三相异步电机矢量控制
变频器矢量控制原理
变频器矢量控制原理
变频器矢量控制原理是一种用于控制三相异步电动机的方法。
它基于矢量算法,通过测量和处理电机的电流和转速信号,并将其转化为电机控制信号,实现对电机的精确控制。
变频器矢量控制的核心原理是将电机的转子电流和转速向量解耦,分别控制它们的大小和相位。
在传统的矢量控制算法中,主要包括转速闭环控制和电流闭环控制两个环节。
转速闭环控制主要通过测量电机的转速,并将其与期望转速进行比较,得到转速误差信号。
然后根据这个误差信号,通过PID控制算法计算得到控制电机转速的控制信号。
这个控制信号经过逆正切运算,转化为电机的转子电流矢量。
电流闭环控制主要通过测量电机相电流和直流母线电压,得到电流误差信号。
然后根据这个误差信号,通过PID控制算法计算得到控制电机电流的控制信号。
这个控制信号经过逆正切运算,转化为电机的转子电流矢量。
通过对转速和电流闭环控制的协调控制,变频器可以实现对电机的精确控制。
在变频器矢量控制中,可以通过改变电机转子电流矢量大小和相位角来改变电机的转矩和转速。
这样,可以实现电机的平滑启动、调速和制动等控制功能。
总之,变频器矢量控制是一种高级的电机控制方法,可以实现对电机的精确控制,提高电机的响应速度和控制精度。
它在工业生产和各种机械设备中得到广泛应用。
异步电机矢量控制.
下步工作
学习在矢量控制中加入电流闭环控制的相 关原理 制作IRMCF341电源供电部分,保证电源部 分输出正确的电压。 在IRMCF341微控制器8051中增加故障处理 程序,保证故障类型的完整。
将电压方程
改写为
笼型转子 内部短路
σ=1-L2M/LS/LR σ电机漏磁系数
整理可得状态方程
其中Tr—转子电磁时间常数,Tr=Lr/Rr。
二、异步电机的矢量控制
αβ坐标系下转子磁链旋转矢量 ψr空间角度φ, d轴改成m轴,q轴改成t轴 m轴与转子磁链旋转矢量重合
代入上式
状态方程
可得mt坐标系的旋转角速度
转子绕组2r/2s变换
2r/2s
电压方程
பைடு நூலகம்
磁链方程
转矩方程 4、旋转正交坐标系下的动态数学模型
定子旋转变换阵为
转子旋转变换阵为
旋转坐标系下的电压方程
转矩方程
(3)正交坐标系下的状态方程 异步电机有四阶电压方程和一阶运动方程,需选取 五个状态变量1.转速ω;2.定子电流isd和isq;3.转子电流 ird和irq;4.定子磁链ψsd和ψsq;5.转子磁链ψrd和ψrq 以ω-is-ψr为状态变量 dq下的磁链方程
异步电机的矢量控制
2014年10月9日
一、异步电动机的数学模型 二、异步电动机的矢量控制 三、总结
一、异步电动机的数学模型
(1)三相动态模型
1、磁链方程
Lms - 定子交链的最大互感值; Lls - 漏磁通
定子三相各绕组之间与转子三相各绕组之间位置是固定的,互感 为常值
定、转子之间位置是变化的,与θ有关
电磁转矩表达式
按转子磁链定向,将定子电流分解为励磁分量ism和转矩 分量ist,转子磁链ψr仅由励磁分量ism产生,而电磁转矩 Te正比于转子磁链和定子电流转矩分量的乘积istψr ,实现 了定子电流两个分量的解耦。
异步电机矢量控制原理
异步电机矢量控制原理一、引言异步电机是一种广泛应用的电动机,其控制方式主要有直接转矩控制和矢量控制两种。
其中,矢量控制是一种更加精确、灵活的控制方式,可以实现高效率、高性能的运行。
本文将详细介绍异步电机矢量控制原理。
二、异步电机基础知识1. 异步电机结构和工作原理异步电机由定子和转子两部分组成,定子上有三个相位交流绕组,转子上则有导体条。
当三相电源施加在定子上时,会产生旋转磁场,进而感应出转子中的感应电动势,并使得导体条在旋转磁场中感受到一个旋转力矩,从而带动转子运动。
2. 异步电机参数异步电机的参数包括定子电阻、定子漏抗、定子互感、转子漏抗等等。
这些参数对于确定异步电机的特性非常重要。
3. 感应电动势和反电动势当三相交流电源施加在定子上时,会产生一个旋转磁场,并且这个旋转磁场的频率与供电频率相同。
这个旋转磁场会感应出转子中的感应电动势,从而产生一个旋转力矩。
同时,由于异步电机的运动,转子中也会产生一个反电动势,其大小与运动速度成正比。
三、矢量控制基础知识1. 矢量控制简介矢量控制是一种通过模拟直流电机的方式来控制交流电机的方法。
它可以实现非常精确的控制,并且可以根据需要调整转速和转矩。
2. 矢量控制原理在矢量控制中,将交流电机看作一个带有两个分量(即直流分量和交流分量)的向量。
通过对这两个分量进行分别控制,就可以实现对交流电机的精确控制。
四、异步电机矢量控制原理1. 矢量控制与异步电机结合在异步电机中使用矢量控制时,需要将交流电源输入到变频器中,并将其输出到异步电机上。
变频器会将交流信号转换为直流信号,并将其分解为两个分量:一个用于产生旋转磁场(即定子磁通),另一个用于产生反向转矩(即转子电流)。
2. 矢量控制中的定子电流和磁通在矢量控制中,定子电流和磁通是非常重要的参数。
定子电流决定了旋转磁场的大小,而磁通则决定了旋转磁场的方向。
因此,在进行异步电机矢量控制时,需要对定子电流和磁通进行精确控制。
基于三相旋转变换与极坐标变换的电机矢量控制
+ _
珊
K e W or s:I uci n M otr y d nd to o ;Ve t corConr l to ;3 Pha e R o ai a sor ai n;Polr Co r naesTr n f r ai n;DC re t s tton Tr f m to n a o di t a s o m to Cur n q 一 Re l t gu aor
