数学物理方程 第一章 定解问题

合集下载

什么是定解问题

什么是定解问题

§1.2 什么是定解问题1. 定解问题定解问题是根据已知物理规律求解特定物理过程的数学条件,它由泛定方程和定解条件两个部分组成,泛定方程也称为数学物理方程。

2. 泛定方程泛定方程是待解物理过程所遵循的物理规律的数学表达式,具体表现为某物理量关于时间和空间变量的偏微分方程,同一类物理过程遵循相同的物理规律,因此泛定方程反映一类物理过程的共性。

方程中物理量对时间变量的偏微分项反映物理过程的因果关联。

方程中物理量对空间变量的偏微分项反映物理过程的内部作用,或内在关联。

例1. 质点运动状态的演化问题在质点动力学问题中常求质点的运动轨迹,一旦求出运动轨迹,则一切与质点运动有关的物理量(如动能、动量、角动量等)都可求出。

质点的运动状态是由质点的位矢和动量完全确定,求质点运动轨迹的方法就是求解质点的运动状态随时间演变的过程,即由前一时刻的位矢和动量推算出下一时刻位矢和动量,从物理上看前后二时刻质点的运动状态的联系为dt t p m t r dt t r t r dt t r )(1)()()()(K K K K K +=+=+, dt t F t p dt t p t p dt t p )()()()()(K K K K K +=+=+ 因此,只要知道质点的受力情况就能由前一时刻的运动状态求出下一时刻的运动状态,这样的推演过程就是求解常微分方程F t r m K K =)(满足初始条件“0000)(,)(v t r r t r K K K K ==”的解。

§1.3 定解条件。

一、初始条件初始条件描述特定物理过程的起因,就t 这个自变数而言,如果泛定方程中物理量u 对t 最高阶偏导数是n 阶偏导数n n tu ∂∂,则要确定具体的定解问题,需要n 个初始条件。

例1:均匀细杆的导热问题满足的泛定方程为02=−xx t u a u ,则要确定具体的导热问题的解只需一个初始条件:)(0x u t ϕ==,即要已知初始温度分布。

数学物理方程第一章、第二章习题全解

数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x

数学物理方程第三版 谷超豪 答案

数学物理方程第三版 谷超豪 答案

2u .
x2 y 2
t 2
即得所证。
6. 在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力) 与杆件在该点的速度大小成正比(比例系数设为 b), 但方向相反,试导出这时位移函数所满足 的微分方程.
解: 利用第 1 题的推导,由题意知此时尚须考虑杆段x, x x 上所受的摩阻力.由题设,
其中 (x) 表示 T (x) 方向与 x 轴的夹角

sin tg u
x.
于是得运动方程
x
2u t 2

[l

(x

x)] u x

xx
g
[l

x] u x

x
g
利用微分中值定理,消去 x ,再令 x 0 得
2u g [(l x) u ] 。
2(h x)
1
+
xat
(h ) ( )d.
2a(h x) xat
即为初值问题的解散。
2.问初始条件(x) 与 (x) 满足怎样的条件时,齐次波动方程初值问题的解仅由右传
播波组成? 解:波动方程的通解为 u=F(x-at)+G(x+at)
其中 F,G 由初始条件(x) 与 (x) 决定。初值问题的解仅由右传播组成,必须且只须对
单位质量所受摩阻力为 b u ,故 x, x x上所受摩阻力为
t
b pxsx x u
t
运动方程为:
xsxx 2u
t 2

ES u t
xx

ES
u x
x b xsxx u
t
利用微分中值定理,消去 x ,再令 x 0 得

数学物理方程:第1章 数学物理方程的定解问题

数学物理方程:第1章 数学物理方程的定解问题

第1章 数学物理方程的定解问题§1.1 数学物理方程的一般概念本节讨论:①数学物理方程的基本概念,②三类基本方程的数学表示,③一些简单解法▲数学物理方程的任务与特点 数学物理方程(亦称数理方程)在数学上为二阶偏微分方程。

