:q,∴当x=1时,二次函数有最小值为:1+p+q,∴函数最大值与最小值的差为﹣1﹣p;综上所述,此函数最大值与最小值的差与p有关,但与q无关,故选:D.二、填空题(本题共4小题,每小题5分,满分20分)11.化简:=x+2.【分析】分子利用平方差公式进行因式分解,然后约分即可.解:原式==x+2.故答案是:x+2.12.某中学为了了解八年级女生的体能情况,随机抽取了部分女生进行了跳绳测试,按成绩分为优秀、良好、合格与不合格四个等级,绘制了如图的统计图,则不合格人数在扇形统计图对应的圆心角为18度.【分析】利用360°×不合格人数占抽取的人数的百分数即可得到结论.解:不合格人数在扇形统计图对应的圆心角为×360°=18°,故答案为:18.13.如图所示,南宋数学家杨辉在《详解九章算法》中出现的三角形状的数阵,又称为“杨辉三角形”.该三角形中的数据排列有着一定的规律,按此规律排列下去,第100行的左边第3个数是4851.【分析】观察数字的变化写出第3行开始的每一行的左边第3个数,寻找规律即可求出第100行的左边第3个数.解:观察数字的变化发现:第3行的左边第3个数是1=,第4行的左边第3个数是3=,第5行的左边第3个数是6=,第6行的左边第3个数是10=,…所以第100行的左边第3个数是=4851.故答案为:4851.14.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,点E、F分别是边AC、BC上的动点,且EF∥AB,点C关于EF的对称点D恰好落在△ABC的内角平分线上,则CD长为3或.【分析】作CH⊥AB于H,如图,利用平行线的性质得到CH⊥EF,利用对称的性质得到点D在CH上,利用勾股定理和面积法分别计算出AB=10,CH=,AH=,当点D为∠BAC的平分线AM与CH的交点时,如图1,作MN⊥AB于N,根据角平分线的性质得到MC =MN,则AN=AC=6,所以BN=4,设MC=MN=x,则BM=8﹣x,利用勾股定理得到得到x2+42=(8﹣x)2,解得x=3,接着利用平行线分线段成比例定理计算出HD=,从而得到此时CD的长;当点D为∠ABC的平分线AG与CH的交点时,如图2,利用同样方法求解.解:过点C作CH⊥AB于H,如图,∵EF∥AB,∴CH⊥EF,∵点D与点C关于EF对称,∴点D在CH上,在Rt△ABC中,AB==10,∵CH•AB=AC•BC,∴CH==,∴AH==,当点D为∠BAC的平分线AM与CH的交点时,如图1,过点M作MN⊥AB于N,∴MC=MN,∴AN=AC=6,∴BN=4,设MC=MN=x,则BM=8﹣x,在Rt△BMN中,x2+42=(8﹣x)2,解得x=3,∵DH∥MN,∴=,即=,解得HD=,∴CD=﹣=3;当点D为∠ABC的平分线AG与CH的交点时,如图2,BH=AB﹣AH=,过点G作GQ⊥AB于Q,则GQ=GC,∴BQ=BC=8,∴AQ=2,设GQ=GC=t,则AG=6﹣t,在Rt△AGQ中,22+t2=(6﹣t)2,解得t=,∵DH∥GQ,∴=,即=,解得DH=,∴CD=﹣=,综上所述,CD的长为3或.故答案为3或.三、(本题共2小题,每小题8分,满分16分)15.解不等式:2(x﹣1)+4>0.【分析】直接去括号进而移项合并同类项解不等式即可.解:2x﹣2+4>0,2x>﹣2,解得:x>﹣1.16.《九章算术》是中国传统数学最重要的著作之一,其中《均输》卷记载了一道有趣的数学问题:“今有凫(注释:野鸭)起南海,九日至北海;雁起北海,六日至南海.今凫雁俱起,问何日相逢?”译文:“野鸭从南海起飞,9天飞到北海;大雁从北海起飞,6天飞到南海.现野鸭与大雁分别从南海和北海同时起飞,问经过多少天相遇”.请列方程解答上面问题.【分析】首先设经过x天相遇,根据题意可得等量关系:野鸭x天的路程+大雁x天的路程=1,再根据等量关系列出方程,再解即可.解:设经过x天相遇,由题意得:+=1,解得:x=,答:经过天相遇.