苏 种 ,韩 兵
摘 要 :就 异 步 电机 旋转 变换 和 实现 方案 进 行 了分 析 ,采 用 了 3相 同 步旋 转 与 极 坐 标 变 换 的 方 法 , 立 了新 的 电机 旋 转 变 换 建
和 极 坐 标 矢量 电压 控 制模 型 。 由 于 这个 模 型 具 有 直 流 电流 调 节 器 提供 的 矢 量 电压 模 和 旋转 角 ,显 然 方便 S WM 进 行 变 频 VP 变压 控 制 。分析 变换 使 得 电流 跟 随控 制 器为 直 流 调 节 器 ,可在 直 流 线性 电压 电流 模 型 条 件 下 设 计 电流 反馈 环 ,为 交流 异 步 电
l a iiae h P M a ibl la ai bl r q n y o to .Ther s t fa l i nd c t he ei et rd sgn o he y f clt tst e SV W v a evo tge v ra e fe ue c c n r 1 r e ulso nayssi ia e t r sa b te e i ft c r n e db c o t e e ta f m sm a i g hec r n ol ure tf e a k lop wih t s r nsor k n t ure tf lowi on o lrt eD C e ult ra d t e i i a od lof h ng c t le r h r g a o h n n a lne m n r e
异步电动机矢量控制
19
3、定子绕组轴系的变换 (A B C )
下图表示三相异步电动机定子三相绕组A、C、C和与之等效的二相
异步电动机定子绕组 、 中各相磁势矢量的空间位置。三相的A轴
与二相的 轴重合。
B
假设当二者的磁势波形按正弦分 布,当二者的旋三相绕组和二相绕
12
矢量变换控制的基本思想和控制过程可用框图来表示:
旋转坐标系
静止坐标系
控制通道
ω* ψ*
控制器
iT* iM*
旋转变换 A-21
iα*
iβ*
2/3相变换
iA*
i
*
B
iC*
A
-1 1
变频器
iT iM 旋转变换
iα iβ 3/2相变换 iA iB i C
M
A2
A1
反馈通道
以下任务是,从交流电机三相绕组中分离产生磁通势的直流分量和产生 电磁转矩的直流分量,以实现电磁解耦。解耦的有效方法是坐标变换。
组的瞬时磁势沿 、 轴的投影
β
N3iB
N2iα N2iβ
α N3iA A
应该相等。(N2、N3为匝数)
C N3iC
3/2变换
N 2ia
N3iA
N3iB
cos
2
3
N 3iC
cos
4
3
2
4
N 2i 0 N3iB sin 3 N3iC sin 3
20
经计算整理,得:
i
N3 N2
i
A
1 2
iB
1 2
第八章 异步电动机矢量控制
主要内容:
矢量控制的基本思想 坐标变换 异步电动机在不同坐标系下的数学模型 异步电动机矢量控制系统举例
三相异步电动机的几种调速方式
三相异步电动机的几种调速方式一、手动控制调速手动控制是一种最普遍的三相异步电动机调速方式。
它依靠加装变压器、电阻器或多脉冲变压器等器件,调节其输入电压、输入频率或输出电压,从而在一定范围内实现电动机的速度调节。
手动控制调速简单易行,但需要对其进行操作并且无法在一定时间内快速响应,因此其调速效果难以满足大功率调速应用的需求。
二、电压型调速又称为调压调速,它利用晶闸管、继电器等智能控制器调节电动机供电输入电压或输出电压,控制电动机转速。
这种调速方式具有精度高、响应快的优点,而且兼容性好,可实现精细调节。
三、频率型调速频率型调速是运用变频器将变频器输入电源的固定频率变换为可调的变频电源,并通过变频器控制电动机转速。
变频器能够调节电动机速度,实现电机无极调速,从而应用广泛。
此外,特别适用于中低速大扭矩的电动机。
四、矢量控制调速矢量控制调速又称为磁场定向控制调速。
它是一种高精度、高响应速度的调速方式,它利用磁场定向技术,利用电机开机后的瞬态响应,精确测量电机位置并控制电机转速。
与其它调速方式相比,矢量控制调速能够实现缓启动、粘滑保护,并且可以自动调整电磁场大小和角度,实现高速、高精度的调速。
五、惯量调节法惯量调节法是利用电动机惯性和输出转矩的反比关系控制电动机转速的,通常应用于重载起动场景中的电动机调速。
它适用于一些运行要求高的场合,在某些情况下,可达到更好的调速效果,但一般不适用于低速调节。
六、PWM调速PWM调速广泛应用于三相异步电动机调速中,它结合了电压调速和频率调速的优点,而且具有成本低、可靠性高等优点。
PWM调速采用高频脉冲宽度调制技术,调节输出电压的宽度,从而控制电动机转速。
PWM调速还可以实现过流保护、欠压保护等,应用性强。
以上为六种三相异步电动机的调速方式,每种调速方式都有其适用的场合。
根据实际应用需求,选择合适的调速方式可以实现电动机稳定、高效的工作。
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。
FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。
其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。
FOC方案的优点是控制精度高,响应速度快。
由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。
此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。