它的任务有两个方面:①寻找数学定解问题的求解方法,给出解的表达式和计算方法;②通过理论分析得出问题的通解或某些特解的一般性质。

数学物理方程有如下特点:①它紧密地、直接地联系物理学、力学与工程技术中的许多问题。

②它广泛地运用数学物理中许多的技术成果。

如:数学中的复变函数、积分变换、常微分方程、泛函分析、广义函数等等,物理学中的力学、电学、磁学、热力学、原子物理学、振动与波、空气动力学等等。

⒈ 一些基本概念数学物理方程是物理过程中的一些偏微分方程。

由于物理过程是十分复杂的,故它们的数学表达式也是十分广泛的。

本书不能将众多的数学物理方程一一讨论,仅讨论一些常用的二阶线性微分方程。

一般而言,二阶线性偏微分方程可写为2,11nn ij i i j i i j i u u Lu a b cu f x x x ==∂∂=++=∂∂∂∑∑ (1.1.1) 式中:自变量),,(1n x x x ⋅⋅⋅=,系数ij a 、i b 、c 为x 的函数或为常数,并且ji ij a a =。

由于式中关于未知函数u 的导数最高为二阶导数,故方程称为二阶微分方程;同样,由于x 为n 维向量,方程也称为n 维方程;由于方程中对u 的各阶偏导数为线性的,故称为线性方程,否则就称为非线性方程。

若系数ij a 、i b 、c 均为常数,则称为常系数方程,否则称为变系数方程;若0≡f ,则称为齐次方程,反之称为非齐次方程。

▲方程的数学形式 在所有的自变量i x 中,时间变量t 常常被使用,由于它的独特性,人们常常直接用t 表示而不置于i x 之中,关于t 的导数式为:22u u L u a b t t t∂∂=+∂∂ (1.1.2) 故上述方程可改写为:f Lu u L t += (1.1.3)上述方程习惯上也称为n 维方程。

第一章 偏微分方程定解问题

第一章  偏微分方程定解问题
(3) 混合问题=泛定方程+初始条件+边界条件: 既有初始条件,也有边界条件的定解问题。
定解问题
泛定方程
演化方程 稳定方程
线性边界条件 边界条件
波动方程 输运方程 拉普拉斯方程 泊松方程 第一类边界条件 第二类 第三类
dS u1
u
(2) 第二类(Neumann)边界条件
VS
k u q(t ) n s
当q(t) 0(齐次,表示绝热)
热场
(3) 第三类(Robin)边界条件 牛顿冷却定律:单位时间内从物体通过边界上单位面积流
到周围介质的热量跟物体表面和外面的温差成正比。
dQ
h(u
u1)dSdt
k
u n
dSdt
h 热交换系数;u1 周围介质的温度, k为热传导系数
举例(设未知函数为二元函数)
1. u 0 x
解为: u f ( y)
f 为任意函数
2. u a u 0 t x
x
t
1
a
(
)
作变量代换
x x at
a u 0
解为:u f (x at)
f 为任意函数
7
举例(未知函数为二元函数)
2u
3.
0
xt
解为: u g(x) h(t)
数学物理方程主要内容
三种基本问题
初值问题 边值问题 混合问题
三种基本方程、 五种基本解法、两个基本原理、两个特殊函数
波动方程 热传导 拉普拉斯方程
通解法 行波法 分离变量法 积分变换法 格林函数法
叠加原理 齐次化原理
贝塞尔函数 勒让德函数
一些常见符号
哈密尔顿算子或梯度算子,读作nabla

第一章 典型方程与定解条件

第一章 典型方程与定解条件


初始条件 边界条件
第一章 典型方程和定解条件的推导
如果薄膜上有横向外力作用,设外力面密度为 F ( x, y, t ) ,则得 2u 2 a 2 u f ( x, y , t ) 2 t 其中 f ( x, y , t ) F ( x, y , t ) , 2 2 为二维拉普拉斯算子。 2 2 2 x y