四、(本题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,已知点O、A、B均为格点.(1)在给定的网格中,以点O为位似中心将线段AB放大为原来的2倍,得到线段A′B′.(点A、B的对应点分别为点A′、B′),画出线段A′B′.(2)以线段A′B′为一边,作一个格点四边形A′B′CD,使得格点四边形A′B′CD是轴对称图形(作出一个格点四边形即可).【分析】(1)连接AO,延长AO到A′,使得OA′=2OA,同法作出点B′,连接A′B′即可.(2)以A′B′为边构造矩形即可(答案不唯一).解:(1)如图,线段A′B′即为所求.(2)如图,矩形A′B′CD即为所求(答案不唯一).18.为了考察学生的综合素质,某市决定:九年级毕业生统一参加中考操作考试,根据今年的实际情况,中考实验操作考试科目为:P(物理)、C(化学)、B(生物),每科试题各为2道,考生随机抽取其中1道进行考试,小明和小丽是某校九年级学生,需参加实验考试.(1)小明抽到化学实验的概率为.(2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?【分析】(1)直接利用概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.解:(1)明抽到化学实验的概率为,故答案为:.(2)画树状图如下:由树状图知,共有9种等可能结果,其中小明和小丽抽到不同科目的有6种结果,∴小明和小丽抽到不同科目的概率为=.五、(本题共2小题,每小题10分,满分20分)19.某校数学兴趣小组假期实地测量南淝河两岸互相平行的一段东西走向的河的宽度,在河的南岸边点A处,测得河的北岸边点C在其东北方向,然后向南走20米到达点B处,测得点C在点B的北偏东30°方向上.(1)求∠ACB的度数;(2)求出这段河的宽度.(结果精确到1米,参考数据:≈1.41;≈1.73)【分析】(1)如图,延长CA于点D,交直线CE于点D,于是得到∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,根据角的和差即可得到结论;(2)解直角三角形即可得到结论.解:(1)如图,延长CA于点D,交直线CE于点D,则BD⊥CD,∴∠CDB=90°,根据题意可知:∠ACD=45°,∠BCD=30°,∴∠ACB=∠CAD﹣∠B=15°;(2)∵∠ACD=45°,∠BCD=30°,AB=20,∴在Rt△ACD中,AD=CD,在Rt△CBD中,tan∠BCD==,即=,解得AD≈30(m).答:这段河的宽度约为30米.20.如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=﹣x+b的图象相交于点P,与反比函数y=上的图象相交于点Q,若点P位于点Q 的上方,请结合函数图象直接写出此时t的取值范围.【分析】(1)利用三角形面积公式计算OC,从而得到B(4,1),再把B点坐标代入y=中求出k得到反比例函数解析式为y=;接着把B点坐标代入y=﹣x+b中求出b得到直线AB的解析式,然后利用直线解析式确定E点坐标;(2)先确定A(1,4),然后写出在第一象限内,一次函数图象在反比例函数图象上方所对应的自变量的范围即可.解:(1)∵△OBC的面积为2,B点的纵坐标为1.∴×OC×1=2,解得OC=4,∴B(4,1),把B(4,1)代入y=得k=4×1=4,∴反比例函数解析式为y=;把B(4,1)代入y=﹣x+b得﹣4+b=1,解得b=5,∴直线AB的解析式为y=﹣x+5;当y=0时,﹣x+5=0,解2得x=5,∴E(5,0);(2)当y=4时,=4,解得x=1,∴A(1,4),当点P位于点Q的上方,此时t的取值范围为1<t<4.六、(本题满分12分)21.如图,四边形ABCD内接于⊙O,AC为直径,点D为弧ACB的中点,过点D的切线与BC 的延长线交于点E.(1)用尺规作图作出圆心O;(保留作图痕迹,不写作法)(2)求证:DE⊥BC;(3)若OC=2CE=4,求图中阴影部分面积.