然而,FOC方案也存在一些缺点。
首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。
这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。
其次,FOC方案对于电机参数和系统模型的准确性要求较高。
由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。
接下来,我们来看看DTC方案。
DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。
DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。
DTC方案的优点是实现简单,控制快速。
DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。
此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。
然而,DTC方案也存在一些缺点。
首先,DTC方案的动态性能较差。
由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。
异步电动机的动态数学模型及矢量控制
iiCa
Lbc
ib
L2l Lccic
Ψ ΨR SL LR SSS
LSRiS LRRiR
L11L1l
其中,Lss
1 2
L11
1 2
L11
1 2
L11
L11L1l
1 2
L11
1
2 1
2
L11 L11
L11L1l
L22 L2l
LR
R
1 2
L22
1 2
L22
1 2
L2
2
L22 L2l
其中 p 为, 电机的 L 12 磁 N 1N 极 2 m对数。
2、转矩方程
Te
TL
J p
d
dt
J p
d 2
dt 2
J
d 2 m
dt 2
其中 m p 转子转动的机械角度
机数学模型的性质:
在A、B、C三相坐标系异步电动中异步电动机的基本方程 是由七个微分方程和一个电磁转矩公式组成。由于在微分 方程式中出现了两个变量的乘积项,所以数学模型是非线 性的 。
Ca
LCA LaA
b
LbA
c LcA
LAB L1l LBB
LCB LaB LbB LcB
LAC LBC L1l LCC LaC LbC LcC
LAa LBa LCa L2l Laa Lba Lca
LAb LBb LCb Lab L2l Lbb Lcb
LAc iA LBc iB
LCc Lac
Xm
θ
xA
表示x为 AX: mej
参考轴A
三相坐标系下的物理量如何用空间矢量表示?
设三相坐标系下三相物理量分别为:x(A t)、x(B t)、x( C t) 取a e j1200 1 j 3
三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与 应用(616G5)
三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与应用(616G5)学校:华北电力大学院系:专业:电气工程及其自动化指导教师:姓名:学号:引言由于电力电子技术的不断发展和进步,伴随着新的控制理论的提出与完善,使交流调速传动,尤其是性能优异的变频调速传动得到飞速的发展。
近年来,变频器的售价不断下降,而其使用功能却不断提升和扩大变频器的大量推广使用,在节能、省力化、自动化及提高生产率、提高质量、减少维修和提高舒适性等多方面都取得了令世人瞩目的应用效果。
1目录一、交流调速系统概述 (3)二、变频调速系统 (4)三、变频器的原理 (6)四、电机选择及参数 (9)五、旋转编码器选择及参数 (11)六、安川变频器(616g5)结构形式 (12)七、安川变频器(616g5)参数设定 (13)八、结束语 (20)参考文献: (21)一、交流调速系统概述调速系统的发展三相交流电机自十九世纪发明以来走过了100多年历史,电力拖动控制技术也随之日渐成熟,已从最初直接起动发展成目前的变频调速。
电机在恒压下直接起动时电流约为其额定值的4-7倍,电机转速要在很短时间内从零升至额定值将产生很大冲击,且在起动瞬间大电流作用下,会引起电网压降,甚至严重影响电网内其它设备正常运行。
为此,改善电机起动状态,使之处于低或无冲击及平滑柔和环境,各种限流起动的方法便应运而生。
变频调速技术是随交流电机无级调速的需要而诞生的。
20世纪60年代后半期开始,电力电子器件从SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物半导体场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MCT(MOS控制晶体管)、MCT(MOS控制晶闸管)发展到今天的IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管),器件更新促使电力变换技术的不断发展。
从20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视,到20世纪80年代作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。
三相异步电机矢量变频
三相异步电机矢量变频三相异步电机作为现代工业中最为常见的电动机类型之一,其性能与运行效率对于整个工业体系的能源消耗和生产力具有重要影响。
随着科技的不断进步,对于三相异步电机的控制技术要求也日益提高。
其中,矢量变频技术作为一种先进的电机控制技术,为三相异步电机的高效、稳定运行提供了有力支持。