第一章 典型方程和定解条件的推导
在上述热传导方程中, 描述空间坐标的独立变量 为 x , y, z , 所以它们又称为三维热传导方程. 当考 察的物体是均匀细杆时, 如果它的侧面绝热且在同 一截面上的温度分布相同, 则可以得到一维热传导 方程 2 u u 2 a t x 2 类似, 如果考虑一个薄片的热传导, 并且薄片的 侧面绝热, 可以得到二维热传导方程
例5 静电场的势方程


x
y
z


静电学基本定律:穿过闭合曲面向外的电通量等于区
故 4E 倍,即 域内所含电量的 dV 4 dV div


E n dS 4 ( x , y , z ) dV divE 4 ( x, y, z )
第一章 典型方程和定解条件的推导
例 4. 热传导方程
如果空间某物体内各点处的温度不同,则热量就从 温度较高点处到温度较低点处流动,这种现象叫热传导。
考虑物体G 内的热传导问题。函数u(x,y,z,t) 表 示物体G 在位置 M(x,y,z) 以及时刻 t 的温度。通过 对任意一个小的体积元V内的热平衡问题的研究,建 立方程。 假设:假定物体内部没有热源,物体 的热传导系数为常数,即是各向同性 的,物体的密度以及比热是常数。
第一章 典型方程和定解条件的推导

chapter1_偏微分方程定解问题

chapter1_偏微分方程定解问题

对于一般的偏微分方程,找出通解非常困难。但我们可以根据方程的物理背景或数学特点,
找出某些特定形式的特解来满足实际需要。例如,根据解析函数的实、虚部是调和函数,即 可得到二维 Laplace 方程2u 0 的中心对称解u ln 1 (r 0) ,周期解u ex sin y ,多项式解
r
u x2 y 2 等。
u
c(x, y)
u
f (x, y) ,
(1)
y b(x, y) b(x, y)
利用一阶线性常微分方程的求解方法得其通解:
, y c( x, )
u(x,
y)
e ( y0
d ) b( x, )
y
y
0
c( b(
x,s x,s
) )
ds
e y
0
f (x,)
d g(x)
b( x, )
其中g(x) 是任意的C1 函数。
1.2 定解问题及其适定性:
偏微分方程的解族很大,可以包含任意函数,例如:
例 1.2.1:求解二阶偏微分方程 2u 0 ,u u( ,) 。
解:两边依次对 , 积分,得
u f ( ) g() , 对于任意C1(R) 函数 f 和 g ,都是方程在全平面的解。
#
称m 阶偏微分方程的含有m 个任意函数的解为方程的通解,不含任意函数或某些任意函数 为常数的解为方程的一个特解。通解中的任意函数一旦确定,通解就成了特解。
第一章. 偏微分方程定解问题
偏微分方程:是指含有多元的未知函数u
u(
x)
,
x
(
x1,
x2,,
xn)
及其若干阶偏导数的关式
u u u F (x,u, , ,..., ,...,

数学物理方程第三版 谷超豪 答案

数学物理方程第三版 谷超豪 答案

2(h x)
1
+
xat
(h ) ( )d.
2a(h x) xat
即为初值问题的解散。
2.问初始条件(x) 与 (x) 满足怎样的条件时,齐次波动方程初值问题的解仅由右传
播波组成? 解:波动方程的通解为 u=F(x-at)+G(x+at)
其中 F,G 由初始条件(x) 与 (x) 决定。初值问题的解仅由右传播组成,必须且只须对
于任何 x, t 有 G(x+at) 常数.
即对任何 x, G(x) C 0

G(x)= 1 (x) 1
x
()d

C
2
2a x0
2a
所以(x), (x) 应满足
(x)
1 a
x
()d
x0

C1
(常数)