【分析】(1)作线段AC的垂直平分线即可解决问题.(2)首先证明DE∥AB,利用平行线的性质解决问题即可.(3)过点C作CG⊥OD于G.证明△ODC是等边三角形即可解决问题.【解答】(1)解:如图,点O即为所求.(2)证明:连接DO延长DO交AB于F.∵DE是⊙O的切线,∴OD⊥DF,∵=,∴DF⊥AB,∴DE∥AB,∴∠E+∠B=180°,∵AC是直径,∴∠ABC=90°,∴∠E=90°,∴DE⊥BE.(3)过点C作CG⊥OD于G.∵∠E=∠EDG=∠DGC=90°,∴四边形DECG是矩形,∴DG =CE ,∵OD =OC =2CE =4,∴CE =DG =OG =2,∵CG ⊥OD ,∴CD =CO =OD ,∴△DOC 是等边三角形,∴∠DOC =60°,∴S 阴=S 扇形ODC ﹣S △ODC =﹣×42=π﹣4.七、(本题满分12分)22.某水果连锁店销售热带水果,其进价为20元/千克,销售一段时间后发现:该水果的日销售y (千克)与售价x (元/千克)的函数图象关系如图所示:(1)求y 关于x 的函数解析式;(2)当售价为多少元/千克时,当日销售利润最大,最大利润为多少元?(3)由于某种原因,该水果进价提高了m 元/千克(m >0),物价局规定该水果的售价不得超过40元/千克,该连锁店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是1280元,请直接写出m 的值.【分析】(1)依题意设y =kx +b ,解方程组即可得到结论;(2)根据题意列方程,解方程即可得到结论;(2)根据题意得列函数解析式,根据二次函数的性质即可得到结论.解:(1)设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,解得:,∴y 关于x 的函数解析式为y =﹣2x +160;(2)设当该商品的售价是x元/件时,月销售利润为w元,根据题意得:w=(﹣2x+160)(x﹣20)=﹣2x2+200x﹣3200=﹣2(x﹣50)2+1800∴当x=50时w有最大值,最大值为1800(元),答:当该商品的售价是50元/件时,月销售利润最大,最大利润是1800元;(3)根据题意得,w=(x﹣20﹣m)(﹣2x+160)=﹣2x2+(200+2m)x﹣3200﹣160m,∵对称轴x=,∴①当=<40时(舍),②当=≥40时,x=40时,w取最大值为1280,解得:m=4,八、(本题满分14分)23.如图,在△ABC中,∠ACB=90°,AC=BC,CD是AB边上的中线,点E为线段CD上一点(不与点C、D重合),连接BE,作EF⊥BE与AC的延长线交于点F,与BC交于点G,连接BF.(1)求证:△CFG∽△EBG;(2)求∠EFB的度数;(3)求的值.【分析】(1)得出∠FCG=∠BEG=90°,∠CGF=∠EGB,则结论得证;(2)证明△CGE∽△FGB,得出∠EFB=∠ECG=∠ACB=45°;(3)过点F作FH⊥CD交DC的延长线于点H,证明△FEH≌△EBD(AAS),得出FH=ED,则CH=FH,得出CF=DE,则得出答案.【解答】(1)证明:∵∠ACB=90°,EF⊥BE,∴∠FCG=∠BEG=90°,又∵∠CGF=∠EGB,∴△CFG∽△EBG;(2)解:由(1)得△CFG∽△EBG,∴,∴,又∵∠CGE=∠FGB,∴△CGE∽△FGB,∴∠EFB=∠ECG=∠ACB=45°;(3)解:过点F作FH⊥CD交DC的延长线于点H,由(2)知,△BEF是等腰直角三角形,∴EF=BE,∵∠FEH+∠DEB=90°,∠EBD+∠DEB=90°,∴∠FEH=∠EBD,在△FEH和△EBD中,,∴△FEH≌△EBD(AAS),∴FH=ED,∵∠FCH=∠ACD=45°,∠CHF=90°,∴∠CFH=∠CFH=45°,∴CH=FH,在Rt△CFH中,CF==FH,∴CF=DE,∴.。

相关文档
最新文档