一、三相异步电机的基本原理三相异步电机是利用三相交流电源供电的一种交流电机。
其工作原理基于电磁感应定律,即当定子绕组通入三相交流电时,会在定子中产生一个旋转磁场。
这个旋转磁场以同步转速在定子中旋转,同时切割转子导条,从而在转子导条中产生感应电流。
这个感应电流与旋转磁场相互作用,产生电磁转矩,从而使转子转动。
二、矢量变频技术的引入传统的三相异步电机控制方法主要依赖于电机的稳态模型,难以实现对电机转矩和磁场的独立控制。
这在一定程度上限制了三相异步电机的性能发挥和节能潜力。
为了解决这一问题,矢量变频技术应运而生。
矢量变频技术,又称磁场定向控制或矢量控制,是一种基于电机动态模型的高性能控制方法。
它将三相异步电机的定子电流分解为磁场产生分量和转矩产生分量,并分别进行控制。
通过这种方法,可以实现对电机磁场和转矩的独立、精确控制,从而显著提高电机的运行效率和动态性能。
三、矢量变频技术的实现矢量变频技术的实现主要依赖于坐标变换和PWM(脉宽调制)技术。
坐标变换包括Clarke变换和Park变换,它们可以将三相异步电机在定子坐标系下的数学模型转换为旋转坐标系下的数学模型,从而简化控制算法的设计和实现。
PWM技术则用于将控制算法输出的电压或电流指令转换为适合逆变器开关的PWM信号,以驱动电机运行。
在矢量变频控制系统中,通常需要测量电机的转速、转子位置以及定子电流等信号作为反馈信号。
这些信号经过处理后与给定值进行比较,产生误差信号。
误差信号经过控制器(如PI控制器)的调节后输出控制指令,再经过坐标变换和PWM调制后驱动电机运行。
通过这种方法,可以实现对电机转速、转矩和磁场的精确控制。
三相异步电机控制技术
三相异步电机控制技术三相异步电机控制技术是电机控制领域中的重要内容,广泛应用于各个行业。
本文将从三相异步电机的基本原理、控制方法和应用领域等方面进行论述。
一、三相异步电机的基本原理三相异步电机是一种利用电磁感应原理工作的电动机。
它由定子和转子两部分组成,其中定子上绕有三相绕组,而转子则通过电磁感应与定子磁场相互作用而转动。
其基本原理是根据电磁感应定律,当三相绕组通电时,在定子中形成旋转磁场,转子受到磁场的作用而转动。
二、三相异步电机的控制方法1. 电压调制控制方法:通过改变电源对电机的供电电压来控制电机的转速。
通过调节电源电压的大小和频率,可以实现电机的启动、调速和制动等功能。
这种控制方法简单易行,但对电机的负载变化较为敏感,容易出现转速波动的情况。
2. 矢量控制方法:通过对电机转子位置的精确检测和电流矢量控制技术,实现对电机的高精度控制。
这种控制方法具有较好的动态响应和抗负载扰动能力,适用于对电机转速和力矩要求较高的应用场合。
3. 直接转矩控制方法:通过对电机定子电流和转子位置的测量,直接控制电机的转矩输出。
这种控制方法能够实现对电机转矩的精确控制,适用于需要高精度转矩输出的应用领域,如机床、风力发电等。
1. 工业自动化领域:三相异步电机广泛应用于工业生产线上的输送机、泵、风机等设备中,通过控制电机的转速和转矩,实现对生产过程的精确控制。
2. 交通运输领域:三相异步电机被广泛用于电动汽车、电动自行车和电动摩托车等交通工具中,通过电机的控制实现对车辆的动力输出和能量回收。
3. 可再生能源领域:三相异步电机被应用于风力发电和太阳能发电等可再生能源领域,通过控制电机的转速和转矩,实现对发电机组的运行和输出功率的控制。
4. 家电领域:三相异步电机被广泛应用于家电产品中,如洗衣机、空调、冰箱等,通过控制电机的转速和转矩,实现对家电产品的功能和性能的控制。
三相异步电机控制技术是电机控制领域的重要内容,通过对电机的电压、电流和转子位置等进行精确控制,实现对电机转速和转矩的调节,从而满足不同应用领域对电机性能的要求。
三相交流异步电机矢量控制系统仿真建模
现 电机运 动过 程 中转 速和 转矩 的 准确计 算 ; 所设 计 的参数 化 仿 真模 型 可 用 于三 相 交流异 步 电机 矢量 控
制 系统 仿 真 研 究 .
0 引 言
三相 交流 异 步 电机 具有 结构 简 单 、 制 造方 便 、 可 靠性 高 和价 格便 宜 等 特点 , 在 工业 生产 和 日常 生 活
领域 中得 到 了广 泛应 用 . 随 着 三相 交 流 异 步 电机 应 用领 域 的不 断拓 宽 , 对 三 相 交 流 异步 电机 控 制 系统
的设 计 要求 也越 来 越 高 , 需 要 协 调 考虑 控 制 系统 的
控制 性 能 、 成 本 和开发 周期 . 矢 量控 制是 当前 三相 交
三相 交流 异 步 电机 在 d—q坐 标 系 下 的数 学模
Lm L,
型可 用如 下方 程式 描述 . 电压 方程 :
摘 要 分析 了三 相 交流异 步 电机 的数 学模 型 , 介 绍 了三相 交流异 步 电机 的 矢量控 制 原理. 采 用模块 式 设计 方 法和 结构化 设 计方 法 , 开发 了基 于 MATI AB / s I Muu NKV 参数 化 三相 交流异 步 电机 矢量控 制
仿真模 型 . 该模 型 的输入 参数 为 电机 转子 目标 转速 和 转子 实 时转速 , 输 出参数 为 电机 输 出转矩 . 基 于建
∞ 1 L
L P
1
L
R s +L s p
L Ⅲ
L P
鲫 Lm
异步电机矢量控制基本原理
VS
转矩控制
基于转矩的矢量控制策略通过直接控制电 机的转矩来实现对电机的精确控制。通过 调节电压和电流的相位和幅值,可以精确 地控制电机的输出转矩。
矢量控制中的参数优化
电机参数辨识