' (x)+ 1 (x) =0
a
3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
hx
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
t 0 : u x, u x.
t
解:令 h xu v 则
h x u u v ,h x2 u h xu v
x
x
x
x
[(h x)2 u (u v) (h x) u (h x)2 u (h x)(u 2v )

2u b u a 2 2u .
t 2 t
x 2
§2 达朗贝尔公式、 波的传抪 1. 证明方程
数学物理方程答案
x
1
x 2 h

数学物理方程(谷超豪)课后习题完整解答

数学物理方程(谷超豪)课后习题完整解答

所以
2u x 2

2u y 2
t x

2
2
5 2 2 y
u 2t 2 x 2 y 2 . t 2
2
x
即得所证。 6. 在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力) 与杆件在该点的速度大小成正比 (比例系数设为 b), 但方向相反,试导出这时位移函数所满足的微 分方程. 解: 利用第 1 题的推导,由题意知此时尚须考虑杆段 x, x x 上所受的摩阻力.由题设,单位质 量所受摩阻力为 b
由 (1), ( 2) 两式解出
1 F x h x x 2
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
1 h d c 2a x 2
o
x
t 0 : u x ,
解:令 h x u v 则
二阶连续偏导数。且
u (t 2 x 2 y 2 ) 2 t t 2 2 2 3 2
3
x u x 2u E [(1 ) 2 ] (1 ) 2 2 h x h t x
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置, 试导出此线的微小横振动方程。 解:如图 2,设弦长为 l ,弦的线密度为 ,则 x 点处的张力 T ( x) 为

2 2v h x u t 2 t 2
所以
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
+
x at 1 (h ) ( )d . 2a(h x) x at

数理方法-第一讲-定解问题共50页

数理方法-第一讲-定解问题共50页
(3)牛顿冷却定律 物体冷却时放出的热量-k u与物体与外界的温
差(u边- u0)成正比,u0为周围介质的温度。
常用到的物理学定律
(4)电荷守恒定律
(5)能量守恒定律
(6)扩散定律(Fick定律)
当物体内浓度分布不均匀时会引起物质的扩散运动,
粒子流强度q与浓度(即单位时间内流过单位面积的
粒子数)的下降率成正比。即
qDu
其中,D—扩散系数,负号表示浓度减小的方向
建立方程时常用到的物理学定律
(7) Gauss定律:通过一个任意闭合曲面的电通 量,等于这个闭曲面所包围的自由电荷的电
量的1 倍 1
Ñ sEds d
其中 为介电常数, 为体电荷密度。
(8)焦耳定律:电流通过纯电阻的导体时所放 出的热量跟电流强度I的平方、导线的电阻R 和通电的时间t成正比:Q = I 2 R t
(10)胡克定律:在弹性限度内,弹性体的弹力和弹性体的形
变量成正比即f=-kx 应力=杨氏模量*相对伸长量
k为弹簧的劲度系数,负号表示弹力的方向和形变量的方向相反
§1-3 定解条件
定解条件是确定数理方程解中所含的任意函数或常数, 使解具有唯一性的充分而必要的条件。它分为初始条 件和边界条件两种。若所研究的系统由几种不同介质 组成,则在两种介质的交界面上定解条件还应当有衔 接条件。
1.初始条件
定义:初始条件是物理过程初始状况的数学表达式。
初始条件的个数:关于时间t的n阶偏微分方程,要给 出n个初始条件才能确定一个特解。波动方程1-1式中 需给出两个初始条件:
u(x,y,z;t) (x,y,z) t 0
ut(x ,y ,z;t)t 0 (x ,y ,z)
第三部分 二阶线性常微分方程的级数解法 内容:级数解法的一般方法、积分变换法

数学物理方程第三版 谷超豪 答案

数学物理方程第三版 谷超豪 答案

2u b u a 2 2u .
t 2 t
x 2
§2 达朗贝尔公式、 波的传抪 1. 证明方程
数学物理方程答案
x
1
x 2 h
u
x

1 a2
1
x h
2
2u t 2
h

0常数
的通解可以写成
u Fx at Gx at
x, y,t 有
二阶连续偏导数。且
u

(t 2

x2

y
2
)