在矢量控制中,电机的参数如电阻、 电感等对控制性能有重要影响。因此 ,需要对这些参数进行辨识和补偿, 以提高控制的准确性。
按照实验要求,设定异步 电机的运行参数,如转速 、转矩等,并记录实验过 程中的数据。
数据处理
对实验数据进行处理,包 括滤波、归一化等操作, 以便进行结果分析和对比 。
结果展示
通过图表、曲线等形式展 示实验结果,便于观察和 分析。
结果对比与讨论
结果对比
将实验结果与理论值进行 对比,分析误差产生的原 因和改进方向。
异步电机矢量控制 基本原理
目录
• 异步电机基本原理 • 矢量控制原理 • 异步电机矢量控制技术 • 异步电机矢量控制的应用 • 异步电机矢量控制的实验研究与结果分析
01
CATALOGUE
异步电机基本原理
异步电机工作原理
异步电机是一种交流电机,其工作原 理基于电磁感应定律。当异步电机通 电后,其定子产生旋转磁场,该磁场 与转子电流相互作用,使转子转动。
通过计算异步电机的空间矢量,将异步电机的三相交流电流转换为直流电流,然后通过逆变器实现对异步电机的 控制。
基于旋转矢量的矢量控制
将异步电机视为一个旋转的坐标系,通过旋转坐标变换将异步电机的三相交流电流转换为直流电流,然后通过逆 变器实现对异步电机的控制。
矢量控制的优势与局限性
优势
矢量控制具有高精度、高动态性 能、高稳态性能等优点,能够实 现对异步电机的高效、精确、稳 定的控制。
异步电机的矢量控制
异步电机的矢量控制
异步电机的矢量控制是一种先进的电机控制技术,能够提高电机的性能和效率。
在传统的电机控制方法中,通常使用直接转矩控制或者感应电机的矢量控制。
然而,这些方法在某些情况下存在一定的局限性,例如转矩响应速度较慢,效率不高等。
异步电机的矢量控制技术通过控制电机的电流和磁场,实现对电机的精准控制。
这种控制方法可以使电机在不同工况下都能够保持稳定的性能,提高电机的转矩响应速度和效率。
与传统的控制方法相比,异步电机的矢量控制具有更高的精度和可靠性。
在异步电机的矢量控制中,首先需要对电机的电流进行控制,以确保电机的磁场和转子的位置保持在理想状态。
通过对电机的电流进行精确控制,可以实现电机的高效运行,并且可以在不同负载条件下实现电机的平稳运行。
异步电机的矢量控制还需要对电机的转子位置进行准确检测和估算。
通常会使用编码器或者传感器来检测电机的转子位置,以便及时调整电机的控制参数。
通过准确的转子位置检测,可以确保电机在高速旋转时也能够保持稳定的性能。
除了电流控制和转子位置检测,异步电机的矢量控制还需要对电机的速度进行精确控制。
通过对电机的速度进行调节,可以实现电机的平稳启动和高速运行。
同时,还可以根据不同的工况调整电机的
转矩输出,以满足不同的应用需求。
总的来说,异步电机的矢量控制是一种先进的电机控制技术,能够提高电机的性能和效率。
通过精确控制电机的电流、转子位置和速度,可以实现电机在不同工况下的稳定运行,并且可以满足不同应用场景的需求。
随着电机控制技术的不断发展,相信异步电机的矢量控制技术将会得到更广泛的应用和推广。
异步电机矢量控制
哈尔滨理工大学学士学位论文异步电机矢量控制系统研究摘要矢量控制理论于1971年由德国首先提出,此后产生了矢量控制技术,矢量控制技术可以将三相异步电机等效为直流电机,这样控制三相异步电机就等笑成了控制直流电机,从而交流调速就可以获得与直流调速系统同样的静、动态性能,开创了交流调速和直流调速相媲美的时代。
交流调速技术在工业领域的各个方面应用很广,对于提高电力传动系统的性能有着重要的意义,由于电力传动系统的复杂性和被控对象的特殊性,使得对它的建模与仿真一直是研究的热点。
矢量控制方法的提出,使交流传动系统在动态特性方面得到了显著的改善和提高,从而使交流调速最终取代直流调速成为可能。
矢量变换控制的异步电机变频调速系统是一种高性能的调速系统,已经在许多需要高精度,高性能的场合中得到应用。
根据交流三相异步电动机的模型性质,构建矢量控制的整体框图,同时得出三相异步电动机在A、B、C静止坐标系统和二相同步旋转MT坐标系下数学模型,运用MATLAB下的SIMULINK搭建系统的仿真框图进行仿真。
关键词异步电机;矢量控制;SIMULINK仿真- I -哈尔滨理工大学学士学位论文Researching on asynchronous motor vector controlsystemAbstractThe vector control theory first proposed was in 1971 by Germany,after that, vector control technology was been created.The vector control technology, which can control the three-phase asynchronous motor as the DC motor,thus three-phase asynchronous motor obtained the same performance as DC converter system,and founded the time which the AC velocity modulation system compared with the DC velocity modulation system.With proposed of vector control method, the dynamic characteristic of the AC transmission system to have the remarkable improvement and the enhancement,thus caused the AC velocity modulation finally to replace to DC velocity modulation to become possibly.vector control system of asynchronous motor is a high performance speed-control system and has been used in a lot of situations of high precision and high performance.This thesis firstly describes the characteristics of the three phase asynchronous motor's mathematical model,and modeling methods modeling Process .And describes the mathematical model for an AC motor at A-B-C three phase reference frame and M-T two phase rotary reference frame at the same time.Keywords asynchronous motor;vector control system;Simulink- II -哈尔滨理工大学学士学位论文目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景 (1)1.2 电力电子技术是现代交流调速的物质基础 (1)1.3 交流调速系统控制技术的发展 (2)1.4 脉宽调制技术 (2)1.5 本章小结 (2)第2章三相异步电机数学模型 (3)2.1 三相异步电机的工作原理 (3)2.2 三相异步电机物理模型 (3)2.3 坐标变换 (5)2.3.1 三相/两相变换(3/2变换) (6)2.3.2 两相/两相旋转变换(2s/2r)变换 (7)2.3.3 直角坐标/极坐标变换 (7)2.4 异步电机在二相静止坐标系上的数学模型 (8)2.5 本章小结 (8)第3章异步电机矢量控制研究 (9)3.1 按转子磁场定向矢量控制的基本原理 (9)3.2 PWM变频原理 (10)3.3 矢量控制系统 (13)3.4 矢量控制系统在转子坐标系中的实现方案 (14)3.5 本章小结 (16)第4章系统仿真研究 (17)4.1 仿真工具语言MATLAB简介 (17)4.2 异步电机矢量控制系统仿真 (18)4.3 本章小结 (25)结论 (26)致谢 (27)参考文献 (28)附录 (30)- III -哈尔滨理工大学学士学位论文第1章绪论1.1课题背景直流电气传动和交流电气传动在19世纪中先后诞生,交流调速和直流调速方案之争,长期以来一直存在。
异步电机的矢量控制
异步电机的矢量控制引言异步电机是一种常用的电动机类型,多用于工业领域。
在控制异步电机的过程中,矢量控制技术被广泛应用。
本文将详细介绍异步电机的矢量控制原理及其应用。
矢量控制原理1.矢量控制概述矢量控制是一种基于电机磁链方向和大小的控制技术。
通过控制电机转子磁链,可以实现电机的启动、停止、加速、减速等控制操作。
2.矢量控制基本原理矢量控制的基本原理是通过实时测量电机的电流、转速、位置等参数,实现对电机转子磁链的实时控制。
控制器根据测量值计算出所需的电流矢量,并通过逆变器向电机施加相应的电流,使电机实现特定的运动。
矢量控制的参数测量与计算1.电机电流测量电机电流是矢量控制的重要参数之一。
可以通过采样电机两相之间的电压,利用欧姆定律计算得到电机电流。
2.电机转速测量电机转速测量可以通过安装编码器或霍尔传感器来实现。
编码器可以直接测量电机转子的位置,通过计算单位时间内的位置变化,可以得到电机转速。
3.电机位置测量电机位置测量可以通过编码器或霍尔传感器来实现。
编码器可以直接测量电机转子的位置,通过计算单位时间内的位置变化,可以得到电机位置。
4.电机磁链计算电机磁链可以通过测量电机的电流和电压来计算。
根据电机的等效电路模型,可以得到电机磁链的表达式。
矢量控制策略1.矢量控制模型矢量控制模型包括电流模型和转矩模型。
电流模型用于控制电机的电流矢量,转矩模型用于控制电机的转矩。
2.电流闭环控制电流闭环控制是矢量控制的重要组成部分。
通过对电机电流进行实时的测量、采样和控制,可以实现对电机转矩和速度的精确控制。
3.磁链闭环控制磁链闭环控制是矢量控制的关键环节。
通过对电机磁链进行实时的测量、采样和控制,可以实现对电机的磁场方向和大小的精确控制。
4.转速闭环控制转速闭环控制是矢量控制的基本要求之一。
通过对电机转速进行实时的测量、采样和控制,可以实现对电机速度和位置的精确控制。
矢量控制的应用1.电动汽车矢量控制技术在电动汽车中得到广泛应用。
三相异步电机的矢量控制策略
三相异步电机的矢量控制策略矢量控制策略的基本原理是将电机的旋转磁场分解为定子正向旋转磁场和旋转磁势矢量,然后通过调节磁场矢量和电流矢量的大小和相位,实现对电机的转矩和转速的控制。
具体来说,矢量控制主要包含以下几个方面的内容:1. 矢量控制算法:矢量控制算法主要包括电机模型的建立、电流和磁场的计算和控制策略的设计等。
常用的矢量控制算法有直接矢量控制(Direct Vector Control,DVC)、间接矢量控制(Indirect Vector Control,IVC)和感应电机向量控制。