3 2
t
t
2u

(t 2

x2

y
2
)

3 2
3(t 2

x2

y
2
)

5 2
t2
t 2

(t 2

x2

y
2
)

3 2

(2t 2

x2

y2)
u

(t 2

x2

y
2
)

3 2

x
x
数学物理方程答案
2u
2u .
x2 y 2
t 2
即得所证。
6. 在单性杆纵振动时,若考虑摩阻的影响,并设摩阻力密度涵数(即单位质量所受的摩阻力) 与杆件在该点的速度大小成正比(比例系数设为 b), 但方向相反,试导出这时位移函数所满足 的微分方程.
解: 利用第 1 题的推导,由题意知此时尚须考虑杆段x, x x 上所受的摩阻力.由题设,

数学物理方程课后参考答案第一章

数学物理方程课后参考答案第一章

第一章. 波动方程§1 方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ其中ρ为杆的密度,E 为杨氏模量。

证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。

现在计算这段杆在时刻t 的相对伸长。

在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。

由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。

设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。

1 偏微分方程定解问题

1 偏微分方程定解问题

(5)微小横振动——绝对位移和相对位移都很小。
建立坐标系:确立未知函数 研究对象:u ( x, t ) ,弦上某点在 t 时刻的横向位移。
7
数学物理方程
第1章偏微分方程定解问题
微元分析法:取微元[x,x+dx], t时刻 牛顿运动定律: F=ma
2 u ( x, t ) dx u0 T t , x dx T t , x G t , x; dx 2 t T x dx g t , x dxu0
17
数学物理方程 翻译:对微元应用物理定律 dt时间内温度升高所需热量
第1章偏微分方程定解问题
Q Q流入 Q放出 u Q cdxdydz dt t
2u 2u 2 u Q流入 Q左右 Q上下 Q前后 k( 2 2 2 )dtdxdydz x y z u u Q左右 k dtdydz k dtdydz x (t , x, y , z ) x (t , x dx, y , z ) 2u z k 2 dtdxdydz (x+dx, x+dy, z+dz) x 2u Q前后 k 2 dtdxdydz y dz 2 y u dy Q上下 k 2 dtdxdydz z (x,y,z) dx
2 2u u 2 a f t, x 2 2 t x
ut 6uxux uxxx 0
(4)自由项 在偏微分方程中,不含有未知函数及其偏导数的 项称为自由项.
3
数学物理方程
第1章偏微分方程定解问题
2u 2 2 a u f (t , x) ☆波动方程: 2 t
2 T2 u u u T2 T1 张力沿切线: T T12 T22 T1 1 T1 T1 x x x 由(1)得: T1 T1 t (T 与 x 无关)

数理方法-第一讲-定解问题

数理方法-第一讲-定解问题
1.初始条件
定义:初始条件是物理过程初始状况的数学表达式。
初始条件的个数:关于时间t的n阶偏微分方程,要给 出n个初始条件才能确定一个特解。波动方程1-1式中 需给出两个初始条件:
热传导(或扩散)方程1-2式需给出一个初始 条件,即:
泊松方程1-3式无需给出任何初始条件,其