2.矢量控制的实现:矢量控制的实现需要测量电流和磁场的信息,以及实时计算电流和磁场的矢量。
对于电流测量,通常使用电流传感器来获取电流信息;对于磁场测量,可以通过转矩传感器或者依靠矢量控制算法中的数学模型进行估算。
实时计算磁场和电流的矢量通常通过数字运算器实现。
3.矢量控制的调节:在矢量控制中,可以通过调整电流和磁场的矢量大小和相位来控制电机的转矩和转速。
具体来说,可以通过调节定子电流的大小和相位控制电机的转矩,通过调节转子电流的大小和相位来控制电机的转速。
此外,还可以根据电机的运行工况,采用不同的控制策略进行调节,以实现不同的控制需求。
4.矢量控制的优势:相比传统的传感器控制方法,矢量控制具有更高的控制精度和响应速度。
通过对电流和磁场的矢量控制,可以实现电机在不同工况下的精确控制,提高电机的运行效果和负载适应性。
此外,矢量控制还可以实现电机的动态控制和启动控制,提高了电机的运行稳定性和可靠性。
综上所述,三相异步电机的矢量控制策略是一种可以实现精确控制转矩和转速的控制方法。
通过对电机电流和磁场的矢量控制,可以实现电机在不同工况下的精确控制,提高电机的运行效果和负载适应性。
矢量控制不仅在工业和交通领域具有广泛应用,还可以为电机的节能和环保提供技术支持,具有很高的理论和实践价值。
三相异步电机 vf矢量控制
三相异步电机vf矢量控制
三相异步电机的VF(Voltage-Frequency,电压-频率)控制是一种基本的交流调速技术,它通过改变电源的电压和频率来调节电机的速度。
这种控制方式在恒转矩负载下可以保持电机输出转矩与频率成正比变化,以实现电机速度的平滑调节。
然而,VF控制存在一些局限性,如低频时由于电压降低导致的转矩不足、动态响应较慢以及无法精确控制电机磁通等。
而矢量控制(Vector Control),也称为磁场定向控制(Field Oriented Control, FOC),则是一种更为先进的交流电动机控制方法,尤其是对三相异步电机而言。
矢量控制通过对定子电流进行解耦处理,分别控制励磁电流分量(产生磁场)和转矩电流分量(产生转矩),使得电机能够在宽广的速度范围内获得接近直流电机的性能表现。
在矢量控制中,控制器根据电机模型实时计算出应该施加到电机上的最佳电压矢量,从而精准地控制电机的磁场强度和转矩输出,达到高精度的速度控制和快速的动态响应效果。
相比于VF控制,矢量控制能够有效提高系统的稳定性和动态性能,并能在低频运行时保持较高的输出转矩,适用于对速度控制要求较高的场合。
三相异步电机矢量控制matlab仿真 (2)
目录1 设计任务及要求 (3)2 异步电动机数学模型基本原理 (3)2.1异步电机的三相动态数学模型 (3)2.2异步电机的坐标变换 (8)2.2.1三相-两相变换 (8)2.2.2静止两相-旋转正交变换 (9)3 异步电动机按转子磁链定向的矢量控制系统 (10)3.1 按转子磁链定向矢量控制的基本思想 (10)3.2 以ω-is-ψr 为状态变量的状态方程 (10)3.2.1 dq坐标系中的状态方程 (10)3.2.2 αβ坐标系中的状态方程 (12)3.3 以w-is-Φr为状态变量的αβ坐标系上的异步电动机动态结构图 (13)3.4 转速闭环后的矢量控制原理框图 (14)3.5 转速闭环后的矢量控制系统结构图 (15)4 异步电动机矢量控制系统仿真 (16)4.1 仿真模型的参数计算 (16)4.2 矢量控制系统的仿真模型 (17)4.3仿真结果分析 (20)4.3.1 mt坐标系中的电流曲线 (20)5. 总结与体会 (22)参考文献 (22)1 设计任务及要求仿真电动机参数:R s=1.85Ω,R r=2.658Ω,L s=0.2941H,L r=0.2898H,L m=0.2838H,J=0.1284Nm·s2,n p=2,U N=380V,f N=50Hz。
采用二相旋转坐标系(d-q)下异步电机数学模型,利用MATLAB/SIMULINK完成异步电机的矢量控制系统仿真实验。
2 异步电动机数学模型基本原理交流电动机是个高阶、非线性、强耦合的多变量系统。
在研究异步电动机数学模型的多变量非线性数学模型时,作如下假设:(1)忽略空间谐波,设三相绕组对称,在空间中互差120电角度,产生的磁动势沿气隙周围按正弦规律分布;(2)忽略磁路饱和,认为各绕组的自感和互感都是恒定的;(3)忽略铁心饱和;(4)不考虑频率变化和温度变化对绕组电阻的影响。
2.1异步电机的三相动态数学模型电动机绕组就等效成图2-1所示的三相异步电动机的物理模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1/s
r
iB iC
3/2变 换
isβ
旋转 变换
2s/2r
+
ist npLm/Lr
dω/dt
Te +
np/J
-
1/s ωr
TL
等效直流电机模型
* r
is*m
1
控制
ω*r
器
is*t
1
ism 等效 直流 电机
ist 模型
r电流闭环控制 ωr必不可少
简化后的等效直流调速系统
按转子磁链定向的矢量控制系统
b
c
三相异步电机的原始数学模型
转矩方程
Te np Lms[(iAia iBib iCic ) sin (iAib iBic iCia ) sin( 120 ) (iAic iBia iCib ) sin( 120 )]
以上数学模型存在非线性强耦合性
2. 等效后的定、转子绕组间不存在相对运动。
3.旋转坐标系旋转速度ω1理论上可为任意值,但只
有等于定子电流的频率,即使用同步旋转坐标系,
才有实际意义。
按转子磁链定向的矢量控制系统
基本思想 通过坐标变换,在按转子磁链定向同步旋转正交系统中, 得到等效的直流电动机模型,仿照直流电机的控制方法控 制电磁转矩和磁链,然后将转子磁链定向坐标系中的控制 量反变换得到三相坐标系的对应量,以实施控制。
Te -
1
r
Ti s
r
1
r
Tons 1
转速环按典型Ⅱ型系统设计,ASR采用PI调节器,取 中频宽h=5,
两个小惯性环节合并, T n 2Toi Ton n h Tn 5Tn
KN
Kh
n Ti
Kn
6 n Ti 50 T2n
6 5T n Ti 50T2n
sd Lsisd Lmird
usq Rsisq Psq 1sd
sq Lsisq Lmirq
urd Rrird Prd (1 r )rq
rd Lrird Lmisd
urq Rrirq Prq (1 r )rd
Tr
Lr Rr
按转子磁链定向的矢量控制系统
转矩公式可简化为
Te np Lm (istirm ismirt )
np Lm (istirm
r
Lrirm Lm
(
Lmist Lr
))
np
Lm Lr
ist r
按转子磁链定向的矢量控制系统
1/Tr
iA
isα
ism
- dΨr/dt
Lm/Tr
ωs
1/P
s
+
Tr
Lm
ψr
按转子磁链定向的矢量控制系统
定子电流环的设计
调节对象为一个大惯
id(S)* -
Usd*(S)
Usd(S)
Ki
is 1 is
KA
ACR
1/ Z TLs 1
性和一个小惯性,按 id(S) 典型Ⅰ型系统设计电
流调节器,ACR选PI
Toi s 1
调节器,
i
* d
按转子磁链定向的矢量控制系统
转子磁链环的设计
* r
-
K
s
1 s
i*sm
1/
ism
2Tois 1
Lm Tr s 1
r
设计方法同电流调节器
按转子磁链定向的矢量控制系统
转速环的设计
r*
-
K
n
ns ns
1
Te*
i*st
TL
1/ 2Tois 1
ist
uB
0 Rs
0
0
0
0
iB
A
B
uuCa
0 0
0 0
Rs 0
0 Rr
0 0
0 0
iiCa
d dt
C a
ub
0
0
0
0
Rr
0
ib
uc 0 0 0 0 0 Rr ic
rq Lrirq Lmisq
转矩方程
Te np Lm (isqird isdirq )
三相异步电机在同步旋转正交坐 标系中的数学模型
说明: 1.定子绕组经过3/2变换、两相静止到两相旋转2步 变换 转子绕组是旋转的,因此需经3/2变换、两相旋转到 两相静止、两相静止到两相旋转3步变换
三相异步电机的原始数学模型
三相磁链方程
每个绕组的磁链是它本身的自感磁链和其他绕组对它的 互感磁链之和
A LAA LAB LAC LAa LAb LAc iA
B
LBA
LBB
LBC
LBa
LBb
LBc
iB
Ls Lsl Lm
C a
ust Rsist P st 1 sm urm Rrirm Prm srt urt Rrirt Prt srm
st Lsist Lmirt rm Lrirm Lmism rt Lrirt Lmist
转矩方程
Te np Lm (istirm ismirt )
3 0
1 2 3
2
1 2 3 2
C2 3
1
2
1
3 2
1
2
0
3
2
3
2
坐标变换
β
q
N2iβ
N2iq
F ωd1
N2id φ α
0
N2iα
id i cos i sin iq i sin i cos
(S)
-
Ki
is is
1
i TL
KA
Usd(S) 1/ Z
id(S)
消去大惯性环节
Tois 1
TLs 1
K I Toi
校正后的电流环等效 传递函数
1 2 Ki
Z
Toi
2K AToi
id id*
s s
1
2Tois 1
1 2
d轴(m轴)与转 子磁链矢量重合
坐标变换变换的是 矢量
t is
ist
ism
ψr m ω1
0 θ
ωr
α(A)
按转子磁链定向的矢量控制系统
m-t(磁链-转矩)(d-q)坐标下的三相异步电机数学模型
电压方程
磁链方程
usm Rsism P sm 1 st
sm Lsism Lmirm
按转子磁链定向的矢量控制系统
ωr*
-
ωr
AS
T*e ÷
ist*
R
isα*
iA*
UR-1
2/3
iB*
r*
-
ism* AψR
isβ*
iC*
id(S)
r
电流跟随PWM控制
iA iB iC
Ud
M
转子磁链 计算
ωr TG
按转子磁链定向的矢量控制系统
转子磁链给定值的选择 1)额定转速以下 2)额定转速以上 两种控制方式对比
LCA LaA
LCB LaB
LCC LaC
LCa Laa
LCb Lab
LCc Lac
iiCa
Lr Lrl Lm
b
LbA
LbB
LbC
c LcA LcB LcC
Lba Lca
Lbb Lcb
Lbc
ib
3
N3ic
cos
3
N3 (iA
1 2 iB
1 2 iC )
N2iβ
ω1
F
N2i N3iB sin 3 N3ic cos 3
3 2
N3 (iB
iC
)
π/3
α
0
π/3
N3iA N2iα
A 变换前后总功率不变
N3ic C
N3 2 N2 3
C3 2
2 1
坐标变换
q
A
ia F
不同坐标系中电动机模型
d 等效的原则是:不同坐标
if
直流电机物理模型
系下绕组所产生的合成磁 动势相等
B
iB
ic
0
C
ω1 F
α
A
ia
β ω1
ω1 q
β iβ
F
α
α
q iq
F
d
d
iα
id
三相异步电机在不同坐标系下的物理模型
坐标变换
B N3iB
β
N2i
N3iA
N3iB
cos
3Ti 5T n
谢谢观赏
按转子磁链定向的矢量控制系统
转子磁链的计算
是否根据转子磁链的实际值进行控制 1)直接定向 2)间接定向