为已知函数。
2. 边界条件
数理方法-第一讲-定解问题.ppt
教学主要内容
第一部分 定解问题 学习物理方程、初始条件和边界条件的导出:以 一维波动方程为例,掌握如何利用物理规律导出 物理方程,并根据具体情况设定初始条件和边界 条件,介绍偏微分方程的初步解法,并推广到三 维情况。
第二部分 分离变量法 学习用分离变量法解偏微分方程。包括齐次与非 齐次方程的解法以及在直角坐标系、柱坐标系和 球坐标中的分离变量法。
要想将一个具体的物理过程完整的翻译成数学语言,必
须要写出它的定解问题即:
泛定方程 数理方程
定解问题
初始条件
定解条件 边界条件
衔接条件
泛定方程即数理方程本身。泛定方程只能反映和描绘同
一类现象的共同规律。对于一个具体的物理问题的具体
特殊的一面,还必须通过定解条件来反映,而欲正确的
写出定解条件,必须注意以下几个方面的问题:
[解] 泛定方程:
初始条件:
例4 杆的纵向振动 当两端(x = 0,x= l)受沿外法线纵向 外力 f(t)作用时:
相对伸长:
根据胡克定律: 边界条件:
当两端(x = 0,x= l)不受外力自由振动时 : 边界条件: 例5 细杆的导热问题 当一端(x= l)有热量流q(t)沿端点外法 线方向流出时:
积分
解方程组

数学物理方程小结

数学物理方程小结

解 法 二 : Fourier Fourier 法
数学物理方程小结
1.6‘定解问题
utt − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), ut ( x, 0) = 0 (−∞ < x < +∞)
utt (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % Fourier变换 % Fourier % % 定解问题: u (λ , 0) = ϕ (λ ), ut (λ , 0) = 0 %
方程具有傅立叶正弦级数解
nπ x u ( x, t ) = ∑ Tn (t ) sin l n =1

nπ at nπ at nπ x u ( x, t ) = ∑ An cos + Bn sin sin l l l n =1

数学物理方程小结
1.2定解问题
utt − a 2u xx = 0 u x (0, t ) = 0, u x (l , t ) = 0 (t > 0) u ( x, 0) = ϕ ( x), u ( x, 0) = ψ ( x) (0 < x < l ) t
数学物理方程小结
解 法 二 : Fourier Fourier 变 换 法 2.6’定解问题
ut − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), (−∞ < x < +∞)
Fourier 定解问题 解 Fourier
ut (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % % % % u (λ , 0) = ϕ (λ ),

数学物理方程第一章 基础概念

数学物理方程第一章 基础概念
∂u ( x, t ) 2 ) dx ≈ dx ∂x
ds = 1 + (
弧段 M ′ M 在 t 时刻,沿 u 方向运动的加速度近似为 以
∂ 2 u ( x, t ) , x 为弧段 M ′ M 的质心。所 ∂t 2
− T sin α + T ′ sin α ′ − ρgdx = ρdx

∂ 2 u ( x, t ) ∂t 2
Q2 = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV
式中, c 为物体的比热, ρ 为物体的密度。 如果物体内部没有热源,则由热量守恒可得 Q1 = Q2 ,则

(1.2.3)

t2 t1
⎡ ∂u ⎤ ⎢ ∫∫ k dS ⎥dt = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV ⎢∑ ∂n ⎥ Ω ⎦ ⎣
(1.2.4)
假设函数 u 关于 x, y, z 具有二阶连续导数,关于 t 具有一阶连续导数,则利用 Gauss 公 式有
t2 ⎡ ⎡ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞⎤ ⎤ Q1 = ∫ ⎢ ∫∫∫ ⎢ ⎜ k ⎟ + ⎜ ⎟ + ∂z ⎜ k ∂z ⎟⎥dV ⎥dt ⎜ k ∂y ⎟ t1 x x y ∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠⎦ ⎥ ⎢ ⎠ ⎝ ⎣Ω ⎣ ⎦
次方程,若 f ( x, t ) = 0 ,则称为齐次方程。式(1.1.3)称为非齐次一维波动方程。
1.1.2 定解条件 一般弦线的特定振动状态还依赖于初始时刻弦的状态和通过弦线两端所受外界的影响。 为了确定一个具体的弦振动的规律, 除了列出方程外, 还需要写出它满足的初始条件和边界 条件,我们称之为定解条件。 初始条件,即初始时刻 t = 0 时,弦上各点的位移和速度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档